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ABSTRACT

Generative adversarial networks (GANs) are powerful generative models, but usu-
ally suffer from instability which may lead to poor generations. Most existing
works try to alleviate this problem by focusing on stabilizing the training of the
discriminator, which unfortunately ignores the robustness of both generator and
discriminator. In this work, we consider the robustness of GANs and propose a
novel robust method called robust generative adversarial network (RGAN). Par-
ticularly, we design a robust optimization framework where the generator and dis-
criminator compete with each other in a worst-case setting within a small Wasser-
stein ball. The generator tries to map the worst input distribution (rather than a
specific input distribution, typically a Gaussian distribution used in most GANs)
to the real data distribution, while the discriminator attempts to distinguish the
real and fake distribution with the worst perturbation. We have provided theories
showing that the generalization of the new robust framework can be guaranteed.
A series of experiments on CIFAR-10, STL-10 and CelebA datasets indicate that
our proposed robust framework can improve consistently on four baseline GAN
models. We also provide ablation analysis and visualization showing the efficacy
of our method on both generator and discriminator quantitatively and qualitatively.

INTRODUCTION

Generative adversarial networks (GANs) (Goodfellow et al., 2014) have been enjoying much atten-
tion recently due to their great success on different tasks and datasets (Radford et al., 2015)(Salimans
et al., 2016)(Ho & Ermon, 2016) (Li et al., 2017)(Chongxuan et al., 2017). The framework of GANs
can be formulated as the game between generator and discriminator. The generator tries to produce
the fake distribution which approximates the real data distribution, while the discriminator attempts
to distinguish the fake distribution from the real distribution. These two players compete with each
other iteratively. GANs are also popular for their theoretical value. Training the discriminator is
showed to equivalent to training a good estimator for the density ratio between the fake distribution
and the real one (Nowozin et al., 2016)(Uehara et al., 2016)(Mohamed & Lakshminarayanan, 2016).

The discriminator generally measures the departure between the model distribution and real
data distribution with certain divergence measure, e.g. Jensen-Shannon divergence or f -
divergence (Nowozin et al., 2016). Arjovsky et al. proved that the supports of the fake and real
distributions are typically disjoint on low dimensional manifolds and there is a nearly trivial dis-
criminator which can correctly classify the real and fake data (Arjovsky et al., 2017). The loss of
such discriminator converges quickly to zero which causes the vanishing gradient for generator.
To alleviate such problem, Arjovsky et al. proposed the Wasserstein GAN based on Wasserstein
metric requiring no joint supports. Since it is inconvenient to minimize directly the Wasserstein dis-
tance, they solve the dual problem by clipping the weights to ensure the Lipschitz condition for
discriminator. Later Gulrajani et al. proposed the gradient penalty to guarantee the Lipschitz condi-
tion (Gulrajani et al., 2017). Spectral normalization is also proposed to stabilize the training of the
discriminator (Miyato et al., 2018).

Most existing methods try to improve the stability of GANs by controlling the discriminator. How-
ever, the robustness of GANs have not adequately been considered. When the discriminator is not
robust to noise (i.e., the discriminator cannot measure the distance between the fake and real distri-
bution accurately), some examples might be mis-classified which consequently misleads the training
of generator. Meanwhile, the poor generalization performance of generator might cause the “blurry”
generated images for some potential input noise. Robust Conditional Generative Adversarial Net-
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works is proposed to improve the robustness of conditional GAN for noised data. However, this
method can merely implement on conditional GAN which improves the ability of generator only to
defend the noise (Chrysos et al., 2018). Some other researchers focus on the robustness of GAN to
label noise (Thekumparampil et al., 2018)(Kaneko et al., 2019).

In this paper, we attempt to improve the robustness of GANs in a systematical way by promoting
the robustness of both discriminator and generator. We propose a novel robust method called robust
generative adversarial network (RGAN) where the generator and discriminator still compete with
each other iteratively, but in a worst-case setting. Specifically, a robust optimization is designed with
considering the worst distribution within the small Wasserstein ball. The generator tries to map the
worst input distribution (rather than a specific distribution) to the real data distribution, while the
discriminator attempts to distinguish the real and fake distribution with the worst perturbation. We
provide some theoretical analysis for the proposed Robust GAN including generalization. We also
implement our robust framework on different baseline GANs (i.e., DCGAN, WGAN-GP, and BW-
GAN) (Radford et al., 2015)(Adler & Lunz, 2018), observing substantial improvements consistently
on all the datasets used in this paper.

