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ABSTRACT

Each training step for a variational autoencoder (VAE) requires us to sample from
the approximate posterior, so we usually choose simple (e.g. factorised) approx-
imate posteriors in which sampling is an efficient computation that fully exploits
GPU parallelism. However, such simple approximate posteriors are often insuffi-
cient, as they eliminate statistical dependencies in the posterior. While it is pos-
sible to use normalizing flow approximate posteriors for continuous latents, there
is nothing analogous for discrete latents. The most natural approach to model
discrete dependencies is an autoregressive distribution, but sampling from such
distributions is inherently sequential and thus slow. We develop a fast, parallel
sampling procedure for autoregressive distributions based on fixed-point iterations
which enables efficient and accurate variational inference in discrete state-space
models. To optimize the variational bound, we considered two ways to evaluate
probabilities: inserting the relaxed samples directly into the pmf for the discrete
distribution, or converting to continuous logistic latent variables and interpreting
the K-step fixed-point iterations as a normalizing flow. We found that converting
to continuous latent variables gave considerable additional scope for mismatch
between the true and approximate posteriors, which resulted in biased inferences,
we thus used the former approach. We tested our approach on the neuroscience
problem of inferring discrete spiking activity from noisy calcium-imaging data,
and found that it gave accurate connectivity estimates in an order of magnitude
less time.

The development of variational auto-encoders (VAE) (Kingma & Welling, 2014} [Rezende et al.,
2014) has enabled Bayesian methods to be applied to very large-scale data, by leveraging neural
networks, trained by stochastic gradient ascent, to approximate the posterior. Importantly, to per-
form each stochastic gradient ascent step, we need to sample from the current approximate posterior,
restricting us to approximate posteriors in which sampling can be performed rapidly by leveraging
parallel GPU computations. As such, most work on VAE'’s has used factorised approximate pos-
teriors (e.g. |[Kingma & Welling) 2014; |[Rezende et al.| [2014} Blundell et al., 2015; [Higgins et al.,
2017 |Aitchison et al.,[2017), but in many domains of interest we expect the posterior over latents to
be highly correlated, not only because the posterior inherits correlations from the prior (e.g. as we
might find in a dynamical system), but also because the likelihood itself can induce correlations due
to effects such as explaining away (Pearl, [1988ajb). One approach to introducing correlations into
the approximate posterior is normalizing flows (Rezende & Mohamed, [2015; Kingma et al., [2016)
which transforms variables generated from a simple, often factorised distribution into a complex
correlated distribution, in such a way that the determinant of the Jacobian (and thus the probability
of the transformed variables) can easily be computed.

However, the normalizing flow approach can only be applied to continuous latents, and there are im-
portant problems which require discrete latent variables and correlated posteriors, making efficient
and accurate stochastic variational inference challenging. In particular, we consider the neuroscience
problem of inferring the correlated spiking activity of neural populations recorded by calcium imag-
ing. Due to the indirect nature of calcium imaging, spike inference algorithms must be used to infer
the underlying neural spiking activity (Friedrich et al., 2017} Speiser et al.,|2017). Not only does the
data naturally give strong explaining away induced anticorrelations (as a spike in nearby timebins
produces very similar data), but there are prior correlations induced by synaptic connectivity which
induces similar correlations in the approximate posterior.
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To address these challenging tasks with discrete latent variables, and correlated approximate poste-
riors, we considered two approaches. First, we considered applying normalizing flows by transform-
ing our discrete latents into continuous latents, which are thresholded to recover the original discrete
variables (Maddison et al.,|2016). However, we found that working with continuous variables gave
rise to far more scope for mismatch between the approximate and true posteriors than working with
discrete variables, and that this mismatch resulted in biased inferences. Instead, we developed a
fast-sampling procedure for discrete autoregressive posteriors. In particular, we considered an au-
toregressive approximate posterior and circumvent the requirement for slow sequential sampling
by developing flow-like fixed-point iterations that are guaranteed to sample the true posterior after
T iterations, but in practice converge much more rapidly (in our simulations, ~ 5 iterations), and
efficiently exploit GPU parallelism.

