
LogicENN: A Neural Based Knowledge Graphs Embedding Model
with Logical Rules

Mojtaba Nayyeri1 , Chengjin Xu1 , Jens Lehmann1,2 and Hamed Shariat Yazdi1
1University of Bonn, Bonn, Germany
2 Fraunhofer IAIS, Bonn, Germany

{nayyeri, xu, jens.lehmann, Shariat}@cs.uni-bonn.de,

Abstract
Knowledge graph embedding models have gained
significant attention in AI research. Recent works
have shown that the inclusion of background
knowledge, such as logical rules, can improve the
performance of embeddings in downstream ma-
chine learning tasks. However, so far, most existing
models do not allow the inclusion of rules. We ad-
dress the challenge of including rules and present a
new neural based embedding model (LogicENN).
We prove that LogicENN can learn every ground
truth of encoded rules in a knowledge graph. To the
best of our knowledge, this has not been proved so
far for the neural based family of embedding mod-
els. Moreover, we derive formulae for the inclu-
sion of various rules, including (anti-)symmetric,
inverse, irreflexive and transitive, implication, com-
position, equivalence and negation. Our formula-
tion allows to avoid grounding for implication and
equivalence relations. Our experiments show that
LogicENN outperforms the state-of-the-art models
in link prediction.

1 Introduction
Knowledge graphs (KGs) such as DBpedia, Freebase and
Yago encode structured information in the form of a multi-
relational directed graph in which nodes represent entities
and edges represent relations between nodes. In its simplest
form, a KG is a collection of triples (h, r, t) where h and t
are head and tail entities (nodes), respectively, and r is the
relation (edge) between. For instance, (Albert Einstein, co-
author, Boris Podolsky) is a triple. Link prediction, entity
resolution and linked-based clustering are among the most
common tasks in KG analysis [Nickel et al., 2016].

Knowledge Graph Embeddings (KGEs) have become one
of the most promising approaches for KG analysis [Wang et
al., 2017]. The assumption is that there are global features
which explain the existence of triples in a KG and embedding
models try to capture those features using (typically low di-
mensional) vectors known as embeddings. Therefore, a KGE
model assigns vectors (h, r, t) to the symbolic entities and
relations (h, r, t). The vectors are initialized randomly and
updated by solving an optimization problem. To measure the

degree of plausibility of a triple (h, r, t), a scoring function
is defined. The function takes the embedding vectors of the
triple and returns a value showing plausibility of the triple.
KGEs have a wide range of downstream applications such as
recommender systems, question answering, sentiment analy-
sis etc.

Several KGE models have been proposed so far. Ear-
lier works such as TransE [Bordes et al., 2013], RESCAL
[Nickel et al., 2012] and E-MLP [Socher et al., 2013] fo-
cus just on existing triples as inputs for the link prediction
task (predicting missing relations between entities). Due to
the intrinsic incompleteness of KGs, relying only on triples
may not deliver the best performance. Recent works such as
ComplEx-NNE+AER and RUGE have invested the usage of
background knowledge such as logical rules in order to en-
hance the performance [Guo et al., 2018; Ding et al., 2018].

To exploit rules, the inherent incapability of some existing
models to encode rules is an obstacle. For instance, different
variants of translational approaches such as TransE, FTransE,
STransE, TransH and TransR have restrictions in encoding
reflexive, symmetric and transitivity relations [Kazemi and
Poole, 2018]. Considering TransE as a concrete example, the
main intuition is that one should derive the embedding vector
of tail t when it is the sum of the embedding vectors of head
and relation i.e. h + r = t. Once r is assumed to be sym-
metric, e.g. “co-author”, we have t+ r = h which results in
r = 0. Therefore, TransE cannot capture symmetry and col-
lapses all symmetrical relations into a null vector, resulting
the same embedding vectors of all entities (i.e. h = t).

