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ABSTRACT

Single-cell RNA-sequencing (scRNA-seq) is a powerful tool for analyzing bio-
logical systems. However, due to biological and technical noise, quantifying the
effects of multiple experimental conditions presents an analytical challenge. To
overcome this challenge, we developed MELD: Manifold Enhancement of Latent
Dimensions. MELD leverages tools from graph signal processing to learn a la-
tent dimension within the data, which scores the prototypicality of each datapoint
with respect to experimental or control conditions. We call this dimension the En-
hanced Experimental Signal (EES). MELD learns the EES by filtering the noisy
categorical experimental label in the graph frequency domain to recover a smooth
signal with continuous values. This method can be used to identify signature genes
that vary between conditions and identify which cell types are most affected by a
given perturbation. We demonstrate the advantages of MELD analysis in two bi-
ological datasets, including T-cell activation in response to antibody-coated beads
and treatment of human pancreatic islet cells with interferon gamma.

1 INTRODUCTION

As single-cell RNA-sequencing (scRNA-seq) has become more accessible, design of single cell
experiments has become increasingly complex. However, quantifying the differences between single
cell data sets collected from different conditions presents an analytical challenge. There is often a
large overlap between single-cell profiles across conditions and single cell data sets are prone to
biological and technical noise. As a result, the signal of an experimental perturbation is small with
respect to the biological and technical variation in an experiment (Fig. [I)).

To quantify the differences between experimental conditions, it would be helpful to find groups of
cells that are prototypical of experimental or control conditions. Thus, we effectively want a quan-
tification (i.e. a score) of how prototypical each cell is of the control or experimental condition.
Such a score would identify the cells and populations that are the most or least affected by an exper-
imental perturbation. We term this score the Enhanced Experimental Signal (EES). For example, in
a simple experiment with one experimental condition and one control condition, we would like the
EES to be +1 or -1 for cells that are most likely to arise in the experimental or control condition,
respectively, and O for cells equally likely to arise in either condition.
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To derive this score, we developed MELD (Manifold Enhancement of Latent Dimensions). MELD
is based on methods from graph signal processing (GSP) that, despite their proven strength in other
domains, have not often been used in biomedical data analysis (Shuman et al.,2013).The key advan-
tage of GSP is the access to a set of tools for processing graph signals, which are functions defined
over the nodes in a graph.

MELD models the condition label indicating from which condition each cell was sampled as a graph
signal that we call the Raw Experimental Signal. In a two-sample experiment, the RES would be
defined as -1 for cells from the control condition and +1 for cells in the experimental condition. To
remove high-frequency noise from the RES, MELD applies a novel filter over the graph frequency
domain of the RES to infer the EES. Finally, we incorporate information from the RES and EES
into Vertex Frequency Clustering (VFC), a novel clustering algorithm that identifies cell types most
or least affected by the experimental perturbation.

MELD has wide applicability in the analysis of high dimensional single cell data. Here, we describe
the algorithms for MELD and VFC and demonstrate the methods on two scRNA-seq datasets. More
results can be found in|[Burkhardt et al.| (2019).
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2 THE MELD ALGORITHM

The goal of the MELD algorithm is to use a man-
ifold model of cellular states across experimental
conditions to learn an Enhanced Experimental Sig-
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1. A cell similarity graph is constructed over
the data.

2. The experimental label that indicates the
sample origin of the cell is modeled over
the graph as a discrete signal called the Raw
Experimental Signal (RES).

3. MELD filters biological and technical noise
from the RES to infer the EES, which re-
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The EES and Fourier transform of the RES
are used to identify cell populations that are
prototypical of each condition and to infer
gene trends of the experimental perturba-
tion.
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Figure 1: (a) MELD smooths experimental la-
bels in scRNA-seq data. (b) The EES and Fourier
transform of the RES are used for Vertex Fre-
quency Clustering. (c¢) The EES can be used to
infer gene trends in each cluster and (d) identify

clusters most affected by a perturbation.