Applying the flow-like fixed point iterations to simulated neuroscience problems, we were able to
sample from autoregressive approximate posteriors in almost the same time required for factorised
posteriors, and at least an order of magnitude faster than sequentially sampling from the underlying
autoregressive process, allowing us to realize the benefits of correlated posteriors in large-scale
settings.

1 BACKGROUND

The evidence lower bound objective (ELBO), takes the form of an expectation computed over the
approximate posterior, Q (z),

L =Eq,(-) [log Pg (z[2) +1og Py (2) —log Qy (2)] (1

Optimizing this objective with respect to the generative model parameters, 6, is straightforward, as
we can push the derivative inside the expectation, and perform stochastic gradient ascent. However,
we cannot do the same with the recognition parameters, ¢, as they control the distribution over
which the expectation is taken. To solve this issue, the usual approach is the reparameterisation trick
(Kingma & Welling, 2014} Rezende et al.| 2014) which performs the expectation over IID random
noise, and transforms this noise into samples from the approximate posterior,

L =E [logPy (z,2(e;¢)) —log Q, (2 (¢;9))] - 2)

As the recognition parameters ¢ no longer appear in the distribution over which the expectation is
taken, we can again optimize this expression using stochastic gradient descent.

While the reparameterisation trick is extremely effective for continuous latent variables, it cannot be
used for discrete latents, as we cannot back-propagate gradients through discrete z (¢; ¢). To rectify
this issue, one approach is to relax the discrete variables, z, to form an approximately equivalent
model with continuous random variables, Z, through which gradients can be propagated (Maddison
et al., 2016; [Jang et al., 2016). To consider the simplest possible case, we take a single binary
variable, z, drawn from a Bernoulli distribution with log-odds ratio u, and probability p = o (u) =
1/ (1+e),

P (%) = Bernoulli (o (u)) . 3)

Instead of sampling Z directly from a Bernoulli, we can obtain samples of z from the same distribu-
tion by first sampling from a Logistic, and thresholding that sample using,

[ = Logistic (u, 1) , z=0() = ﬁlim o (pl), z=o0(pl), 4)
— 00
where O(!) is the Heaviside step function, which is 0 for negative inputs, and 1 for positive inputs,

and Z is a relaxed version of the original discrete latent variable that lies between 0 and 1 and
becomes equal to Z in the limit that the inverse-temperature, 3, goes to infinity.

We now have two options for how we compute probaiblities in the VAE setting for relaxed discrete
latent variables.

1.1 EVALUATING PROBABILITIES UNDER THE DISCRETE MODEL

The most straightforward approach is to simply insert the relaxed variables, £ into the original prob-
ability mass function for the discrete model, P (2), and Q (%) (Jang et al.,[2016). Taking a univariate
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example, this gives,
logP (%) = 2logp + (1 — 2) log(1 — p). 6)

However, this immediately highlights a key issue: to obtain a valid variational bound, we need to
evaluate the probability density of samples from the approximate posterior. In our case, samples
from the approximate posterior are the relaxed variables, £, so we need to evaluate Q (%). However,
we are actually using a different expression, Q (£), and while this may in practice be an effective
approximation, it cannot give us a valid variational bound. To obtain a valid variational bound, we
must use Q (Z), which we can compute but not differentiate.

1.2  EVALUATING PROBABILITIES UNDER THE CONTINUOUS MODEL

To obtain a valid variational bound, we need to evaluate the actual probability of the relaxed variable,
i.e. we need to compute Q (%), and P (2). While we could work with the 2 directly, this is known
to be numerically unstable so instead we work in terms of the logistic variables, [ (Maddison et al.,
2016). These two approaches are equivalent, in the sense that the ratio of prior and approximate
posterior probabilities is the same, because the gradient terms introduced by the change of variables
cancel. The generative model is described above (Eq.[4)), but we have not yet specified the approx-
imate posterior, Q (). Following usual practice Maddison et al.| (2016), we use a Logistic for the
approximate posterior, with learned mean and scale parameter 1 (so as to avoid a problem described
below in Fig. [TE). Further, note that we have not specified whether these distributions correspond
to the discrete or relaxed model, as we can obtain either Z or z from exactly the same [, by using
different inverse-temperatures for the transformation (Eq. ).