GENERATIVE ADVERSARIAL NETWORK

The principle of GAN is a game between two players: generator and discriminator, both of which
are usually formulated as the deep neural networks. The generator tries to generate a fake example
to fool discriminator, while the discriminator attempts to distinguish between fake and real images.
Formally, the training procedure of GAN can be formulated as:

min
G

max
D

S(G,D) , Ex∼Pr [logD(x)] + Ex̃∼Pg [(1− logD(G(zi)))] (1)

where, x and x̃ = G(z) are real and fake examples sampled from the real data distribution Pr
and generation distribution Pg respectively. The generation distribution is defined by G(z) where
z ∼ Pz (Pz is a specific input noise distribution). The minmax problem cannot be solved directly
since the expectation of the real and generation distribution is usually intractable. Therefore, the
approximation problem is defined as:

min
G

max
D

Sm(G,D) ,
1

m

m∑
i=1

[logD(xi)] +
1

m

m∑
i=1

[(1− logD(G(zi)))] (2)

where m examples of xi and zi are sampled from distributions Pr and Pz and the mean value of
loss is used to approximate the original problem. However, such a way might not ensure a good
robustness of discriminator and generator. Some noised images might not be classified correctly and
potential input noise points will cause degraded generation. In this paper, for alleviating such prob-
lem, we design a distributionally robust optimization. Particularly, we consider the worst distribution
(rather than a specific single distribution) within the small range.

ROBUST GENERATIVE ADVERSARIAL NETWORK

As we discussed in the previous sections, although most existing GAN methods can stabilize the
training of the discriminator, the robustness might not be adequately considered. In other words, the
discriminator might not perform well on some noised data which consequently misleads the training
of generator. Similarly, the generator might produce poor generations for certain input noise points
if its robustnessis not good. To alleviate such problem, we design the distributionally robust opti-
mization on GAN. Before we discuss how we can achieve this, we first elaborate the distributionally
robust optimization.

DISTRIBUTIONALLY ROBUST OPTIMIZATION

Let d : X ×X → R+ ∪{∞}. The departure between x and x0 can then be represented by d(x, x0).
For distributionally robust optimization, the robustness region P = {P : D(P, P0) ≤ ρ} is con-
sidered, a ρ -neighborhood of the distribution P0 under the divergence D(., .) instead of a single
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distribution1. The distributionally robust optimization can be formulated as (Sinha et al., 2017):

min
θ

sup
P∈P

EP [l(X; θ)] (3)

where l(.) is a loss function parameterized by θ. The problem of (3) is typically intractable for
arbitrary ρ.

In order to solve this problem, we first present a proposition:

Proposition 0.1 Let l: θ ×X → R and d: X ×X → R+ be continuous. Then, for any distribution
P0 and ρ > 0 we have

sup
P∈P
{EP [l(X; θ)]− γW (P, P0)} = EP0

[sup
x∈X
{l(x; θ)− γd(x, x0)}] (4)

(Proof is provided in (Sinha et al., 2017)).

With Proposition 0.1, we can reformulate (3) with the Lagrangian relaxation as follows:

min
θ

EP0
sup
x∈X

[l(x; θ)− λd(x, x0)] (5)

where the second term d(x, x0) is to restrict the distance between two points.

ROBUST TRAINING OVER GENERATOR

With the distributionally robust optimization, we first discuss how we can perform robust training
over generator. The generator of GAN tries to map a noise distribution Pz to the image distribution
Pr. The objective of generator is described as follows:

min
G

1

m

m∑
i=1

[log(1−D(G(zi)))], where zi ∼ Pz (6)

Typically, Pz is a Gaussian distribution. For improving the robustness, we consider all the possible
distributions within the robust region Pz = {P : W (P, Pz) ≤ ρz} rather than a single specific
distribution (typically a Gaussain in most existing GANs). Here we use the Wasserstein metric to
measure the distance between P and Pz , where P is the ρz-neighbor of the original distribution Pz .
However, it is difficult to consider all the distributions in this small region, the alternative way is to
consider their upper bound (the worst distribution). The robust optimization problem for G is then
described as follows:

min
G

sup
P∈Pz

1

m

m∑
i=1

[log(1−D(G(zi)))], where zi ∼ P (7)

According to Proposition 0.1, we can relax (7) as:

min
G

max
r

1

m

m∑
i=1

[log(1−D(G(zi + ri)))− λz‖r‖22], where zi ∼ Pz (8)

Different from those previous methods, our method attempts to map the worst distribution (in the
ρz-neighborhood of the original distribution Pz) to the image distribution. Intuitively, we sample
the noise points which are most likely (or the worst) to generate the blurry images and optimize the
generator based on these risky points. Therefore, such generator would be robust against poor input
noises and might be less likely to generate the low-quality images.