Due to incompleteness of KGs, even if one adds ground-
ings of rules to a KG, there is still no guarantee that a capable
embedding model learns the associated rules. That means,
we need to properly inject rules into the learning process of
a capable model. This issue has also been highlighted in the
recent works [Guo et al., 2018; Ding et al., 2018], but not
been investigated deeply in the literature. Therefore, the ca-
pability of a model to support rules as well as how rules are
injected, i.e. encoding techniques, are the main challenges.
Existing KGE models have solely addressed one of the men-
tioned challenges. This indeed causes two issues:

a) Solely focusing on encoding techniques and disregard-
ing capability of a model, has the risk that the model is ex-
pected to learn a rule which is not capable of. For example,
RUGE proposes a general optimization framework to itera-



tively inject first order logical rules in an embedding model.
ComplEx is used as the base model for rule injection. How-
ever, ComplEx is not capable of encoding composition pat-
tern [Sun et al., 2019]. The similar issue can be found in
[Minervini et al., ]. Minervini et al. use function-free Horn
clause rules to regularize an embedding model by includ-
ing inconsistency loss. The loss measures degree of viola-
tion from assumption on adversarially generated examples.
Although their framework nicely encodes Horn rules, they
use DistMult to inject rules which is not capable of encod-
ing asymmetric rule. For example, the authors [Minervini
et al., ] try to inject (h,Hypernym, t) → (t,Hyponym, h)
rule in DistMult. During injection of (h,Hypernym, t) →
(t,Hyponym, h), (h,Hypernym, t) → (h,Hyponym, t)
is also injected wrongly. Therefore, the model considers
many false triples as positive.

b) Solely focusing on capability of a model and disregard-
ing encoding techniques, has the risk that the model does not
properly encode rule due to incompleteness of KGs. For ex-
ample, RotatE [Sun et al., 2019] is proven to be capable of
encoding inverse, symmetric (asymmetric), and composition
rules without providing any rule injection mechanism. The
authors [Sun et al., 2019] show their model properly encodes
the rules. However, the results are obtained by generation of
a lot of negative samples (e.g. 1000) together with using a
very big embedding dimension (e.g. 1000). Such a big set-
ting requires a very powerful computational infrastructure,
adversely limit their applicability. Apart from lack of pro-
viding encoding technique, RotatE is not fully expressive i.e.,
the model is incapable of encoding some rules e.g., reflexive.

In contrast to the previous works, this paper addresses and
contributes to the both previously highlighted points, i.e. the
capability and the encoding technique, to avoid the mentioned
issues. Regarding capability, our first contribution is that we
propose a new neural embedding model (LogicENN) which is
capable enough to encode rules, i.e. function free clauses with
predicates of arity at most 2. Moreover, LogicENN avoids
grounding for two logical rules: implication and equivalence
relations. As the second contribution, we prove that Logi-
cENN is fully expressive, i.e. for any ground truth of clauses
of the above form, there exists a LogicENN model (with em-
bedding vectors) that represents that ground truth. To the best
of our knowledge, it is the first time that theoretical proofs
are provided for the expressiveness of a neural network based
embedding model. This proof indeed reassures us to inject
different Horn rules in the model (encoding technique). Re-
garding the encoding technique, our third contribution is that
we additionally derive formulae for enforcing the model to
learn different relations including (anti-)symmetric, implica-
tion, equivalence, inverse, transitive, composition, negation
as well as irreflexive. To our knowledge, our model is the
first model that can encode these rules as well as provides
practical solution for encoding them.

2 Related Works
We investigate the related works in the light of two main is-
sues we mentioned in the previous section, i.e. i) capability
of a model to encode rules and, ii) the encoding techniques.

Moreover, we briefly review the relevant neural based models
and show, in contrast to LogicENN, they are not able to avoid
grounding for the implication and equivalence relationships.

Considering the capability, [Kazemi and Poole, 2018] re-
ports that TransE, FTransE, STransE, TransH and TransR
have restrictions in encoding rules. More concretely, TransE
is incapable of encoding reflexive, symmetric and transitivity
[Yoon et al., 2016; Wang et al., 2014] and DistMult [Yang et
al., 2015] cannot capture antisymmetric. The CP decompo-
sition cannot encode both symmetric and antisymmetric rela-
tions [Trouillon et al., 2017]. Wang et al. also investigate
expressiveness of different bilinear models from a ranking
perspective of their scoring matrix.

Despite the fact that score function of DistMult and Com-
plEx are similar, ComplEx can encode symmetric and anti-
symmetric relations due to the algebraic properties of com-
plex numbers [Trouillon et al., 2016]. SimplE [Kazemi and
Poole, 2018] is one the recent embedding model which is
proven to be fully expressive. Moreover, conditions for en-
coding symmetric, antisymmetric and inverse patterns are
derived. Although SimplE is fully expressive, for each en-
tity/relation, two vectors should be provided which doubles
the space. RotatE [Sun et al., 2019] is able to encode sym-
metric, antisymmetric and inverse and composition patterns.
Although RotatE is shown to properly encode the patterns, a
lot of negative samples should be generated together with a
very big embedding dimension. It is indeed a big limitation
when the model is trained on a large scale KG.

