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ABSTRACT

Adversarial training is one of the main defenses against adversarial attacks. In this
paper, we provide the first rigorous study on diagnosing elements of large-scale
adversarial training on ImageNet, which reveals two intriguing properties.
First, we study the role of normalization. Batch Normalization (BN) is a cru-
cial element for achieving state-of-the-art performance on many vision tasks, but
we show it may prevent networks from obtaining strong robustness in adversarial
training. One unexpected observation is that, for models trained with BN, simply
removing clean images from training data largely boosts adversarial robustness,
i.e., 18.3%. We relate this phenomenon to the hypothesis that clean images and
adversarial images are drawn from two different domains. This two-domain hy-
pothesis may explain the issue of BN when training with a mixture of clean and ad-
versarial images, as estimating normalization statistics of this mixture distribution
is challenging. Guided by this two-domain hypothesis, we show disentangling the
mixture distribution for normalization, i.e., applying separate BNs to clean and
adversarial images for statistics estimation, achieves much stronger robustness.
Additionally, we find that enforcing BNs to behave consistently at training and
testing can further enhance robustness.
Second, we study the role of network capacity. We find our so-called “deep”
networks are still shallow for the task of adversarial learning. Unlike traditional
classification tasks where accuracy is only marginally improved by adding more
layers to “deep” networks (e.g., ResNet-152), adversarial training exhibits a much
stronger demand on deeper networks to achieve higher adversarial robustness.
This robustness improvement can be observed substantially and consistently even
by pushing the network capacity to an unprecedented scale, i.e., ResNet-638.

1 INTRODUCTION

Adversarial attacks (Szegedy et al., 2014) can mislead neural networks to make wrong predictions
by adding human imperceptible perturbations to input data. Adversarial training (Goodfellow et al.,
2015) is shown to be an effective method to defend against such attacks, which trains neural networks
on adversarial images that are generated on-the-fly during training. Later works further improve
robustness of adversarially trained models by mitigating gradient masking (Tramèr et al., 2018),
imposing logits pairing (Kannan et al., 2018), denoising at feature space (Xie et al., 2019b), etc.
However, these works mainly focus on justifying the effectiveness of proposed strategies and apply
inconsistent pipelines for adversarial training, which leaves revealing important elements for training
robust models still a missing piece in current adversarial research.

In this paper, we provide the first rigorous diagnosis of different adversarial learning strategies,
under a unified training and testing framework, on the large-scale ImageNet dataset (Russakovsky
et al., 2015). We discover two intriguing properties of adversarial training, which are essential for
training models with stronger robustness. First, though Batch Normalization (BN) (Ioffe & Szegedy,
2015) is known as a crucial component for achieving state-of-the-arts on many vision tasks, it may
become a major obstacle for securing robustness against strong attacks in the context of adversarial
training. By training such networks adversarially with different strategies, e.g., imposing logits pair-
ing (Kannan et al., 2018), we observe an unexpected phenomenon — removing clean images from
training data is the most effective way for boosting model robustness. We relate this phenomenon
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to the conjecture that clean images and adversarial images are drawn from two different domains.
This two-domain hypothesis may explain the limitation of BN when training with a mixture of clean
and adversarial images, as estimating normalization statistics on this mixture distribution is chal-
lenging. We further show that adversarial training without removing clean images can also obtain
strong robustness, if the mixture distribution is well disentangled at BN by constructing different
mini-batches for clean images and adversarial images to estimate normalization statistics, i.e., one
set of BNs exclusively for adversarial images and another set of BNs exclusively for clean images.
An alternative solution to avoiding mixture distribution for normalization is to simply replace all
BNs with batch-unrelated normalization layers, e.g., group normalization (Wu & He, 2018), where
normalization statistics are estimated on each image independently. These facts indicate that model
robustness is highly related to normalization in adversarial training. Furthermore, additional perfor-
mance gain is observed via enforcing consistent behavior of BN during training and testing.

Second, we find that our so-called “deep” networks (e.g., ResNet-152) are still shallow for the task of
adversarial learning, and simply going deeper can effectively boost model robustness. Experiments
show that directly adding more layers to “deep” networks only marginally improves accuracy for
traditional image classification tasks. In contrast, substantial and consistent robustness improvement
is witnessed even by pushing the network capacity to an unprecedented scale, i.e., ResNet-638. This
phenomenon suggests that larger networks are encouraged for the task of adversarial learning, as the
learning target, i.e., adversarial images, is a more complex distribution than clean images to fit.

In summary, our paper reveals two intriguing properties of adversarial training: (1) properly handling
normalization is essential for obtaining models with strong robustness; and (2) our so-called “deep”
networks are still shallow for the task of adversarial learning. We hope these findings can benefit
future research on understanding adversarial training and improving adversarial robustness.