ROBUST TRAINING OVER DISCRIMINATOR

In traditional GANs described by (2), the generator attempts to generate a fake distribution to ap-
proximate the real data distribution, while the discriminator tries to learn the decision boundary to
separate real and fake distributions. Apparently, a discriminator with a poor robustness would in-
evitably mislead the training of generator. In this section, we utilize the popular adversarial learning

1Normally, the Wasserstein metric W (., .) is used and corresponding d(x, x0) = ‖x− x0‖2p where p > 0
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method and propose the robust optimization method to improve the discriminator’s robustness both
for clean and noised data.

Specifically, we define the robust regions for both the fake distribution Pg = {P : W (P, Pg) ≤ ρg}
and real distribution Pr = {P : W (P, Pr) ≤ ρr}. The generator tries to reduce the distance
between the fake distribution Pg and real distribution Pr. The discriminator attempts to separate the
worst distributions in Pg and Pr. Intuitively, the worst distributions are closer to decision boundary
(less discriminative) and they are able to guide the training of discriminator to perform well on
”confusing” data points near the classification boundary (such discriminator can be more robust
than original one). We can reformulate (2) in the robust version:

max
D

sup
P1∈Pr

1

m

m∑
i=1

[logD(x′i)] + sup
P2∈Pg

1

m

m∑
i=1

[log(1−D(G′(zi)))] (9)

where zi ∼ Pz , x′i ∼ P1 and G′ ∼ P2. Using Proposition 0.1, we can relax the alternate problem
as:

max
D

min
r1,r2

1

m

m∑
i=1

[logD(xi + ri1)]+
1

m

m∑
i=1

[log(1−D(G(zi) + ri2))] +
λd
m

m∑
i=1

[‖ri1‖22] + ‖ri2‖22]

with zi ∼ Pz, xi ∼ Pr

(10)

Here r1 = {ri1}mi=1 is the set of small perturbations for the points sampled from real distribution Pd
which tries to make the real distribution closer to the fake distribution. r2 = {ri2}mi=1 tries to make
fake distribution closer to real one. Intuitively, these perturbations try to enhance the difficulty of
classification task for discriminator by making real and fake data less distinguishable and it can help
promote the robustness of discriminator.

OVERALL OPTIMIZATION

We now integrate the robust training of generator and discriminator into a single framework:

min
G

max
D
V (G,D) , (1− λ)S(G,D) + sup

P :W (P,Pr)≤ρr
λEx∼P [logD(x)]

+ sup
P :W (P,Pg)≤ρg

λEG′∼P [(1− logD(G′(z)))]
(11)

whereG′(zi) = G(zi)+ri2 and zi ∼ pλz . pλz is the mixture distribution defined by pλz = (1−λ)pz +
λp′z and p′z is the worst distribution defined by p′z = arg maxP :W (P,Pz)≤ρz Ex∼P [1− logD(G(x))].
ri2 is arbitrary perturbation. It is noted that we also combine the original GAN into the framework,
allowing a more flexible training. The specific algorithm is given as below:

Algorithm 1 Algorithm for RGAN.
1: for number of training iterations do
2: Sample a batch of input noise zi ∼ Pz of size m, a batch of real data xi ∼ Pr of size m.
λ is the trade-off parameter for original objective and our objective. ε1 and ε2 are amplitude of
perturbation for input and images respectively.

3: find the worst perturbation {rzadv, rdadv1, rdadv2} by maximizing the objective of generator
and minimizing the objective of discriminator:

4: rizadv = arg minri:‖ri‖2=1[log(1−D(G(zi + ri))) + λz‖ri‖22]

5: ridadv1 = arg minri:‖ri‖2=1[logD(xi + ri) + λd‖ri1‖22]

6: ridadv2 = arg minri:‖ri‖2=1[log(1−D(G(zi) + ri)) + λd‖ri2‖22]
7: Update G by descending along its stochastic gradient:
8: ∇θg [ 1

m

∑m
i=1[log(1−D(G(zi))) + λ

m

∑m
i=1[log(1−D(G(zi + ε1r

i
zadv)))

9: Update D by descending along its stochastic gradient:
10: ∇θd [Sm(G,D)+ λ

m

∑m
i=1[logD(xi+ε2r

i
dadv1)]+ λ

m

∑m
i=1[log(1−D(G(zi)+ε2r

i
dadv2))]]

11: end for
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THEORETICAL ANALYSIS

In this section, we provide theoretical analysis for the RGAN but leave the proof details in appendix.
We now show that the optimal discriminator of RGAN balances the mixture of real distributions and
the mixture of fake distributions as Lemma 0.2.