Regarding encoding techniques, various approaches are in-
troduced in the literature, which we review the most relevant
ones. As a preprocessing step, [Rocktäschel et al., 2015] iter-
atively infer new facts based on rules till no new facts can be
inferred from a KG. Then, they regard both ground atoms and
existing rules as the set of new rules to be learned. Accord-
ingly, marginal probability of them are included in the train-
ing set and the loss function is minimized. KALE [Guo et al.,
2016] uses margin ranking loss over logical formulae as well
as triple facts and jointly learnins triples and formulae. In
order not to rely on propositionalization for implication, [De-
meester et al., 2016] proposes a lifted rule injection method.
Minervini et al. derive formulae for inverse and equivalence
rules according to the score functions of TransE, ComplEx
and DistMult. The obtained formulae are added to the ob-
jective as a regularization terms. Other methods that con-
sider relation paths, which is closely connected to rules, are
well-studied in the literature e.g. [Neelakantan et al., 2015;
Lin et al., 2015a; Guu et al., 2015].

There are also other ways of encoding rules, e.g. RUGE
[Guo et al., 2018] presents a generic (model-independent)
framework to inject rules with confidence scores into an em-
bedding model. The rules are encoded as constraints for
an optimization problem. One of the main disadvantages
of RUGE is that the model needs grounding of all rules.
For example, to inject the rule ∀h, t, if (h,BornIn, t) −→
(h,Nationality, t), h, t should be replaced by all the entities
that the triple (h,BornIn, t) exists in the KG. In contrast to
RUGE, [Ding et al., 2018] follows a model dependent ap-
proach for injection of rules. It encodes non-negativity and
entailment as constraints in ComplEx. It is shown [Ding et



al., 2018] that the model dependent approach of [Ding et al.,
2018] outperforms the generic approach of [Guo et al., 2018]
on the FB15k dataset. However, [Ding et al., 2018] can only
inject implication rule which is a limitation.

As we mentioned, LogicENN, in contrast to other rele-
vant neural based models, avoids grounding for the implica-
tion and equivalence relationships. E-MLP, ER-MLP, NTN,
ConvE and ConvKB are among the most successful mod-
els in the literature [Socher et al., 2013; Dong et al., 2014;
Socher et al., 2013; Dettmers et al., 2018; Nguyen et al.,
2018]. The main common characteristics of all models is that
h, r and t are treated as inputs or weights of hidden layers
while in LogicENN h and t are inputs and r is the output
of the network. Having relations encoded as inputs or hid-
den layer weights requires that all groundings of the rules be
fed into the network. The detailed explanation of why Logi-
cENN is capable of avoiding grounding is properly addressed
in Section 3.

To sum up, many models, like translation based models
are incapable of encoding some rules. The models which are
reported to be capable, can either learn rules using existing
triples in a KG or are enforced to learn by properly injecting
the rules into their formulation. The former kinds of models
have still the risk of not properly learning rules as data in KGs
are known to be very incomplete. Therefore injecting rules
enhance the learning performance of models. Regarding fully
expressiveness (FE), SimplE and RESCAL, HolE etc are FE
under some conditions [Wang et al., 2018].

r_1
r_2

r_n

Universal Mapping

(Shared Layers)

Relation

Embedding

[h
;t]

Figure 1: LogicENN: The hidden layer mapping, which is univer-
sal according to the theory of NN, is shared between entities and
relations. One output node is associated to each relation.

3 The LogicENN Approach

In this section we introduce our model and contribute to both
the capability and the encoding technique. We first present
LogicENN as a neural embedding model which is capable
of encoding rules and we prove that it is fully expressive. We
then discuss how we can algebraically formulate the rules and
inject them into the model. We then present our optimization
approach in order to learn rules by LogicENN.

This work considers clauses of the form “premise ⇒
conclusion”, in which “conclusion” is an atom and “premise”
is a conjunction of several atoms. Atoms are triples of type
(x, r, y) where x, y are variables and “r” is a known relation
in the KG. We refer to such clauses as rules from now on.