2 RELATED WORK

Adversarial training. Adversarial training constitutes the current foundation of state-of-the-arts
for defending against adversarial attacks. It is first developed in Goodfellow et al. (2015) where
both clean images and adversarial images are used for training. Kannan et al. (2018) propose to
improve robustness further by encouraging the logits from the pairs of clean images and adversarial
counterparts to be similar. Instead of using both clean and adversarial images for training, Madry
et al. (2018) formulate adversarial training as a min-max optimization and train models exclusively
on adversarial images. Subsequent works are then proposed to further improve the model robustness
(Xie et al., 2019b; Zhang et al., 2019b; Hendrycks et al., 2019a; Qin et al., 2019; Zhang & Wang,
2019; Carmon et al., 2019; Hendrycks et al., 2019b; Alayrac et al., 2019; Zhai et al., 2019) or
accelerate the adversarial training process (Shafahi et al., 2019; Zhang et al., 2019a; Wang & Zhang,
2019). However, as these works mainly focus on demonstrating the effectiveness of their proposed
mechanisms, a fair and detailed diagnosis of large-scale adversarial training strategies remains as
a missing piece. In this work, we provide the first detailed diagnosis which reveals two intriguing
properties of training adversarial defenders at scale.

Normalization Layers. Normalization is an effective technique to accelerate the training of deep
networks. Different methods are proposed to exploit batch-wise (e.g., BN (Ioffe & Szegedy, 2015)),
layer-wise (e.g., layer normalization (Ba et al., 2016)) or channel-wise (e.g., instance normaliza-
tion (Ulyanov et al., 2016) and group normalization (Wu & He, 2018)) information for estimating
normalization statistics. Different from traditional vision tasks where BN usually yields stronger
performance than other normalization methods, we show that BN may become a major obstacle for
achieving strong robustness in the context of adversarial training, and properly handling normaliza-
tion is an essential factor to improving adversarial robustness.

3 ADVERSARIAL TRAINING FRAMEWORK

As inconsistent adversarial training pipelines were applied in previous works (Kannan et al., 2018;
Xie et al., 2019b), it is hard to identify which elements are important for obtaining robust models.
To this end, we provide a unified framework to train and to evaluate different models, for the sake
of fair comparison.
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Figure 1: The relationship between model robustness and the portion of clean images used for
training. We observe that the strongest robustness can be obtained by training completely without
clean images, surpassing the baseline model by 18.3% accuracy against PGD-2000 attacker.

Training Parameters. We use the publicly available adversarial training pipeline1 to train all
models with different strategies on ImageNet. We select ResNet-152 (He et al., 2016) as the baseline
network, and apply projected gradient descent (PGD) (Madry et al., 2018) as the adversarial attacker
to generate adversarial examples during training. The hyper-parameters of the PGD attacker are:
maximum perturbation of each pixel ε = 16, attack step size α = 1, number of attack iterations N =
30, and the targeted class is selected uniformly at random over the 1000 ImageNet categories. We
initialize the adversarial image by the clean counterpart with probability = 0.2, or randomly within
the allowed ε cube with probability = 0.8. All models are trained for a total of 110 epochs, and we
decrease the learning rate by 10× at the 35-th, 70-th, and 95-th epoch.

Evaluation. For performance evaluation, we mainly study adversarial robustness (rather than
clean image accuracy) in this paper. Specifically, we follow the setting in Kannan et al. (2018)
and Xie et al. (2019b), where the targeted PGD attacker is chosen as the white-box attacker to eval-
uate robustness. The targeted class is selected uniformly at random. We constrain the maximum
perturbation of each pixel ε = 16, set the attack step size α = 1, and measure the robustness by de-
fending against PGD attacker of 2000 attack iterations (i.e., PGD-2000). As in Kannan et al. (2018)
and Xie et al. (2019b), we always initialize the adversarial perturbation from a random point within
the allowed ε-cube.

We apply these training and evaluation settings by default for all experiments, unless otherwise
stated.

4 EXPLORING NORMALIZATION TECHNIQUES IN ADVERSARIAL TRAINING

4.1 ON THE EFFECTS OF CLEAN IMAGES IN ADVERSARIAL TRAINING

In this part, we first elaborate on the effectiveness of different adversarial training strategies on
model robustness. Adversarial training can be dated back to Goodfellow et al. (2015), where they
mix clean images and the corresponding adversarial counterparts into each mini-batch for training.
We choose this strategy as our starting point, and the corresponding loss function is:

Ĵ(θ, x, y) = αJ(θ, xclean, y) + (1− α)J(θ, xadv, y), (1)

where J(·) is the loss function, θ is the network parameter, y is the ground-truth, and training pairs
{xclean, xadv} are comprised of clean images and their adversarial counterparts, respectively. The
parameter α balances the relative importance between clean image loss and adversarial image loss.
We set α = 0.5 following Goodfellow et al. (2015). With our adversarial training framework, this
model can achieve 20.9% accuracy against PGD-2000 attacker. Besides this baseline, we also study
the effectiveness of two recently proposed adversarial training strategies (Madry et al., 2018; Kannan
et al., 2018), and provide the results as follows.

1https://github.com/facebookresearch/ImageNet-Adversarial-Training
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Figure 2: Comprehensive robust evaluation on ImageNet. For models trained with different
strategies, we show their accuracy against PGD attackers with 10 to 2000 iterations. Only the
curve of 100% adv + 0% clean becomes asymptotic when evaluating against attackers with more
iterations.