Lemma 0.2 For arbitrary fixed G, the optimal D of the game defined by the utility function V (G,D)
is:

D∗G(x) =
pλr (x)

pλr (x) + pλg (x)
(12)

where, pλr (x) = (1 − λ)pr + λp′r is the mixture distribution for real data with λ ∈ [0, 1]. p′r
is the worst distribution defined by p′r = arg minP :W (P,Pr)≤ρr Ex∼P [logD(x)]. pλg (x) = (1 −
λ)pg + λp′g is the mixture distribution for fake data. The worst distribution p′g is defined by p′g =
arg minP :W (P,Pg)≤ρg EG′∼P [1− logD(G′(z))].

We further show the optimum point of the utility function V (G,D) as Lemma 0.3.

Lemma 0.3 When the optimum discriminatorD∗ is achieved, the utility function reaches the global
minimum if and only if pλg (x) = pλr (x).

The min-max problem of (11) is computationally intractable due to the expectations over real and
fake distributions. An alternate way is to approximate the original problem with the empirical aver-
age of finite examples:

min
G

max
D
Vm(G,D) , (1− λ)Sm(G,D) +

λ

m

m∑
i=1

[logD(x′i)]

+
λ

m

m∑
i=1

[(1− logD(G′(zi)))]

(13)

where x′i ∼ p′r,G′ ∼ p′g and zi ∼ pλz . pλz is the mixture distribution defined by pλz = (1−λ)pz+λp′z
and p′z is the worst distribution defined by p′z = arg maxP :W (P,Pz)≤ρz Ex∼P [1− logD(G(x))].

We now provide the analysis for generalization ability as Lemma 0.4. First, we give some assump-
tions:

Assumption 1 We provide the following assumptions for RGAN:

1. The discriminator logDθ(x) is kθ-Lipschitz in its parameter θ, i.e., |logDθ(x) − logD′θ(x)| ≤
kθ‖θ − θ′‖.

2. The discriminator logDθ(x) is kx-Lipschitz in its x, i.e., |logDθ(x)− logDθ(x
′)| ≤ kx‖x− x′‖.

3. The distance between two arbitrary samples is bounded, i.e., ‖x− x′‖ ≤ ∆B .

The generalization ability of discriminator is defined as in (Qi, 2017)(Arora et al., 2017) and it
describes if and how fast the difference |V θm − V θ| converges, where, V θ = maxD V (G∗, D) and
V θm = maxD Vm(G∗, D).

Lemma 0.4 Under Assumption 1, with at least probability 1− η, we have:

|V θm − V θ| ≤ ε (14)

when the number of samples

m ≥ C∆2
B(kx)2

ε2
(Nlog

kθN

ε
+ log

1

η
) (15)

where C is a sufficiently large constant, and N is the number of parameters of the discriminator
function.
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Similarly, the generalizability of the generator can be defined as convergence of difference |Qφm −
Qφ|, where, Qφ = minG V (G,D∗) and Qφm = minG Vm(G,D∗). We first give the assumptions:

Assumption 2 We provide the following assumptions for RGAN:

1. The generator Gφ(z) is kφ-Lipschitz in its parameter φ, i.e., |Gφ(z)−G′φ(z)| ≤ kφ‖φ− φ′‖.

2. The discriminator Gφ(z) is kz-Lipschitz in its z, i.e., |Gφ(z)−Gφ(z′)| ≤ kz‖z − z′‖.

3. The distance between two arbitrary samples is bounded, i.e., ‖z − z′‖ ≤ ∆Bz.

Lemma 0.5 Under Assumption 2, with at least probability 1− η, we have:

|Qφm −Qφ| ≤ ε (16)

when the number of samples

m ≥
Cg∆

2
Bz
k2
xk

2
z

ε2
(Nglog

kθkφNg
ε

+ log
1

η
) (17)

where Cg is a sufficiently large constant, and Ng is the number of parameters of the generator
function.

EXPERIMENTS

We present a series of experiments in this section. First, we show that our proposed RGAN can
improve the performance of different kinds of baseline models including WGAN-GP, DCGAN,
WGAN-GP (resnet), and BWGAN. Inception score and FID are used to evaluate the quality of
generations. Following many previous relevant work, we mainly conduct on CIFAR-10 and STL-
10 the comparison between our proposed method and various baseline models quantitatively while
visualizing different models qualitatively on both CIFAR-10 and CelebA. In addition, we plot the
bar charts for different baseline models and RGANs on two datasets (CIFAR-10 and STL-10). We
also perform the ablation analysis to examine closely our proposed framework. Furthermore, we
provide visualizations showing that the performance of baseline models may degrade given some
specific input noises (sampled from the worst distribution). In comparison, our proposed method
is more robust and can still perform fairly well. In the third part, we provide the visualizations of
T-SNE embedding for original and worst distributions. Moreover, we show some images generated
by baseline models and our proposed model.