2 RESULTS

We are interested in discrete dynamical systems with autoregressive generative models and approx-
imate posteriors given by,

P (Zt|zlzt—1) = Bernoulli (0’ (11 (zlzt—l))) , (63)
Q (Z¢|x,Z1.t—1) = Bernoulli (o (v (x,Z1.4-1))) - (6b)
These equations can be rewritten using continuous Logistic variables,
P (I|l14—1) = Logistic (u (o (8ly.1—1)) ;1) (7a)
Q (Le|l1.4—1) = Logistic (v (x,0 (8l1:t—1)) , 1) (7b)

where u and v are map from past activations to the logits value for the next time-step. Note that it is
not possible to use classical message passing techniques to perform inference in this model due to
the relatively long temporal dependencies.

2.1 A FLOW-LIKE SAMPLING PROCEDURE FOR DISCRETE AUTOREGRESSIVE DISTRIBUTIONS

One approach to sampling the sequential autoregressive posterior in Eq.(7b) is to use,
li=mn,+v(x,0(Blii-1)) = fi(l1:-1), 8)

where 7, is Logistic (0, 1) noise, I; and 7, are length N vectors, and we define f; so as to highlight
the temporal dependencies (cf. Eq[TI0). However, in practice these iterations can be extremely slow
as the sequential structure (Fig. top) fails to fully exploit the parallelism available on today’s
GPU hardware. As such, we considered fixed-point iterations that do fully utilize GPU parallelism.
To construct these iterations, we simply apply the autoregressive updates at all time-steps in parallel,
(rather than sequentially, see Fig. ),

P, 0% = n + v(x,o(81%)). 9)

where all the variables are N x 1" matrices, and where v(x, o (5lk)) is simply Eq. (8) computed in
parallel across time for an externally specified input. Making the time dependencies explicit,

B =m 4 vi(xoo (BL, ) = £(05, ). (10)
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Figure 1: Differences between autoregressive and flow posteriors, based on discrete or continuous
latents. A The sequential autoregressive (top), and parallel flow-like sampling procedure (bottom).
B The true and approximate posteriors for continuous Logistic latent variables. C The difference
between the model evidence and the ELBO induced by the posterior mismatch in B. D Biased
inferences induced by the mismatch between the prior and approximate posterior. E The standard
deviation of Z as we modulate the standard deviation of a Gaussian likelihood encouraging 2 ~ 0.5.

To show that this will become equivalent to the autoregressive model after K = T iterations, note
that after the first fixed-point iteration, l} is exactly equal to the sequential autoregressive result, Iy
(Eq. , as l?[ = f1(0) = 14, because there is no history to take into account (which we represent, in a
slight abuse of notation, by the empty set). After the second fixed-point iteration, l% and lg are equal
to the corresponding sequential autoregressive values, as l? is still equal to the correct, autoregressive
value, (i.e. lf = £1(0) = 1y), and lg = fg(l}) = fa(ly) = l2. By induction, after ¢ iterations, the
first ¢ time-points 1%, are now equal to their sequential autoregressive values, lﬁzt = ly.+ until after
T parallel iterations we have equality for the whole time-series.

Thus, the worst-case is extremely slow, converting a O(7') computation to an order O(7?) compu-
tation. However, in practice the iterations reach steady-state rapidly so we are able to use K < T,
giving an order of magnitude improvement in efficiency by making improved use of GPU paral-
lelism. Finally, note that this procedure generalizes straightforwardly to the case of Categorical
variables: we convert the sigmoid to a softmax, and convert the Logistic to a Gumbel distribution.

While this section gives a fast procedure for sampling from the approximate posterior, it is still
unclear how we should evaluate probabilities. We have two options, which mirror the two options
introduced above (Sec.[I.T]and Sec. [I.2]respectively).