The cell similarity graph in step one is constructed using a variant of the radial basis kernel called
the a-decay kernel, first proposed by [Moon et al.|(2018)). Next, MELD uses the input experimental
label to create the RES on the graph. For simple two-sample experimental cases, cells from the
control condition are assigned a value of -1 and cells from the experimental signal are assigned +1
(Fig. [Th). For more complex cases, such as in a time course or a series of drug titrations, the raw
signal can be defined ordinally as the stage or timepoint of collection or dosage of a drug.

The goal of MELD is to remove biological and technical noise from the RES using a low-pass filter.
The MELD filter is inspired by Laplacian regularization (Ando & Zhang|,2007), which is expressed
as the optimization

y = argmin ||x — z||3 + Bz” Lz, (1)

z N—— N~ —
a b

Here, the regularization maximizes (a) reconstruction, and (b) smoothness of z quantified using the
graph Laplacian L.
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However, low-pass filters are not a panacea. Indeed, low frequency noise (such as background noise)
is common and will be exacerbated by low-pass filtering. In MELD we propose a new class of graph
filters, of which Laplacian regularization is a subfilter, that is adaptable to graph and signal noise
context, given by the following equation:

y = argmin||z — z||2 + 27 L,z (2)
z
where £, = [BL — al]”.

Here, = corresponds to an input RES, y is an EES, and each of «, 3, and p are parameters that
control the spectral translation, reconstruction penalty, and filter order, respectively. MELD solves
the problem of learning y using a Chebyshev polynomial approximation. In contrast to previous
works using Laplacian filters, these parameters allow analysis of signals that are contaminated by
noise across the frequency spectrum, which is explored in Burkhardt et al.| (2019).

Next, to identify populations of cells most or least affect by a given perturbation, we introduce a
novel clustering algorithm called Vertex Frequency Clustering (VFC, Fig. [Ip). VFC combines
information about graph structure, RES signal frequency content, and EES signal magnitude at each
node to identify clusters of cells that are both transcriptionally similar and affected similarly by the
experimental perturbation. The implementation of VFC is described thoroughly in |Burkhardt et al.
(2019). At a high level, a series of varying-scale Windowed Graph Fourier Transforms are applied
to the graph localized at each node to learn a spectrogram of the RES (Shuman et al., |[2016). This
matrix is concatenated with the EES to capture information about signal magnitude and used as
input to k-means. As shown in Section[3.2] this approach can distinguish between intermediate cells
between two extreme phenotypes and cells unaffected by an experimental perturbation (discussed in

Section[3.2)).

Once the EES and VFC clusters have been inferred, this information can be used to identify gene
signatures on an experimental perturbation (Fig. [Tc) and characterize cells types with varying re-
sponse to perturbation (Fig. [Id). In the following section, we present application of both strategies
on two single cell datasets.

3 RESULTS

3.1 MELD IDENTIFIES A BIOLOGICALLY RELEVANT SIGNATURE OF T CELL ACTIVATION

To demonstrate the ability of MELD to identify a biologically relevant EES, we applied the algorithm
to 5740 Jurkat T cells cultured for 10 days with and without anti-CD3/anti-CD28 antibodies pub-
lished by |Datlinger et al.[(2017)). The goal of the experiment was to characterize the transcriptional
signature of T cell Receptor (TCR) activation. We selected this data because it relatively simple:
the experiment profiles a single cell type, yet exhibits a heterogeneous continuum of experimental
responses. We visualized the data using PHATE, a visualization and dimensionality reduction tool
we developed for single-cell RNA-seq data (Fig.[Za; Moon et al.| (2018). We observed a large degree
of overlap in cell states between the experimental and control conditions, as noted in the original
study (Datlinger et al., 2017). This noise is both technical and biological. Approximately 76% of
the cells were transfected with gRNAs targeting proteins in the TCR pathway, leading to some cells
in the stimulated condition lacking key effectors of activation. The expectation for these cells is to
appear transcriptionally unactivated despite originating from the stimulated experimental condition.
In other words, although the RES for these cells is +1 (originating from the stimulated condition),
the EES of these cells is expected to be closer to -1 (prototypical of the unstimulated condition).

To obtain a signature of T cell activation, Datlinger et al. (2017) devised an ad hoc iterative clustering
approach whereby cells were first clustered by the gRNA observed in that cell and then further
clustered by the gene targeted. In each cluster, the median gene expression was calculated and the
first principle component was used as the dimension of activation. The 165 genes with the highest
component loadings were defined as signature genes and used to judge the level of activation in each
cell. We reasoned that MELD would be able to identify an EES of TCR activation without relying
on clustering or access to information about the gRNA observed in each cell.