QUANTITATIVE COMPARISON

To evaluate the performance of our proposed method, we follow the previous works (Gulrajani et al.,
2017; Adler & Lunz, 2018) on robustness and mainly conduct experiments on the CIFAR-10 and
STL-10 dataset. There are 4 baseline models including WGAN-GP, WGAN-GP (resnet), DCGAN,
and BWGAN. We implemented our proposed robust strategy on these baselines and would like to
check if the robust training could indeed improve the performance. The structures and settings of
our method are the same as baseline models. We train WGAN-GP, DCGAN, BWGAN and our
proposed RGANs with 50, 000 training samples for 200, 000 epochs. For WGAN-GP (resnet) and
our corresponding model, we found that 100, 000 epochs appear sufficient. For each 500 epochs,
we calculate the inception score for 50, 000 generated images. For training RGANs, there are three
hyper-parameters λ (trade off our objective and original one), ε1 and ε2. We set λ = 0.1 which is
searched from {0.001, 0.01, 0.1, 0.5, 1, 2}. We also set ε1 = 0.01 and ε2 = 4 which was searched
from {0.001, 0.01, 0.1, 0.2, 0.5, 1, 2, 4, 5, 10}. For STL-10, we train our models and corresponding
baselines with 80w training samples with size 48 × 48. The training settings are totally the same
with settings for CIFAR-10. Note that we do not need to adjust hyper-parameters for achieving better
performance on the second dataset.

We list the performance for different models in Table 1. Clearly, our proposed RGAN (which is based
on WGAN-GP-res) achieves the best result among all the methods in terms of both the criteria, i.e.,
Inception Score and FID. In order to check if the proposed robust strategy can indeed improve over
different baselines, we also detail the performance in Figure 1 where we plot the bar charts for
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(a) Inception score on
CIFAR-10

(b) FID on CIFAR-10 (c) Inception score on
STL-10

(d) FID on STL-10

Figure 1: Performance (Inception score: the bigger the better, and FID: the lower the better) of
different baselines (blue bars) and corresponding RGANs (orange bar). Our methods consistently
perform better than baselines on different datasets and criteria.2

different baseline models and their robust version with RGAN on two datasets (CIFAR-10 and STL-
10).2 It is noted that the robust strategy can consistently improve the baselines on the two datasets
in terms of both the criteria. In addition, we also show the convergence curves in Figure 2. Clearly,
when our robust strategy is applied on the baseline GANs, an obvious increase of the inception
scores can be observed (though the convergence speed is similar to that of baseline models). All
these experiments indicate that the robust training is indeed necessary and useful.

Table 1: Performance of different models on CIFAR-10 and STL-10

Methods Inception Score FID

CIFAR-10 STL-10 CIFAR-10 STL-10

Real data 11.24± 0.12 26.08± 0.26 7.8 7.9

Weight clipping 6.41± 0.11 7.57± 0.10 42.6 64.2
Layer norm 7.19± 0.12 7.61± 0.12 33.9 75.6

Weight norm 6.84± 0.07 7.16± 0.10 34.7 73.4
Orthonormal 7.40± 0.12 8.56± 0.07 29.0 46.7

ALI
(Warde-Farley & Bengio, 2016) 5.34± 0.05
BEGAN (Berthelot et al., 2017) 5.62
DCGAN (Radford et al., 2015) 5.77± 0.021 7.36± 0.06 42.18 53.23

Improved GAN (-L+HA)
(Salimans et al., 2016) 6.86± 0.06

EGAN-Ent-VI (Dai et al., 2017) 7.07± 0.10
DFM

(Warde-Farley & Bengio, 2016) 7.72± 0.13
CT GAN (Wei et al., 2018) 8.12± 0.12

SNGAN (Miyato et al., 2018) 8.22± 0.05 9.10± 0.04 21.70 40.1± 0.04
BWGAN (Adler & Lunz, 2018) 8.08± 0.05 25.67

WGAN-GP-res
(Gulrajani et al., 2017) 7.76 9.06± 0.03 22.19 42.60

RGAN (WGAN-GP-res) 8.25± 0.013 9.16± 0.015 19.79 39.62

ABLATION ANALYSIS

We conduct the ablation analysis in this subsection. Specifically, we experiment on CIFAR-10 with
robust training over generator only, robust training over discriminator only, and robust training over
both the generator and discriminator, trying to see if a robust training is necessary on both generator
and discriminator. The results are listed in Table 2. As observed, robust training on either generator