3.1 The Proposed Neural Embedding Model
It is known that using the same embedding space to repre-
sent both entities and relations is less competitive compared
to considering two separate spaces [Lin et al., 2015b]. This
motivates to consider a neural network (NN) in which entities
and relations are embedded in two different spaces. Another
motivation is that the previously reviewed NN approaches en-
code relations into the input layer or consider them as input
weights of a hidden layer which is restrictive for avoiding
grounding when one considers implication relationship.

We consider entity pairs as input and relations as output.
More precisely, we consider the embeddings of entity pairs,
[h, t], as input which together with weights are randomly ini-
tialized in the beginning. During learning, LogicENN opti-
mizes both weights and embeddings of the entities according
to its loss function. The output weights of the network are em-
beddings of relations and the hidden layer weights are shared
between all entities and relations as shown in Figure 1. De-
spite LogicENN takes embedding pairs of entities as input,
it learns the embedding of each individual entity through a
unique vector. This is in contrast to some matrix factorization
approaches which loose information by binding embedding
vectors in form of entity-entity or entity-relations [Nickel et
al., 2016].

We denote the score function of a given triple (h, r, t) by
fr(h, t), or more compactly by frh,t. Without loss of general-
ity, we use a single hidden layer for the NN to show theoreti-
cal capabilities of LogicENN and we define its score as:

frh,t =

L∑
i=1

φ(〈wi, [h, t] + bi〉)βri =

L∑
i=1

φh,t(wi, bi)β
r
i = ΦTh,tβ

r

(1)

where L is the number of nodes in hidden layer, wi ∈
R2d and βri ∈ R are input and output weights of the ith
hidden node respectively. βr = [βr1 , . . . , β

r
L]T are the

output weights of the network which are actually embed-
ding of relations. That is because in the last layer a lin-
ear function acts as the activation function. φh,t(wi, bi) =
φ(〈wi, [h, t] + bi〉) is the output of the ith hidden node and
Φh,t = [φh,t(w1, b1), . . . , φh,t(wL, bL)]T is feature map-
ping of the hidden layer of the network which is shared be-
tween all relations. h, t ∈ Rd are embedding vectors of
head and tail respectively and d is the embedding dimension.
Therefore wi, [h, t] ∈ R2d. Finally, φ(.) is an activation
function and 〈., .〉 is the inner product.

Due to having shared hidden layers in the design, Logi-
cENN is efficient in space complexity. The space complexity
of the proposed model is O(Ned + NrL) where Ne, Nr are
number of entities and relations respectively.

3.2 Capability of the Proposed Network
As mentioned in the section 1, if a model is not fully expres-
sive, it might be wrongly expected to learn a rule which is
incapable of. Therefore, investigation of the theories corre-
sponding to the expressiveness of an embedding model is in-
deed important. Accordingly, we now prove that LogicENN
is fully expressive i.e., capable of representing every ground
truth over entities and relations in a KG.



Rule Definition
∀h, t, s ∈ E : . . .

Formulation based
on score function

Formulation based on NN Equivalent regularization form
(Denoted asRi in Equation (2) )

Equivalence (h, r1, t)⇔ (h, r2, t) fr1h,t = fr2h,t + ξh,t ΦTh,t(β
r1 − βr2) = ξh,t max(‖βr1 − βr2‖1 − ξEq, 0)

Symmetric (h, r, t)⇔ (t, r, h) frh,t = frt,h + ξh,t (Φh,t − Φt,h)Tβr = ξh,t max(|(Φh,t − Φt,h)Tβr| − ξSy, 0)

Asymmetric (h, r, t)⇒ ¬(t, r, h) frh,t = frt,h +Mh,t (Φh,t − Φt,h)Tβr =M NC

Negation (h, r1, t)⇔ ¬(h, r2, t) fr1h,t = M − fr2h,t +
ξh,t

ΦTh,t(β
r1 +βr2) =M+ξh,t NC

Implication (h, r1, t)⇒ (h, r2, t) fr1h,t ≤ f
r2
h,t ΦTh,t(β

r1 − βr2) ≤ 0 max(
∑
i(β

r1
i − β

r2
i ) + ξIm, 0)

Inverse (h, r1, t)⇒ (t, r2, h) fr1h,t ≤ f
r2
t,h ΦTh,tβ

r1 − ΦTt,hβ
r2 ≤ 0 max(ΦTh,tβ

r1 − ΦTt,hβ
r2 + ξIn, 0)