Ratio of clean images. Different from the canonical form in Goodfellow et al. (2015), Madry
et al. (2018) apply the min-max formulation for adversarial training where no clean images are
used. We note this min-max type optimization can be dated as early as Wald (1945). We hereby
investigate the relationship between model robustness and the ratio of clean images used for training.
Specifically, for each training mini-batch, we keep adversarial images unchanged, but removing
their clean counterparts by 20%, 40%, 60%, 80% and 100%. We report the results in Figure 1.
Interestingly, removing a portion of clean images from training data can significantly improve model
robustness, and the strongest robustness can be obtained by completely removing clean images from
the training set, i.e., it achieves an accuracy of 39.2% against PGD-2000 attacker, outperforming the
baseline model by a large margin of 18.3%.

Adversarial logits pairing. For performance comparison, we also explore the effectiveness of
an alternative training strategy, adversarial logits pairing (ALP) (Kannan et al., 2018). Compared
with the canonical form in Goodfellow et al. (2015), ALP imposes an additional loss to encourage
the logits from the pairs of clean images and adversarial counterparts to be similar. As shown
in Figure 2, our re-implemented ALP obtains an accuracy of 23.0% against PGD-2000 attacker2,
which outperforms the baseline model by 2.1%. Compared with the strategy of removing clean
images, this improvement is much smaller.

Discussion. Given the results above, we conclude that training exclusively on adversarial images
is the most effective strategy for boosting model robustness. For example, by defending against
PGD-2000 attacker, the baseline strategy in Goodfellow et al. (2015) (referred to as 100% adv +
100% clean) obtains an accuracy of 20.9%. Adding an loss of logits pairing (Kannan et al., 2018)
(referred to as 100% adv + 100% clean, ALP) slightly improves the performance by 2.1%, while
completely removing clean images (Madry et al., 2018; Xie et al., 2019b) (referred to as 100%
adv + 0% clean) boosts the accuracy by 18.3%. We further plot a comprehensive evaluation curve
of these three training strategies in Figure 2, by varying the number of PGD attack iteration from
10 to 2000. Surprisingly, only 100% adv + 0% clean can ensure model robustness against strong
attacks, i.e., performance becomes asymptotic when allowing PGD attacker to perform more attack
iterations. Training strategies which involve clean images for training are suspicious to result in
worse robustness, if PGD attackers are allowed to perform more attack iterations. In the next section,
we will study how to make these training strategies, i.e., 100% adv + 100% clean and 100% adv +
100% clean, ALP to secure their robustness against strong attacks.

4.2 THE DEVIL IS IN THE BATCH NORMALIZATION

Two-domain hypothesis. Compared to feature maps of clean images, Xie et al. (2019b) show that
feature maps of their adversarial counterparts tend to be more noisy. Meanwhile, several works (Li

2Surprisingly, we note our reproduced ALP result is significantly stronger than the result reported in the
original ALP paper (Kannan et al., 2018), as well in an independent study (Engstrom et al., 2018). We identify
this performance gap is mainly due to different settings of training parameter, and provide a detailed diagnosis
in the supplementary material.
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Figure 3: Disentangling the mixture distribution for normalization secures model robustness.
Unlike the blue curves in Figure 2, these new curves become asymptotic when evaluating against
attackers with more iterations, which indicate that the networks using MBNadv can behave robustly
against PGD attackers with different attack iterations, even if clean images are used for training.

& Li, 2017; Metzen et al., 2018; Feinman et al., 2017; Pang et al., 2018; Li et al., 2019) demonstrate
it is possible to build classifiers to separate adversarial images from clean images. These studies
suggest that clean images and adversarial images are drawn from two different domains3. This
two-domain hypothesis may provide an explanation to the unexpected observation (see Sec. 4.1)
and we ask — why simply removing clean images from training data can largely boost adversarial
robustness?

As a crucial element for achieving state-of-the-arts on various vision tasks, BN (Ioffe & Szegedy,
2015) is widely adopted in many network architectures, e.g., Inception (Szegedy et al., 2015),
ResNet (He et al., 2016) and DenseNet (Huang et al., 2017). The normalization statistics of BN
are estimated across different images. However, exploiting batch-wise statistics is a challenging
task if input images are drawn from different domains and therefore networks fail to learn a uni-
fied representation on this mixture distribution. Given our two-domain hypothesis, when training
with both clean and adversarial images, the usage of BN can be the key issue for resulting in weak
adversarial robustness in Figure 2.

Based on the analysis above, an intuitive solution arise: accurately estimating normalization statis-
tics should enable models to train robustly even if clean images and adversarial images are mixed
at each training mini-batch. To this end, we explore two ways, where the mixture distribution is
disentangled at normalization layers, for validating this argument: (1) maintaining separate BNs for
clean/adversarial images; or (2) replacing BNs with batch-unrelated normalization layers.

conv

BNadv+clean

ReLU

conv

MBNadv

ReLU

MBNclean

xadv,xclean

xadv xclean

xadv,xclean

Figure 4: Standard BN (left) estimates normaliza-
tion statistics on the mixture distribution. MBN
(right) disentangles the distribution by constructing
different mini-batch for clean and adversarial im-
ages to estimate normalization statistics.