2BWGAN appears not to converge in STL-10 in our experiments. For fair comparison, we did not report
the performance when BWGAN is used as the baseline in STL-10.
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(c) DCGAN vs RGAN
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(d) BWGAN vs RGAN

Figure 2: Inception score versus training step. Each subfigure shows the comparison between a dif-
ferent baseline model (blue curve) and its corresponding robust version (by applying the RGAN
strategies, red curve). Robust GANs consistently achieve much better performance though they con-
verge in a similar speed to baseline models.

or discriminator can consistently improve the performance of all baseline models, while a joint ro-
bust training on both generator and discriminator can further boost the performance. It is interesting
to note that robust training on discriminator only could lead to more performance gain than on gen-
erator only, implying that a robust discriminator may be more important. This would be investigated
as future work.

Table 2: Ablation analysis for RGAN on different baselines on CIFAR-10.
WGAN-GP WGAN-GP (res) DCGAN BWGAN

Baseline (without robust training) 5.77± 0.021 7.76 5.70± 0.045 8.08
Robust training on generator only 5.89± 0.020 7.86 5.80± 0.022 8.11
Robust training on discriminator only 5.87± 0.025 8.01 6.02± 0.019 8.23
Robust training on generator & discriminator 5.91± 0.018 8.25 6.11± 0.017 8.40
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(d) RGAN(WGAN-GP-res)
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Figure 3: Inception score of baselines and RGANs on both the original input noise and the worst
input noise on CIFAR-10. Performance of baselines are almost consistently degraded in the worst in-
put noise (compared from the original input noise), while their robust versions (trained with RGAN)
perform similar and stable for both worst and original input noise.

In addition, taking again CIFAR-10 as one illustrative dataset, we also show that our proposed robust
method can perform robust on some potential input noise which might lead to poor generations
(input noise sampled from the worst input distribution). Specifically, we generate 50, 000 images
with RGAN and various baseline models from the original distribution and worst distribution for
five times. Then, we compute the inception score and their corresponding standard deviation. The
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(a) Input noise (b) Worst distribution (c) Data by WGAN-GP (d) Data by RGAN

Figure 4: Visualization and T-SNE embedding on CIFAR-10. (a): Red points are the input noise
points sampled from the original Gaussian distribution, and blue points are sampled from the worst
distribution. The worst distribution covers a wider range of area, especially low density area of
original distribution which might cause poor generation. (b): The worst real distribution (red) and
worst generation distribution (blue). It can be noted that the worst data distributions are more similar
to each other which is more difficult to be classified. (c): Red points are the images sampled from
real distributionand blue points are generated by WGAN-GP. (d): Red points are the images sampled
from real distributionand blue points are generated by RGAN. The data distribution generated by
our method is apparently closer to the real distribution.

results are showed in Figure 3. As observed, without the robust training, those baseline models
perform consistently worst in the case of the worst noises input than that of the original input noises.
This shows that the traditional GANs may not be robust and may lead to worse performance in case
of certain poor input noise. In comparison, when the robust training is implemented, RGAN leads
to similar performance even if the worst input noise is given.

VISUALIZATION

We present visualization results to compare various methods qualitatively.

VISUALIZATION ON CIFAR-10

In this subsection, we present a series of visualization trying to understand visually why the robust
GAN could lead to better performance than the traditional GANs. To this end, we sample 500 data
points from the original input distribution and worst input distribution respectively. We then plot the
2-dimensional T-SNE embedding of these points. We also would like to plot the real data distribution
and the generated data from the traditional GAN as well as our robust GAN. For clarity, we take
WGAN-GP as one example but we should bear in mind that the conclusion is basically the same for
other traditional GANs like DCGAN. These plots are made in Figure 4 where one can inspect the
meaning of each subfigure in the caption. We highlight some remarks as follows. First, Figure 4(a)
indicates that the worst distribution covers wider range of areas, especially low density areas of
the original distribution; this might cause poor generations since the worst input noise distribution is
significantly different from the original input noise. Second, (b) shows that the worst real distribution
(red) actually looks much similar to the worst generation distribution. It may be more robust and
meaningful to minimize in the worst-case setting the departure of the real data distribution and
the fake data distribution, which is conducted in our RGAN. Third, (c) shows that the real data
distribution varies largely from the generated data points obtained by traditional GANs, indicating
the poor generalization of the traditional GAN; in comparison, with a robust optimization in the
worst-case setting, (d) demonstrates that the generated data look very close to the real data.