Reflexivity (h, r, h) frh,h =M− ξh,h ΦTh,hβ
r =M− ξh,h NC

Irreflexive ¬(h, r, h) frh,h = ξh,h ΦTh,hβ
r = ξh,h NC

Transitivity (h, r, t) ∧ (t, r, s) ⇒
(h, r, s)

σ(frh,s) ≥ σ(frh,t) ×
σ(frt,s)

σ(Φh,tβ
r) × σ(Φt,sβ

r) −
σ(ΦTh,sβ

r) ≤ 0
max(σ(Φh,tβ

r) × σ(Φt,sβ
r) −

σ(ΦTh,sβ
r) + ξTr, 0)

Composition (h, r1, t) ∧ (t, r2, s) ⇒
(h, r3, s)

σ(fr1h,s) ≥ σ(fr2h,t) ×
σ(fr3t,s)

σ(Φh,tβ
r1)× σ(Φt,sβ

r2)−
σ(ΦTh,sβ

r3) ≤ 0
max(σ(Φh,tβ

r1) × σ(Φt,sβ
r2) −

σ(ΦTh,sβ
r3) + ξCo, 0)

Table 1: Formulation and representation of rules (NC: Not considered for implementation).

Let FL be the set of all possible neural networks with L
hidden nodes as defined by (1). Therefore, the set of all pos-
sible networks with arbitrary number of hidden nodes will be
F =

⋃∞
l=1 Fl. Let C(X) denote set of continuous functions

over R. Let E be the set of entities and e ∈ E is an entity with
embedding vector e ∈ ΩE ⊂ Rd. We also assume that ΩE is
a compact set. We have the following theorem.

Theorem 1. Let F be the set of all possible networks defined
as above, F be dense in C(R2d) where d ≥ 1 is arbitrary
embedding dimension. Given any ground truth in a KG with
τ true facts, there exists a LogicENN in F with embedding
dimension d, that can represent the ground truth. The same
holds when F is dense in C(Ω) where Ω = ΩE × ΩE is the
Cartesian product of two compact sets.

The theorem proof as well as more detailed technical dis-
cussion are included in the supplementary materials of the
paper.

3.3 Formulating Rules
Let a, b be two grounded atoms of a clause as defined in the
beginning of Section 3, and let the truth values of a and b are
denoted by P (a) and P (b) respectively. To model the truth
values of negation, conjunction, disjunction and implication
of a and b we define P (¬a), P (a ∧ b), P (a ∨ b) as in [Guo
et al., 2018] but we define P (a ⇒ b) : P (a) ≤ P (b). These
can be used to derive formulation of rules based both on score
function as well as the NN, as shown in Table 6.

As an example, consider the implication rule ∀h, t :
(h, r1, t) ⇒ (h, r2, t). Using P (a) ≤ P (b), we can infer
fr1h,t ≤ fr2h,t. By (1), we get ΦTh,t(β

r1 − βr2) ≤ 0. Provided
that our activation function is positive, i.e. ΦTh,t ≥ 0, we will
have (βr1 − βr2) ≤ 0. That latter formula is independent
of h and t which means we do not need any grounding for
implication. The same procedure shows that we can avoid
grounding for equivalence. However for other rules this is
not possible.

Using truth values defined as above, we can derive a for-
mulation of a rule based on score function (e.g. fr1h,t ≤ fr2h,t
for implication) in the 3rd column of Table 6, and its equiv-
alent formulation based on the NN of (1) in the 4th column.
AssumeM > 0 indicates True and 0 indicates False. We now
state the necessity and sufficiency conditions for LogicENN
to infer various rules. For the proof we can do similar proce-
dure to the one we did for implication. The detailed proof is
provided in the supplementary materials of the paper.

Theorem 2. For all h, t, s ∈ E , set ξh,t = 0 in column “For-
mulation based on NN” of Table 6. For each relation type
given in Table 6, LogicENN can infer it if and only if the cor-
responding equation in column “Formulation based on NN”
holds (ξh,t is set to 0).