Training with Mixture BN. Current net-
work architectures estimate BN statistics us-
ing the mixed features from both clean and
adversarial images, which leads to weak
model robustness as shown in Figure 2. Xie
et al. (2019a) propose that properly decou-
pling the normalization statistics for adversar-
ial training can effectively boost image recog-
nition. Here, to study model robustness, we
apply Mixture BN (MBN) (Xie et al., 2019a),
which disentangles the mixed distribution via
constructing different mini-batches for clean
and adversarial images for accurate BN statis-
tics estimation (illustrated in Figure 4), i.e.,
one set of BNs exclusively for adversarial im-
ages (referred to as MBNadv), and another set
of BNs exclusively for clean images (referred to as MBNclean). We do not change the structure of
other layers. We verify the effectiveness of this new architecture with two (previously less robust)
training strategies, i.e., 100% adv + 100% clean and 100% adv + 100% clean, ALP.

3Or more precisely, “natural” images collected in the datasets and the corresponding adversarial images
may come from two different distributions.
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Figure 5: Statistics of running mean and running variance of MBN on randomly sampled 20 channels
in a ResNet-152’s res3 block. This suggests that clean and adversarial images induce significantly
different normalization statistics.

At inference time, whether an image is adversarial or clean is unknown. We thereby measure the
performance of networks by applying either MBNadv or MBNclean separately. The results are shown
in Table 1. We find the performance is strongly related to how BN is trained: when using MBNclean,
the trained network achieves nearly the same clean image accuracy as the whole network trained
exclusively on clean images; when using MBNadv, the trained network achieves nearly the same ad-
versarial robustness as the whole network trained exclusively on adversarial images. Other factors,
like whether ALP is applied for training, only cause subtle differences in performance. We further
plot an extensive robustness evaluation curve of different training strategies in Figure 3. Unlike
Figure 2, we observe that networks using MBNadv now can secure their robustness against strong
attacks, e.g., the robustness is asymptotic when increasing attack iterations from 500 to 2000.

The results in Table 1 suggest that BN statistics characterize different model performance. For a bet-
ter understanding, we randomly sample 20 channels in a residual block and plot the corresponding
running statistics of MBNclean and MBNadv in Figure 5. We observe that clean images and adversar-
ial images induce significantly different running statistics, though these images share the same set of
convolutional filters for feature extraction. This observation further supports that (1) clean images
and adversarial images come from two different domains; and (2) current networks fail to learn a
unified representation on these two domains. Interestingly, we also find that adversarial images lead
to larger running mean and variance than clean images. This phenomenon is also consistent with the
observation that adversarial images produce noisy-patterns/outliers at the feature space (Xie et al.,
2019b).

As a side note, this MBN structure is also used as a practical trick for training better generative ad-
versarial networks (GAN) (Goodfellow et al., 2014). Chintala et al. (2016) suggest to construct each
mini-batch with only real or generated images when training discriminators, as generated images
and real images belong to different domains at an early training stage. However, unlike our situa-
tion where BN statistics estimated on different domains remain divergent after training, a successful
training of GAN, i.e., able to generate natural images with high quality, usually learns a unified set
of BN statistics on real and generated images.

Training with batch-unrelated normalization layers. Instead of applying MBN structure to dis-
entangle the mixture distribution, we can also train networks with batch-unrelated normalization
layers, which avoids exploiting the batch dimension to calculate statistics, for the same purpose.
We choose Group Normalization (GN) for this experiment, as GN can reach a comparable perfor-
mance to BN on various vision tasks (Wu & He, 2018). Specifically, for each image, GN divides the
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training strategy clean image
accuracy (%)

0% adv + 100% clean 78.9
MBNclean, 100% adv + 100% clean +0.4
MBNclean, 100% adv + 100% clean, ALP -0.5

training strategy PGD-2000
accuracy (%)

100% adv + 0% clean 39.2
MBNadv, 100% adv + 100% clean -0.9
MBNadv, 100% adv + 100% clean, ALP -3.9

Table 1: MBN statistics characterize model
performance. Using MBNclean/MBNadv, the
trained models achieve strong performance
on clean/adversarial images.

training strategy PGD-2000
accuracy (%)

100% adv + 0% clean 39.2
100% adv + 0% clean* +3.0
MBNadv, 100% adv + 100% clean 38.3
MBNadv, 100% adv + 100% clean* +1.6
MBNadv, 100% adv + 100% clean, ALP 35.3
MBNadv, 100% adv + 100% clean, ALP* +2.8

Table 2: Enforcing a consistent behavior of BN
at the training stage and the testing stage signif-
icantly boosts adversarial robustness. * denotes
that running statistics is used at the last 10 train-
ing epochs.

channels into groups and computes the normalization statistics within each group. By replacing all
BNs with GNs, the mixture training strategy 100% adv + 100% clean now can ensure robustness
against strong attacks, i.e., the model trained with GN achieves 39.5% accuracy against PGD-500,
and increasing attack iterations to 2000 only cause a marginal performance drop by 0.5% (39.0%
accuracy against PGD-2000). Exploring other batch-unrelated normalization in adversarial training
remains as future work.