VISUALIZATION ON CELEBA

To clearly examine the visual quality, we demonstrate some images generated by WGAN-GP, DC-
GAN and their corresponding RGANs on the CelebA dataset. These generated images are shown in
Figure 5. As we can observe from these examples, the existing GANs may sometimes lead to very
bad generations as circled in (a) and (c). In comparison, with the robust training under the worst-
case distribution, such very bad examples can hardly be seen in RGAN. This clearly demonstrates
the advantages of the proposed model.

9
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(a) WGAN-GP (b) RGAN (WGAN-GP)

(c) DCGAN. (d) RGAN (DCGAN)

Figure 5: Face images generated by WGAN-GP, DCGAN and corresponding RGANs. In (a),
WGAN-GP generates two obviously strange faces highlighted with red circles. In (c), several re-
peated low quality faces are generated by DCGAN highlighted by red circles. Our method achieves
better results.

CONCLUSION

In this paper, we consider the generalization issue of GANs and propose a robust model called
robust generative adversarial network (RGAN). We have designed a robust optimization framework
where the generator and discriminator compete with each other in a worst-case setting within a small
Wasserstein ball. The generator tries to map the worst input distribution (rather than a specific input
distribution) to real data distribution, while the discriminator attempts to distinguish the real and fake
distribution with the worst perturbation. We have provided theories showing that the generalization
of the new robust framework can be guaranteed. We also have conducted extensive experiments
on CIFAR-10, STL-10 and CelebA datasets with two criteria (Inception score and FID) indicating
that our proposed robust framework can improve consistently on several baseline GAN models.
Ablation analysis and visualization have demonstrated the advantages of RGAN both quantitatively
and qualitatively.
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APPENDIX

A. PROOF

Lemma 0.2 For arbitrary fixed G, the optimal D of the game defined by the utility function V (G,D)
is:

D∗G(x) =
pλr (x)

pλr (x) + pλg (x)
(18)

where, pλr (x) = (1 − λ)pr + λp′r is the mixture distribution for real data with λ ∈ [0, 1]. p′r
is the worst distribution defined by p′r = arg minP :W (P,Pr)≤ρr Ex∼P [logD(x)]. pλg (x) = (1 −
λ)pg + λp′g is the mixture distribution for fake data. The worst distribution p′g is defined by p′g =
arg minP :W (P,Pg)≤ρg EG′∼P [1− logD(G′(z))].
Proof:
Given the classifier and generator, the utility function can be rewritten as

V (G,D) , (1− λ)[Ex∼Pr [logD(x)]

+ EG∼Pg [(1− logD(G(zi)))]]

+ sup
P :W (P,Pr)≤ρr

λEx∼P [logD(x)]

+ sup
P :W (P,Pg)≤ρg

λEG′∼P [(1− logD(G′(z)))]

= (1− λ)

∫
pr(x)log(D(x))dx

+ (1− λ)

∫
pg(x)log(1−D(x))dx

+ λ

∫
p′r(x)log(D(x))dx

+ λ

∫
p′g(x)log(1−D(x))dx

=

∫
pλr (x)log(D(x))dx

+

∫
pλg (x)log(1−D(x))dx

(19)

where G′(zi) = G(zi) + ri2 and zi ∼ Pz . ri2 is arbitrary perturbation. Then, it is easy to prove that

the optimal D is D∗G(x) =
pλr (x)

pλr (x)+pλg (x)
.

Lemma 0.3 When the optimum discriminatorD∗ is achieved, the utility function reaches the global
minimum if and only if pλg (x) = pλr (x).

12
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Proof:
Given the optimal D∗, we can reformulate the function V (G,D):

V (G,D∗) =

∫
pλr (x)log(

pλr (x)

pλr (x) + pλg (x)
)dx+

∫
pλg (x)log(

pλg (x)

pλr (x) + pλg (x)
)dx

=

∫
pλr (x)log(

pλr (x)

(pλr (x) + pλg (x))/2
)dx

+

∫
pλg (x)log(

pλg (x)

(pλr (x) + pλg (x))/2
)dx− 2log2

= −2log2 +KL(pλr (x)||(pλr (x) + pλg (x))/2) +KL(pλg (x)||(pλr (x) + pλg (x))/2)

(20)

Then, V (G,D∗) can be rewritten as:

V (G,D∗) = −2log2 + 2JSD(pλr (x)||pλg (x)) (21)

where JSD is the Jensen-Shannon divergence, which is always non-negative and the unique optimum
is achieved if and only if pλr (x) = pλg (x).