Since KGs may contain wrong data or facts with less truth
confidence [Ding et al., 2018], the assumption of ξh,t = 0
in Theorem 4 is too rigid in practice. Therefore, as shown
in Table 6 we consider ξh,t to be a slack variable that allows
enough flexibility to deal with uncertainty in KG. This al-
lows us to infer uncertainty as ξ through a validation step of
learning. Although considering ξh,t as slack variables im-
proves flexibility, due to grounding we will have too many
slack variables. Therefore, in the implementation level we
decided to consider one slack variable for each relation type
e.g. one ξEq was used for all the equivalence relations (see the
last column of Table 6). This enables the model to mitigate
the negative effect of uncertainty of rules by considering aver-
age uncertainty per rule type. Experimental results show the
effectiveness of inclusion of a slack variable per a rule type.
During experiments, we obtained the hyper-parameters cor-
responding to each rule type sequentially through validation
step. Therefore, instead of having n1×n2× . . .×nm combi-
nations for hyper-parameter search corresponding to the rules
injection, we have n1 + n2 + . . . + nm,combinations where
ni refers to the number of candidates for the slack variable
of the i-th rule type. Experimental results confirms that this
approach gets satisfactory performance as well as significant



reduction in the search space.

3.4 Rule Injection and Optimization
To inject rules into embeddings and weights of (1), we define
the following optimization:

min
θ

∑
(h,r,t)∈S

αrh,t log(1 + exp(−yrh,t frh,t)) + λ

l∑
i=1

Ri
Ni

subject to ‖h‖ = 1 and ‖t‖ = 1 .
(2)

where S is the set of all positive or negative samples, αrh,t
is set to 1 for positive samples. For negative samples if we get
big scores, then the model should suppress it by enforcing a
big value for αrh,t using formula No.5 in [Sun et al., 2019].
Ri refers to the ith rule, Ni is the number of groundings, λ is
a regularization term and yrh,t represents the label of (h, r, t)
which is 1 for positive and -1 for negative samples.

In (2), we use negative log-likelihood loss with regular-
izations over logical rules. Loss as the first term focuses on
learning facts in KG while the second term, i.e. regulariza-
tion, injects rules into the learning process. The regulariza-
tion are provided as penalties in the last column of Table 6.

4 Experiments and Discussions
To show the capability of LogicENN, we evaluated it on the
link prediction task. The task is to complete a triple (h, r, t)
when h or t missing, i.e. to predict h given (r, t) or t given
(h, r). For evaluation, we will use Mean Rank (MR), Mean
Reciprocal Rank (MRR) and Hit@10 in the raw and filtered
settings as reported in [Wang et al., 2017; Lin et al., 2015b].

Datasets. We used FB15k and WN18 with the settings re-
ported in [Bordes et al., 2013]. We used the rules reported in
[Guo et al., 2018] for FB15k, and the rules in [Guo et al.,
2016] for WN18. The confidence levels of rules are sup-
posed to be no less than 0.8. Totally we used 454 rules for
FB15k and 14 rules for WN18. As both data sets are re-
ported [Dettmers et al., 2018] to have the inverse of triples
in their test sets, it is argued that the increase of performance
of some models might be due to the fact that models have
learned more from the inverses rather the graph itself. Using
these data sets to compare just the rule-based models would
be fine as all are using rules, e.g. experiments of RUGE [Guo
et al., 2018]. However when one wants to compare rule-based
with non-rule-based models, it would be better to use a data
set which has not much inverses. As FB15k-237 has already
addressed this, we used it to compare LogicENN with other
non-rule-based models.

To formulate rules, we categorized them according to their
definitions in Table 6. We did grounding for all rules except
for those denoted by NC, as well as equivalence and implica-
tion since LogicENN does not need them by formulation (see
Sec. 3). To maximize the utility of inferencing, like RUGE,
we take as valid groundings whose premise triples are ob-
served in the training set, while conclusion triples are not.

Experimental Setup. To select the structure of the model,
we tried different settings for the number of neurons/layers
and types of activation functions. Two of the best settings
were LogicENNR and LogicENNS which both had 3 hidden
layers with 1k, 2k and 200 neurons respectively. The 4th layer
was the output layer where the number of neurons were equal
to the number of relationships in the datasets.

In LogicENNR we used ReLU on all hidden layers and
in LogicENNS we used Sigmoid as activation functions be-
tween layers and ReLU on the last hidden layer. Both of
LogicENNR and LogicENNS were combined with each of
rules we used. When models were armed with all exist-
ing rules for a dataset, we denote them by LogicENN∗R and
LogicENN∗S respectively. Moreover, LogicENN∗RR denotes
our approach when we have added the reverse of triples in
the target data set, as also done in [Lacroix et al., 2018].