Exceptional cases. There are some situations where models directly trained with BN can also
ensure their robustness against strong attacks, even if clean images are included for adversarial
training. Our experiments show constraining the maximum perturbation of each pixel ε to be a
smaller value, e.g., ε = 8, is one of these exceptional cases. Kannan et al. (2018) and Mosbach
et al. (2018) also show that adversarial training with clean images can secure robustness on small
datasets, i.e., MNIST, CIFAR-10 and Tiny ImageNet. Intuitively, generating adversarial images on
these much simpler datasets or under a smaller perturbation constraint induces a smaller gap between
these two domains, therefore making it easier for networks to learn a unified representation on clean
and adversarial images. Nonetheless, in this paper, we stick to the standard protocol in Kannan
et al. (2018) and Xie et al. (2019b) where adversarial robustness is evaluated on ImageNet with the
perturbation constraint ε = 16.

4.3 REVISITING STATISTICS ESTIMATION OF BN

Inconsistent behavior of BN. As the concept of “batch” is not legitimate at inference time, BN
behaves differently at training and testing (Ioffe & Szegedy, 2015): during training, the mean and
variance are computed on each mini-batch, referred to as batch statistics; during testing, there is no
actual normalization performed — BN uses the mean and variance pre-computed on the training set
(often by running average) to normalize data, referred to as running statistics.

For traditional classification tasks, batch statistics usually converge to running statistics by the end of
training, thus (practically) making the impact of this inconsistent behavior negligible. Nonetheless,
this empirical assumption may not hold in the context of adversarial training. We check this statistics
matching of models trained with the strategy 100% adv + 0% clean, where the robustness against
strong attacks is secured. We randomly sample 20 channels in a residual block, and plot the batch
statistics computed on two randomly sampled mini-batches, together with the pre-computed running
statistics. In Figure 6, interestingly, we observe that batch mean is almost equivalent to running
mean, while batch variance does not converge to running variance yet on certain channels. Given
this fact, we then study if this inconsistent behavior of BN affects model robustness in adversarial
training.

A heuristic approach. Instead of developing a new training strategy to make batch statistics con-
verge to running statistics by the end of training, we explore a more heuristic solution: applying
pre-computed running statistics for model training during the last 10 epochs. We report the perfor-
mance comparison in Table 2. By enabling BNs to behave consistently at training and testing, this
approach can further boost the model robustness by 3.0% with the training strategy 100% adv +
0% clean. We also successfully validate the generality of this approach on other two robust train-
ing strategies. More specifically, it can improve the model robustness under the training strategies
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Figure 6: Comparison of batch statistics and running statistics of BN on randomly sampled 20
channels in a ResNet-152’s res3 block. We observe that batch mean can converge to running mean,
while batch variance still differs from running variance.

MBNadv, 100% adv + 100% clean and MBNadv, 100% adv + 100% clean, ALP by 1.6% and 2.8%,
respectively. These results suggest that model robustness can be benefited from a consistent behav-
ior of BN at training and testing. Moreover, we note this approach does not incur any additional
training budgets.

4.4 BEYOND ADVERSARIAL ROBUSTNESS

On the importance of training convolutional filters adversarially. In Section 4.2, we study
the performance of models where the mixture distribution is disentangled for normalization — by
applying either MBNclean or MBNadv, the trained models achieve strong performance on either clean
images or adversarial images. This result suggests that clean and adversarial images share the same
convolutional filters to effectively extract features. We further explore whether the filters learned
exclusively on adversarial images can extract features effectively on clean images, and vice versa.
We first take a model trained with the strategy 100% adv + 0% clean, and then finetune BNs using
only clean images for a few epochs. Interestingly, we find the accuracy on clean images can be
significantly boosted from 62.3% to 73%, which is only 5.9% worse than the standard training
setting, i.e., 78.9%. These result indicates that convolutional filters learned solely on adversarial
images can also be effectively applied to clean images. However, we find the opposite direction
does not work — convolutional filters learned on clean images cannot extract features robustly
on adversarial images (e.g., 0% accuracy against PGD-2000 after finetuning BNs with adversarial
images). This phenomenon indicates the importance of training convolutional filters adversarially,
as such learned filters can also extract features from clean images effectively. The findings here also
are related to the discussion of robust/non-robustness features in Ilyas et al. (2019). Readers with
interests are recommended to refer to this concurrent work for more details.

Limitation of adversarial training. We note our adversarially trained models exhibit a perfor-
mance tradeoff between clean accuracy and robustness — the training strategies that achieve strong
model robustness usually result in relatively low accuracy on clean images. For example, 100% adv
+ 0% clean, MBNadv, 100% adv + 100% clean and MBNadv, 100% adv + 100% clean, ALP only
report 62.3%, 64.4% and 65.9% of clean image accuracy. By replacing BNs with GNs, 100% adv
+ 100% clean achieves much better clean image accuracy, i.e., 67.5%, as well maintaining strong
robustness. We note that this tradeoff is also observed in the prior work (Tsipras et al., 2018). Be-
sides, Balaji et al. (2019) show it is possible to make adversarially trained models to exhibit a better
tradeoff between clean accuracy and robustness. Future attentions are deserved on this direction.
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Figure 7: Compared to traditional image classification tasks, adversarial training exhibits a stronger
demand on deeper networks. The performance gain of traditional image classification becomes
marginal after ResNet-200 while the adversarial robustness continues to grow even for ResNet-638.