Assumption 1 We provide following assumptions for RGAN:

1. The discriminatorDθ(x) is kθ-Lipschitz in its parameter θ, i.e., |logDθ(x)−logD′θ(x)| ≤ kθ‖θ−
θ′‖.

2. The discriminator Dθ(x) is kx-Lipschitz in its x, i.e., |logDθ(x)− logDθ(x
′)| ≤ kx‖x− x′‖.

3. The distance between two arbitrary samples is bounded, i.e., ‖x− x′‖ ≤ ∆B .

Lemma 0.4 Under assumption 1, with at least probability 1− η, we have:

|V θm − V θ| ≤ ε (22)

when the number of samples

m ≥ C∆2
B(kx)2

ε2
(Nlog

kθN

ε
+ log

1

η
) (23)

where C is a sufficiently large constant, and N is the number of parameters of the discriminator
function, V θ = maxD V (G∗, D) and V θm = maxD Vm(G∗, D).

Proof:
To prove the bound, we need to apply the McDiarmid’s inequality. We first bound the change of
function V θm(D,G∗) when a sample is changed. When i-th samples are replaced by x1i, x1i, Gz1i
and G′z1i , the function changes to V θim (D,G∗). Then, we have

|V θm(D,G∗)− V θim (D,G∗)|

=
1

m
|(1− λ)[logD(xi) + logD(Gzi)]

+ λ[logD(x′i) + logD(G′zi)]

− (1− λ)[logD(x1i) + logD(Gz1i)]

− λ[logD(x′1i) + logD(G′z1i)]|

≤ 1− λ
m

kx‖xi − x1i‖+
1− λ
m

kx‖Gzi −Gz1i‖

+
λ

m
kx‖x′i − x′1i‖+

λ

m
kx‖G′zi −G

′
z1i‖

≤ 2

m
kx∆B

(24)

13
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Now we can apply the McDiarmid’s inequality. We have

P (|V θm(D,G∗)− V (D,G∗)| ≥ ε/2)

≤ 2exp(− ε2m

8k2
x∆2

B

)
(25)

The above bound applies to a single discriminatorDθ. To get the union bound, we consider a ε/8kθ-
net N , i.e. for any Dθ, there is a θ′ ∈ N so that ‖θ − θ′‖ ≤ ε/8kθ. This standard net can be
constructed to contain finite discriminators such that N ≤ O(Nlog(kθN/ε)). N is the number of
parameters of discriminator (we here assume the parameter space of the loss function is bounded,
then we can construct such a net containing finite points). Therefore, for all θ ∈ N , we have

|V θm − V θ| ≤ ε/2 (26)

when m ≥ C∆2
B(kx)2

ε2 (Nlog kθNε + log 1
η ).

We further consider the bound beyond θ and we can easily obtain the bounds with the first assump-
tion:

|V θ(D,G∗)− V θ
′
(D,G∗)| ≤ 2kθ‖θ − θ′‖ (27)

and

|V θm(D,G∗)− V θ
′

m (D,G∗)| ≤ 2kθ‖θ − θ′‖ (28)

The final bound for all discriminator can be obtainged with assumption ‖θ − θ′‖ ≤ ε/8kθ:

|V θm(D,G∗)−V θ(D,G∗)|

≤ |V θm(D,G∗)− V θ
′

m (D,G∗)|

+ |V θ
′

m (D,G∗)− V θ
′
(D,G∗)|

+ |V θ
′
(D,G∗)− V θ(D,G∗)| ≤ ε

(29)

Assumption 2 We provide the following assumptions for RGAN:

1. The generator Gφ(z) is kφ-Lipschitz in its parameter φ, i.e., |Gφ(z)−G′φ(z)| ≤ kφ‖φ− φ′‖.

2. The discriminator Gφ(z) is kz-Lipschitz in its z, i.e., |Gφ(z)−Gφ(z′)| ≤ kz‖z − z′‖.

3. The distance between two arbitrary samples is bounded, i.e., ‖z − z′‖ ≤ ∆Bz .

Lemma 0.5 Under assumption 2, with at least probability 1− η, we have:

|Qφm −Qφ| ≤ ε (30)

when the number of samples

m ≥
Cg∆

2
Bz
k2
xk

2
z

ε2
(Nglog

kθkφNg
ε

+ log
1

η
) (31)

where Cg is a sufficiently large constant, and Ng is the number of parameters of the generator
function, Qφ = minG V (G,D∗) and Qφm = minG Vm(G,D∗).

Proof:
Proof is skipped due to its similarity to Lemma 0.4.
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