Applying MELD to the data, we observe a continuous spectrum of scores across the data set
(Fig. [Za). As expected, the regions enriched for cells from the stimulated condition have higher
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Figure 2: MELD recovers signature of TCR activation.

EES values representing highly activated cells, and the converse is true for regions enriched for
unstimulated cells. To ensure that the EES represents a biologically relevant dimension of activa-
tion, we looked for genes with a high mutual information with the EES using kKNN-DREMI
Dijk et al 2018)). To facilitate comparison with the results of [Datlinger et al| (2017), we used En-
richR (Kuleshov et al, 2016) to perform gene set enrichment analysis on the 165 genes with the
top KNN-DREMI scores (Fig. 2Zb). We found comparable enrichment for gene sets related to T cell
activation, T cell differentiation, and TCR response (Fig. k) and identify an overlap of 53 genes
between the MELD-inferred and published signatures. We find that in the GO sets of T cell activa-
tion, T cell differentiation, and T cell receptor signalling, the MELD signatures includes as many or
more genes for each GO term. Furthermore, our signature includes genes known to be affected by
TCR stimulation but not present in the Datlinger et al.|(2017) signature list, such as down regulation
of RAG1 and RAG2 (Turka et al.}[T991). These results show that MELD is capable of identifying
a biologically relevant dimension of T cell activation at the resolution of single cells.

3.2 MELD AND VFC CAPTURE EFFECT OF IFNG STIMULATION IN PACREATIC ISLET CELLS
To demonstrate the ability for VFC to identify

biological populations with various responses - VFC clusters __ Condiion EES

to perturbation, we analyzed a newly gener- B i+ A
ated scRNA-seq experiment of human pancre-
atic islets stimulated with interferon-gamma X
(IFNg). Human islets from three donors were [ Y | 3 . : H
cultured for 24 hours with or without IFNg FRATE PRATE PRATET
before collection for scRNA-seq. We visual-
ized the data using PHATE and used MELD :
to infers a cell type specific response to treat- ; Tt w
ment. Next, we used VFC to identify clusters
of cells with similar response to IFNg. We
calculated a spectrogram from the RES, con-
catenated the EES, and calculated k-means to
obtain 9 VFC clusters (further description in Figure 3: (a) VFC and MELD characterize response to
Burkhardt et al.] (2019)). Examining the result- IFNg across isleft cell types. (b} Zooming in on beta
ing cluster, we identified alpha, beta, and delta cglls, VEC identifies non responsive cells unaffected by
cells (Fig. Bp). In each cell type, we observed stimulation.

that genes strongly correlated with the EES include known downstream targets of IFNg signalling
including STAT1, IRF1, and ISG20 (data shown in [Burkhardt et al.| (2019)).

Zooming in on the beta cell clusters, we observed four groups of cells: cells enriched in either the
stimulated or unstimulated condition, cells intermediate of these groups, and a group of cells with
high-frequency RES content suggesting no response to IFNg (Fig. Bb). To confirm these clusters
are biologically relevant, we examined expression of STAT1 and found that the cells enriched in the
unstimulated condition and non-responsive cells have the lowest expression of this IFNg-induced
gene. This indicates that the non-responsive cluster, despite containing roughly equal number of
stimulated and unstimulated cells, exhibits no stimulation phenotype. We also find that the non-
responsive cells are marked by extreme high insulin expression. Recent studies have described a
subpopulation of beta cells marked by high insulin mRNA production that are hypothesized to have
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functional differences to typical beta cells|Farack et al.|(2019)). The results demonstrate the ability of
MELD and VFC to tease apart subpopulations of cells exhibiting diverse responses to perturbation.

4 CONCLUSION

MELD introduces a novel and flexible filter on graph frequency domain to remove noise from the
experimental labels indicating from which condition each cell was sampled. We show that this filter
is capable of recovering unique signals from data with multiple structures. We also demonstrate the
ability of MELD and VFC to identify biologically relevant signals across multiple cell types and
biological systems.
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