We implemented the models in PyTorch and used the
Adam optimizer for training. We select the optimal hy-
perparameters of our models by early validation stop-
ping according to MRR on the validation set. We re-
stricted the iterations to 2000. For basic models of
LogicENNR and LogicENNS which integrate no rules,
we created 100 mini-batches on each dataset. We tuned
the embedding dimensionality d in {100, 150, 200}, the
learning rate γ in {0.0001, 0.0005, 0.001, 0.005, 0.01} and
the ratio of negatives over positive training samples α
in {1, 2, 3, 5, 8, 10}. The optimal configuration for both
LogicENNR and LogicENNS are: d = 200, γ = 0.001, α =
8 on FB15k; and d = 200, γ = 0.001, α = 5 on WN18. Based
on LogicENNR and LogicENNS with their optimal configu-
rations, we further tuned the regularization coefficient λ in
{0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1} and slack variables ξi
in {0, 0.1, 0.5, 1, 3, 5, 10} for different types of rules (see Ta-
ble 6) to obtain all optimal hyperparameters of LogicENN∗R
and LogicENN∗S which integrate all rules in datasets. For
LogicENN∗R, we find the following hyperparameters are op-
timal: λ = 0.05, ξEq = 1, ξSy = 0.5, ξIm = 5, ξCo = 0.1, ξIn = 3
on FB15k; λ = 0.01, ξIn = 0.1 on WN18. The optimal config-
urations of LogicENN∗S on FB15k are : λ = 0.05, ξEq = 0.5,
ξSy = 0.1, ξIm = 3, ξCo = 0.1, ξIn = 3. For WN18 they are λ =
0.005, ξIn = 0.1.

Results. Table 2 shows comparison of LogicENN with
eight state-of-the-art embedding models as basic models
which only use observed triples in KG and rely on no rules.
We also took PTransE, KALE, RUGE, ComplEx-NNE+AER
as additional baselines. They encode relation paths or logical
rules like LogicENN∗R/S . Among them, the first two are ex-
tension of TransE, while the rest are extensions of ComplEx.

To compare both raw and filtered results of LogicENN∗R/S
and baselines, we take the results of the first five baseline
models on FB15k reported by [Akrami et al., 2018] and
use the code provided by [Guo et al., 2016; 2018; Ding
et al., 2018] for KALE, ComplEx, RUGE and ComplEx-
NNE+AER to produce the raw results with the optimal con-
figurations reported in the original papers. We also ran the
code of RotatE to get its results. Because RotatE [Sun et al.,
2019] uses Complex vectors, we set its embedding dimension
to 130 (260 adjustable parameters per each entity) and gen-



FB15k – Raw FB15k – Filtered WN18 – Raw WN18 – Filtered

MR Hits@10 MRR FMR FHits@10 FMRR MR Hits@10 MRR FMR FHits@10 FMRR

TransE [Bordes et al., 2013] 201 43.4 18.4 70 61.8 30.7 263 75.4 - 251 89.2 -
DistMult [Yang et al., 2015] 279 50.0 25.5 120.4 84.2 70.5 - - - 655 94.6 79.7
ComplEx [Trouillon et al., 2016] 266 48.5 23.0 106 82.6 67.5 573 82.1 58.7 543 94.7 94.1
ANALOGY [Liu et al., 2017] 279 50.5 26.0 121 84.3 72.2 - - 65.7 - 94.7 94.2
ConvE [Dettmers et al., 2018] 191 52.5 27.2 51 85.1 68.9 - - - 504 95.5 94.2
SimplE [Kazemi and Poole, 2018] - - 24.2 - 83.8 72.7 - - 58.8 - 94.7 94.2
RotatE [Sun et al., 2019] 162 57.5 31.0 74 80.6 61.8 636 84.2 66.2 627 94.6 93.0
QuatE [Zhang et al., 2019] 182 52.6 27.0 37 79.1 56.1 402 81.9 58.0 386 95.7 92.8

PTransE [Lin et al., 2015a] 207 51.4 - 58 84.2 - - - - - - -
KALE [Guo et al., 2016] 225 47.5 21.3 73 76.2 52.3 252 83.3 39.5 241 94.4 53.2
RUGE [Guo et al., 2018] 203 55.3 28.5 97 86.5 76.8 - - - - - -
ComplEx-NNE+AER [Ding et al., 2018] 193 57.3 29.3 116 87.4 80.3 481 83.5 61.9 450 94.8 94.3

LogicENN∗
R (our work) 175 66.9 40.2 112 87.4 76.6 368 84.2 66.3 357 94.8 92.3

Table 2: Link prediction results. Rows 1-8: basic models with no rules. Rows 9-12: models which encode rules. Results on FB15k in rows
1-5 are taken from [Akrami et al., 2018] while the rest are taken from original papers/code. Dashes: results could not be obtained.