5 GOING DEEPER IN ADVERSARIAL TRAINING

As discussed in Section 4.2, current networks are not capable of learning a unified representation
on clean and adversarial images. It may suggest that the “deep” network we used, i.e., ResNet-152,
still underfits the complex distribution of adversarial images, which motivates us to apply larger
networks for adversarial training. We simply instantiate the concept of larger networks by going
deeper, i.e., adding more residual blocks. For traditional image classification tasks, the benefits
brought by adding more layers to “deep” networks is diminishing, e.g., the blue curve in Figure
7 shows that the improvement of clean image accuracy becomes saturated once the network depth
goes beyond ResNet-200.

For a better illustration, we train deeper models exclusively on adversarial images and observe a pos-
sible underfitting phenomenon as shown in Figure 7. In particular, we apply the heuristic policy in
Section 4.3 to mitigate the possible effects brought by BN. We observe that adversarial learning task
exhibits a strong “thirst” on deeper networks to obtain stronger robustness. For example, increasing
depth from ResNet-152 to ResNet-338 significantly improves the model robustness by 2.4%, while
the corresponding improvement in the “clean” training setting (referred to as 0% adv + 100% clean)
is only 0.5%. Moreover, this observation still holds even by pushing the network capacity to an
unprecedented scale, i.e., ResNet-638. These results indicate that our so-called “deep” networks
(e.g., ResNet-152) are still shallow for the task of adversarial learning, and larger networks should
be used for fitting this complex distribution. Besides our findings on network depth, Madry et al.
(2018) show increase network width also substantially improve network robustness. These empirical
observations also corroborate with the recent theoretical studies (Nakkiran, 2019; Gao et al., 2019)
which argues that robust adversarial learning needs much more complex classifiers.

Besides adversarial robustness, we also observe a consistent performance gain on clean image accu-
racy by increasing network depth (as shown in Table 7). Our deepest network, ResNet-638, achieves
an accuracy of 68.7% on clean images, outperforming the relatively shallow network ResNet-152
by 6.1%.

6 CONCLUSION

In this paper, we reveal two intriguing properties of adversarial training at scale: (1) conducting
normalization in the right manner is essential for training robust models on large-scale datasets like
ImageNet; and (2) our so-called “deep” networks are still shallow for the task of adversarial learning.
Our discoveries may also be inherently related to our two-domain hypothesis — clean images and
adversarial images are drawn from different distributions. We hope these findings can facilitate
fellow researchers for better understanding of adversarial training as well as further improvement of
adversarial robustness.
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A DIAGNOSIS ON ALP TRAINING PARAMETERS

In the main paper, we note that our reproduced ALP significantly outperforms the results reported in
Kannan et al. (2018), as well in an independent study Engstrom et al. (2018). The main differences
between our version and the original ALP implementation lie in parameter settings, and are detailed
as follows:

• learning rate decay: the original ALP decays the learning rate every two epochs at an
exponential rate of 0.94, while ours decays the learning rate by 10× at the 35-th, 70-th and
95-th epoch. To ensure these two policies reach similar learning rates by the end of training,
the total number of training epochs of the exponential decay setting and the step-wise decay
setting are set as 220 and 110 respectively.
• initial learning rate: the original ALP sets the initial learning rate as 0.045 whereas we set

it as 0.1 in our implementation.
• training optimizer: the original ALP uses RMSProp as the optimizer while we use Momen-

tum SGD (M-SGD).
• PGD initialization during training: the original ALP initializes the adversarial perturbation

from a random point within the allowed ε cube; while we initialize the adversarial image
by its clean counterpart with probability = 0.2, or randomly within the allowed the ε cube
with probability = 0.8.
• number of GPUs: the original ALP uses 50 GPUs for adversarial training, while ours uses

128 GPUs.
• network backbone: the original ALP reports results based on Inception-v3 and ResNet-101,

while our backbone is ResNet-152.
• PGD-N for training: the original ALP uses PGD-10 for training, while we use PGD-30 for

training.

PGD-N for network #GPUs PGD initialization optimizer initial lr lr decay accuracy (%)
training PGD-10 PGD-2000

10 ResNet-101 48 P(ε-cube) = 1.0 RMSProp 0.045 exponential 38.1 2.1

step-wise

47.0 2.7

0.1

50.2 0.8

M-SGD

48.2 0.7

P(ε-cube) = 0.8
P(clean) = 0.2

47.0 2.1

128

47.5 2.9

ResNet-152
47.3 3.3

30 48.8 23.0

Table 3: The results of ALP re-implementations under different parameter settings. We show that
applying stronger attackers for training, e.g., change from PGD-10 to PGD-30, is the most important
factor for achieving strong robustness. Other parameters, like optimizer, do not lead to significant
robustness changes.

By following the parameter settings listed in the ALP paper4, we can train a ResNet-101 with an
accuracy of 38.1% against PGD-10. The ResNet-101 performance reported in the ALP paper is
30.2% accuracy against an attack suite5. This ∼8% performance gap is possibly due to different
attacker settings in evaluation. However, by evaluating this model against PGD-2000, we are able
to obtain a similar result that reported in Engstrom et al. (2018), i.e., Engstrom et al. (2018) reports
ALP obtains 0% accuracy, and in our implementation the accuracy is 2.1%.