2.2 EVALUATING PROBABILITIES UNDER THE DISCRETE MODEL

First, we can compute relaxed Bernoulli variables using Z = o (ﬂlK ), and insert them into the prob-
ability mass function for the autoregressive discrete approximate posterior (Eq. [8). While this can
be computed efficiently in parallel, it introduces another level of mismatch between the distribution
we sample and the distribution under which we evaluate the probability, in the sense that we sample
using the fixed point iterations, but evaluate probabilities under the sequential autoregressive process
(Eq.[8). Remarkably, this is often not an issue for the discrete model, as we can simply iterate until
convergence, and convergence is very well-defined as the latents are either O or 1. However, for the
relaxed model it is more difficult to define convergence as the latents can lie anywhere between 0
and 1, so in practice we used a fixed number of iterations (in particular, K = 5, which was generally
sufficient for the discrete model to converge).
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2.3  EVALUATING PROBABILITIES UNDER THE CONTINUOUS MODEL

To evaluate the probability of the continuous variables under the fixed point iterations, we interpret
the iterations as constituting a normalizing flow. Normalizing flows exploit the fact that we can
compute the probability density of a random variable, lk(n), generated by transforming, via a one-
to-one function, a sample 7,

ol (m)|

P (I"(n)) =P (n) B

Y

where |91* /On| is the absolute value of the determinant of the Jacobian of 1" (7). While the deter-
minant of the Jacobian is often very difficult to compute, we can ensure the Jacobian is 1 by using a
restricted family of transformations, under which the value of lf depends only on the current value,
7, via simple addition, and on past values of 17 via an arbitrary function,

U =n, +g" (x,m1)- (12)

And we know that our fixed-point iterations indeed lie in this family of functions, as Eq. (I0) mirrors
the above definition, with,

gttt (Xﬂh;tfl) =Vi (X’a(ﬁlllcitfl)) -

where llf:tfl indeed depends only on 1;.,_; (see Eq. .

2.4 ISSUES WITH CONTINUOUS MODEL

Using continuous latent variables might seem appealing, because we can compute the exact approx-
imate posterior probability even when the fixed point iterations have not converged, and because
there is additional flexibility in that we are not restricted to approximate posteriors which have an
interpretation as a discrete dynamical system. However, moving from a discrete latent variable to
a continuous latent variable introduces scope for considerable mismatch between the true and ap-
proximate posterior (Fig.[IB), which simply is not possible for the binary model where the posterior
remains Bernoulli. This mismatch between the approximate and true posterior implies a discrep-
ancy between the ELBO and the true model evidence (Fig. [IC), and this discrepancy grows as the
evidence in favour of Z = 0 or Z = 1 increases. This mismatch has a potentially large magnitude
(compare the scale on Fig. [IB to that in Fig. 2F), and thus can dramatically modify the variational
inference objective function, introducing the possibility for biased inferences. In fact, this is exactly
what we see (Fig. [ID), with the approximate posterior underestimating the evidence in favour of
z=0orz=1.

Further, the Logistic approximate posterior can introduce additional biases when optimized in com-
bination with a relaxed binary variables (Figs. [[B-D use a hard-thresholding or equivalently, an
infinite inverse-temperature). In particular, we consider a Gaussian likelihood, P (x = 0.5|2) =
N (z = 0.5; 2,0), and thus, as o decreases, there is increasing evidence that Z is close to 0.5. Under
the true model, with a hard-threshold, this can never be achieved: Z must be either 0 or 1. However,
if we combine a relaxation (Eq. 4] with a Logistic approximate posterior, it is possible to reduce the
variance of the logistic sufficiently such that the relaxed Bernoulli variable, Z, is indeed close to 0.5.
To quantify this effect, we consider how the standard deviation of 2 (which should be 0.5 under the
true posterior), varies as we change the standard deviation of the likelihood, o (Fig.[IE).

2.5 EXPERIMENTS

One case where binary latent variables are essential is that of calcium spike deconvolution: inferring
latent binary variables representing the presence or absence of a neural spike in a small time bin,
based on noisy optical observations (Fig.[2C).