Given these different settings, we change them one by one to train corresponding models adversari-
ally. The results are summarized in Table 3. Surprisingly, we find the most important factor for the
performance gap between original ALP paper and ours is the attacker strength used for training —
by changing the attacker from PGD-10 to PGD-30 for training, the robustness against PGD-2000
can be increased by 19.7%. Other parameters, like network backbones or the GPU number, do not
lead to significant performance changes.

4For easier implementation, we apply 48 GPUs (which can be distributed over 6 8-GPU machines) for
adversarial training, instead of using the original number, i.e., 50 GPUs.

5This attack suite contains 8 different attackers, including PGD-10. However, due to the vague description
of parameter settings in this attack suite, we are not able to reproduce it.
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B EXPLORING THE IMPACT OF PARAMETER SETTINGS IN ADVERSARIAL
TRAINING

In this section, we explore the impact of different training parameters on model performance.

B.1 PGD-N FOR TRAINING

As suggested in Table 3, the number of attack iteration used for training is an important factor for
model robustness. We hereby provide a detailed diagnosis of model performance trained with PGD-
{5, 10, 20}6 for different training strategies. We report the performance in Table 4, and observe that
decreasing the number of PGD attack iteration used for training usually leads to weaker robustness.
Nonetheless, we note the amount of this performance change is strongly related to training strategies.
For strategies that cannot lead to models with strong robustness, i.e., 100% adv + 100% clean and
100% adv + 100% clean, ALP, this robustness degradation is extremely severe (which is similar
to the observation in Table 3). For example, by training with PGD-5, these two strategies obtains
nearly no robustness, i.e., ∼0% accuracy against PGD-2000. While for strategies that can secure
model robustness against strong attacks, changing from PGD-30 to PGD-5 for training only lead to
a marginal robustness drop.

PGD-N
for

training

accuracy against PGD-2000 (%)

100% adv + 0% clean 100% adv + 100% clean 100% adv + 100% clean,
ALP

MBNadv,
100% adv + 100% clean

MBNadv,
100% adv + 100% clean,

ALP
30 39.2 20.9 23.0 38.3 35.3
20 -1.0 -7.3 -3.8 -4.2 +0.5
10 -2.4 -17.7 -19.7 -5.5 -1.4
5 -3.3 -20.9 -22.7 -7.1 -2.4

Table 4: Robustness evaluation of models adversarially trained with PGD-{30, 20, 10, 5} at-
tackers. We observe that decreasing the number of PGD attack iteration for training usually leads to
weaker robustness, while the amount of degraded robustness is strongly related to training strategies.

B.2 APPLYING RUNNING STATISTICS IN TRAINING

In Section 4.3 (of the main paper), we study the effectiveness of applying running statistics in train-
ing. We hereby test this heuristic policy under more different settings. Specifically, we consider 3
strategies, each trained with 4 different attackers (i.e., PGD-{5, 10, 20, 30}), which results in 12
different settings. We report the result in Table 5. We observe this heuristic policy can boost robust-
ness on all settings, which further supports the importance of enforcing BN to behave consistently
at training and testing.

training strategy
accuracy against PGD-2000 (%)

PGD-5 PGD-10 PGD-20 PGD-30

100% adv + 0% clean 35.9 36.8 38.2 39.2
100% adv + 0% clean* +1.9 +2.4 +1.8 +3.0
MBN, 100% adv + 0% clean 31.2 32.8 34.1 38.3
MBN, 100% adv + 0% clean* +3.0 +3.3 +2.4 +1.6
MBN, 100% adv + 0% clean, ALP 32.9 33.9 35.8 35.3
MBN, 100% adv + 0% clean, ALP* +2.5 +2.8 +1.3 +2.8

Table 5: Validating the effectiveness of applying running statis-
tics in training on more settings. We observe this heuristic pol-
icy can boost robustness on all settings. * denotes that running
statistics is used at the last 10 training epochs.

training accuracy against
batch size PGD-2000 (%)
4096 42.2
512 -0.2
1024 +0.9
2048 +1.1
8192 -0.3

Table 6: Performance
evaluation of models
trained with different
batch size. The best per-
formance can be achieved
by training with a batch
size of 2048.

B.3 BATCH SIZE IN TRAINING

The default number of training batch size is 4096. We hereby study the model performance when
training with the batch size of {512, 1024, 2048, 8192}, respectively. Without loss of generality,

6For PGD-5 and PGD-10, we set the attack step size α to be 4 and 2, respectively.

13



Published as a conference paper at ICLR 2020

we study the training strategy 100% adv + 0% clean. The heuristic policy in Section 4.3 (of the
main paper) is applied to achieve stronger robustness. Compared to the default setting (i.e., 4096
images/batch), training with smaller batch size leads to better robustness. For example, changing
batch size from 4096 to 1024 or 2048 can improve the model robustness by ∼1%. While training
with much smaller (i.e., 512 images/batch) or much larger (i.e., 8192 images/batch) batch size results
in a slight performance degradation.