We take the binary variables, z;; as representing whether neuron ¢ spiked in time-bin ¢, and as
such, we can interpret u;; as the corresponding synaptic input (in contrast, as v is not part of the
generative model, it does not have a specific a biological interpretation). For the generative model,
we take a weighted sum of inputs from past spikes, filtered by a temporal kernel k" and ", which
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Figure 2: Correlated approximate posteriors in a single-channel (neuron) model. A Factorised gen-
erative model. B Correlated approximate posterior, with an autoregressive temporal structure, but
without correlations between cells. C Example observed fluorescence trace and average reconstruc-
tions (top), inferred rates (middle) and inferred spiking (bottom), for the true posterior (dark gray),
then models with factorised posteriors trained using VAE (red) and supervised (purple) procedures,
and finally our new discrete flow trained using VAE (blue). D The true marginal probability of there
being a spike in simulated data, against inferred probability. The optimal is unity (dark-gray). E
The number of inferred spikes, given only one spike in the underlying data. F The time course of
the VAE objective under the different models, and the highest possible value for the objective, esti-
mated using importance sampling. G The time required for a single iteration of the algorithm, for
the different variants in F.

is mirrored by the recognition model, to ensure that the recognition model can capture any prior-
induced statistical structure,

w=b'+ W' w0z vi=b )+ W'Yk Oz (14)

t'=1 =1
where © is the Hadamard product, so r = g ® h implies r; = g;h;.

In the first experiment, we considered a single neuron, whose spiking was IID (Poisson) with fir-
ing rate 0.25 Hz (Fig. 2JA). Fluorescence data was simulated by convolving spikes with a double-
exponential temporal kernel with rise time 0.3 s and decay time 1 s and adding noise with standard
deviation e~!>. We learned the recognition model, which consisted of two components. The first
is a neural network mapping data to spike inferences, b"(x), which consisted of two hidden lay-
ers, with 20 units per cell per time bin, where the first layer takes input from 200 time points from
a single cell’s fluorescence trace, and the second layer takes 5 time points from the previous hid-
den layer, and we use Elu nonlinearities (Clevert et al.,|2015) (for further details see |Speiser et al.,
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Figure 3: Correlated approximate posteriors to estimate the connectivity between multiple neurons.
A Autoregressive generative model, incorporating the effects of synaptic connectivity (note the lack
of self-connections). B Correlated autoregressive approximate posterior. C The inferred and ground
truth weights using factorised, flow and autoregressive posteriors. DEF The correlation (D), slope
(E) and bias (F) for the points in C, plotted across training time. G The time course of the VAE
objective under the different models. H The time required for a single training iteration of the
algorithm, for the different models.

2017; |Aitchison et al.,[2017). The second is the recognition temporal kernel ", which captures the
anticorrelations induced by explaining away (Fig. ZBC).

All strategies, including factorised and autoregressive (flow) VAE’s, and supervised training give
roughly similar reconstructions (Fig. 2IC top). Thus, to understand how the autoregressive posterior
is superior, we need to look in more depth at the posteriors themselves. In particular, the factorised
VAE had very narrow posteriors, spuriously indicating a very high degree of certainty in the spike
timing (Fig. [2C middle), whereas both the supervised and autoregressive VAE and also the true
posterior (estimate by importance sampling) indicate a higher level of temporal uncertainty. These
differences are even more evident if we consider spike trains sampled from the approximate poste-
rior (Fig. 2C bottom), or if we consider calibration: the probability of there actually being a spike
in the underlying data, when the inference method under consideration indicates a particular proba-
bility of spiking (Fig.[2D). However, the sampled spike trains indicate another issue: while the true
and VAE posteriors generally have one spike corresponding to each ground-truth spike, supervised
training produces considerable uncertainty about the spike-count (Fig. 2E). Thus, the VAE with an
autoregressive (flow) posterior combines the best of both worlds: achieving reasonable timing un-
certainty (unlike the factorised VAE), whilst achieving reasonable spike counts (unlike supervised
training).