C PERFORMANCE OF ADVERSARIALLY TRAINED MODELS

In the main paper, our study is driven by improving adversarial robustness (measured by the accu-
racy against PGD-2000), while leaving the performance on clean images ignored. For the complete-
ness of performance evaluation, we list the clean image performance of these adversarially trained
models in Table 7. Moreover, to facilitate performance comparison in future works, we list the
corresponding accuracy against PGD-{10, 20, 100, 500} in this table as well.

network
training PGD-N

setting
accuracy (%)

batch for clean PGD
size training 10 20 100 500 2000

ResNet-152

4096

30

100% adv + 100% clean, ALP 73.5 48.8 46.3 34.1 27.3 23.0
100% adv + 100% clean 78.0 56.2 53.0 35.6 26.6 20.9
100% adv + 80% clean 77.4 56.8 54.6 39.6 28.7 20.3
100% adv + 60% clean 75.5 54.6 52.1 40.3 23.5 15.3
100% adv + 40% clean 73.9 54.1 51.5 40.2 33.6 29.1
100% adv + 20% clean 68.0 54.6 51.5 40.6 34.6 32.1
100% adv + 0% clean 62.3 52.5 50.0 41.7 39.6 39.2
100% adv + 0% clean* 62.1 52.4 50.3 43.9 42.6 42.2
MBNadv, 100% adv + 100% clean 64.4 51.8 49.1 40.9 38.8 38.3
MBNadv, 100% adv + 100% clean* 64.2 52.5 50.0 42.1 40.5 39.9
MBNadv, 100% adv + 100% clean, ALP 65.9 47.3 45.0 38.3 35.9 35.3
MBNadv, 100% adv + 100% clean, ALP* 64.3 49.0 47.2 40.4 38.6 38.1
GN, 100% adv + 100% clean 67.5 52.1 49.3 41.9 39.5 39.0

20

100% adv + 100% clean, ALP 72.7 50.1 47.6 33.4 25.2 19.2
100% adv + 100% clean 78.4 55.9 52.5 31.7 20.0 13.6
100% adv + 0% clean 62.5 54.1 51.1 41.8 39.0 38.2
100% adv + 0% clean* 65.4 53.9 51.0 42.7 40.8 40.0
MBNadv, 100% adv + 100% clean 67.9 52.8 49.9 39.3 35.5 34.1
MBNadv, 100% adv + 100% clean* 67.2 52.7 49.9 40.2 37.2 36.5
MBNadv, 100% adv + 100% clean, ALP 68.1 48.8 46.7 39.5 36.7 35.8
MBNadv, 100% adv + 100% clean, ALP* 67.4 50.0 47.7 40.3 37.4 37.1

10

100% adv + 100% clean, ALP 74.9 47.3 47.1 22.4 7.3 3.3
100% adv + 100% clean 78.4 56.6 55.1 28.8 7.1 3.2
100% adv + 0% clean 66.0 53.6 50.9 41.1 38.0 36.8
100% adv + 0% clean* 65.9 53.5 50.7 42.3 39.9 39.2
MBNadv, 100% adv + 100% clean 68.7 53.5 49.9 38.7 34.3 32.8
MBNadv, 100% adv + 100% clean* 67.8 52.6 49.8 40.0 36.9 36.1
MBNadv, 100% adv + 100% clean, ALP 68.7 49.0 46.8 38.9 35.4 33.9
MBNadv, 100% adv + 100% clean, ALP* 67.7 50.0 47.7 40.2 37.4 36.7

5

100% adv + 100% clean, ALP 75.0 49.6 37.6 5.7 0.8 0.3
100% adv + 100% clean 78.6 41.5 17.6 0.2 0.0 0.0
100% adv + 0% clean 67.0 54.0 50.5 40.7 37.5 35.9
100% adv + 0% clean* 66.9 53.6 50.4 41.5 38.8 37.8
MBNadv, 100% adv + 100% clean 69.3 53.0 49.8 38.0 33.3 31.2
MBNadv, 100% adv + 100% clean* 68.9 53.1 49.8 39.8 35.9 34.2
MBNadv, 100% adv + 100% clean, ALP 69.2 49.6 46.8 38.9 34.9 32.9
MBNadv, 100% adv + 100% clean, ALP* 69.2 50.4 48.3 40.3 37.0 35.4

512

30 100% adv + 0% clean*

62.6 52.4 50.4 43.8 42.4 42.0
1024 63.1 53.3 51.0 44.6 43.5 43.1
2048 62.7 53.3 50.7 45.0 43.7 43.3
8196 61.8 52.1 49.8 43.4 42.3 41.9

ResNet-200

4096

63.5 53.8 51.4 45.1 43.9 43.8
ResNet-338 65.4 55.5 53.2 46.6 45.1 44.6
ResNet-518 66.7 56.7 54.4 48.1 46.4 46.2
ResNet-638 67.2 57.2 54.8 48.7 47.1 46.7

Table 7: For easier benchmarking in future works, we list the detailed performance of adversarially
trained models. * denotes running statistics is used at the last 10 training epochs.

14


	Introduction
	Related Work
	Adversarial Training Framework
	Exploring Normalization Techniques in Adversarial Training
	On the Effects of Clean Images in Adversarial Training
	The Devil is in the Batch Normalization
	Revisiting Statistics Estimation of BN
	Beyond Adversarial Robustness

	Going Deeper in Adversarial Training
	Conclusion
	Diagnosis on ALP Training Parameters
	Exploring the Impact of Parameter Settings in Adversarial Training
	PGD-N for Training
	Applying Running Statistics in Training
	Batch Size in Training

	Performance of Adversarially Trained Models