As such, the autoregressive VAE performs more effectively than the factorised methods consider-
ing the IWAE objective (with 10 samples) (Burda et al.,|2015), under which the models are trained
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(Fig. 2F). As expected given Sec. [2.4] to get good performance, it is important to compute proba-
bilities by putting the relaxed variables into the discrete pmf (binary, as opposed to logistic), and
to use the parallel fixed point iteration based flow, as opposed to the autoregressive distribution
(note however, that we did not thoroughly explore the space of normalizing flows). The consid-
erable differences in speed between the approximate parallel fixed point iterations, and the exact
autoregressive computation arises from an order-of-magnitude difference in the time required for an
individual iteration (Fig. 2G).

In our second experiment, we considered inferring synaptic connectivity between cells, based on
noisy observations. Here, we considered a network of 100 cells with no self-connectivity, and with
weights, W' that are sparse (probability of 0.1 of being non-zero), with the non-zero weights drawn
from a Gaussian with standard deviation 5 (Fig. 3]A), and with a 200 ms temporal decay. We used
an autoregressive, fully connected recognition model (Fig. [3B). We use the same parameters as in
the above simulation, except that we use a somewhat more realistic fluorescence rise-time of 100 ms
(previously, we used 300 ms so as to highlight uncertainty in timing).

We inferred weights under three methods: a factorised VAE, and an autoregressive posterior where
we use the fast-flow like sampling procedure (flow), and where we use the slow sequential sampling
procedure (autoregressive) (Fig. [BC). The flow posterior gave a considerable advantage over the
other methods in terms of the correlation between ground truth and inferred weights (Fig.[3D), and in
terms of the slope (Fig.[3E), indicating a reduction in the bias towards underestimating the magnitude
of weights, while the bias (i.e. the additive offset in Fig. [3IC) remained small for all the methods. As
such, the autoregressive posterior with flow-based sampling increased the ELBO considerably over
the factorised model, or the autoregressive model with the slow sequential sampling, (Fig.[3G), and
these differences again arise because of large differences in the time required for a single training
iteration (Fig. [3H).

3 DISCUSSION

We have described an approach to sampling from a discrete autoregressive distribution using a par-
allel, flow-like procedure, derived by considering fixed-point iterations that converge to a sample
from the underlying autoregressive process. We applied this procedure to speed up sampling from
autoregressive approximate posteriors in the variational inference training loop. This allowed us to
rapidly learn autoregressive posteriors in the context of neural data analysis, allowing us to realise
the benefits of autoregressive approximate posteriors for single and multi cell data in reasonable
timescales.

It is important to remember that while we can sample using K fixed-point iterations, we can only
evaluate the probability of a sample once it has converged. This mismatch introduces a level of
approximation in addition to those that are typical when relaxing discrete distributions (Jang et al.,
2016 Maddison et al., 2016), but we can deal with the additional approximation error in the same
way: by evaluating the model using samples drawn from the underlying discrete, autoregressive
approximate posterior.

Past work has used similar properties of the underlying generative model, to speed up message-
passing based inference algorithms (Gonzalez et al.,|2009; Domke, | 2011). It is likely that their ap-
proach will be preferable when exact inference is possible albeit costly due to large tree-width/time-
courses, whereas our approach will be preferable when exact inference is not possible due to long-
range temporal dependencies.

Finally, our work suggests two directions for future work. First, while it is possible to use normal-
izing flows to define approximate posteriors for continuous state-space models, it may be difficult
to know exactly which normalizing flow will prove most effective. In this context, our procedure of
using fixed-point iterations may be a useful starting point. Second, we showed that while it may be
possible to convert a discrete latent variable model to an equivalent model with continuous latents,
this typically introduces considerable scope for mismatch between the prior and approximate poste-
rior. However, the actual approximate posterior is relatively simple, a mixture of truncated Logistics,
and as such, it may be possible to design approximate posteriors or even whole relaxation schemes
that more closely match the true posterior, and indeed this may underlie the gains shown by (Vahdat
et al.,[2018)).
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