MR Hit@10 MRR

ReLU σ ReLU σ ReLU σ

With No Rule 320 430 42.2 36.6 18.1 15.2
Inverse? 187 180 62.1 59.3 37.7 35.2
Implication 321 421 40.5 37.1 18.2 16.4
Symmetry 299 387 42.2 37.9 18.5 17.2
Equivalence 302 330 41.7 38.4 19 17.7
Composition 303 391 41 37.1 18.1 16

Table 3: Link prediction using different activation functions
and rules (FB15k). “ReLU”, “σ” respectively correspond to
LogicENNR, LogicENNS . ?: the model outperformed all baselines.

Raw Filtered

MR Hits@10 MR Hits@10

ComplEx 620 25.4 457 45.7
ComplEx-N3 553 29.7 421 50.0
ConvE 489 28.4 246 49.1
ASR-COMPLEX 570 26.3 420 46.1
RotatE 374 33.3 258 47.1
QuatE 354 32.2 161 48.3

LogicENN∗
R 454 34.7 424 47.3

Table 4: Link prediction results on FB15k-237.

erate 10 negative samples to have a fair comparison to our
method. Results of QuatE [Zhang et al., 2019] are obtained
by running their code with embedding dimension 60 and 10
negative samples without using type constraint to have a fair
comparison to our method. We set the embedding dimension
to 60 (240 adjustable parameters) because QuatE provides 4
vectors for each entity. Other results in Table 2 are taken from
the original papers.

As we previously discussed, FB15k and WN18 have the
inverse of triples in their test sets. To show the performance
of LogicENN in comparison of non-rule-based methods we
ran experiments on FB15k-237 which is reported to have not
much reverse of triples. Table 4 shows the comparison of our

method with other non-rule-based models in this regard.
Discussion of Results. As shown in Table 2, LogicENN∗R
outperformed all embedding models on FB15k in the raw set-
ting using MR, Hit@10 and MRR. For the filtered setting
it also performs better considering FHit@10 and very close
to RUGE (the 2nd best performing model) using FMRR.
Considering WN18, our model got the best performance in
Raw-Hit@10 and Raw-MRR. In the terms of FHit@10, only
ConvE and QuatE outperformed our model.

To investigate whether inclusion of logical rules improve
the performance of our model, we added each rule to the
naked LogicENN separately. Table 3 shows the improve-
ments by adding each rules separately. As shown, inclusion
of each rule improves the performance of the naked model.
For FB15k, the best improvement is obtained by the inverse
rule which is the most common rule in FB15k. Two variants
of model i.e. LogicENNS and LogicENNR performed better
when rules added.

The two most recent methods of RUGE and ComplEx-
NNE+AER use ComplEx score function to encode rules.
As Table 2 shows, the performance of ComplEx on Raw-
Hit@10 was 48.5% which encoding of rules by RUGE
and ComplEx-NNE+AER improved it by less than 10% (to
55.5% and 57.3% respectively). In contrast, our method with-
out any rule-encoding performed around 40% (Table 3) which
jumped to around 67% (Table 2) when rules were encoded. It
shows our method improved around 27% which is more than
double of its competitors. Therefore we can conclude that the
encoding techniques of Table 6 can properly encode rules.

Figure 2 shows that the model has properly learned the
equivalence and implication relations. To better comprehend
that, in Section 3.3 we already explained that we can avoid
grounding for the implication rule and the resulting formula
was ∆Implication := (βr1 − βr2) and we had ∆Implication ≤ 0.
Similar argument implies that ∆Equivalence = 0. Therefore,
if the model has properly learned implication (equivalence)
the differences of the embedding vectors of these two rela-
tions should contain negative (zero) elements. In Figure 2,
the x-axis represents the means of the elements of the two
∆s and the y-axis represents their variances. As depicted,



● Equivalence Relation ■ Implication Relation

●●

●

●●●●●●●

● ●

●●●●● ●●●●

●●
●●●●

●●

●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●● ●

●

●

●●●●●●

■

■
■

■

■

■

■

■

■
■

■

■

■

■

■
■

■

■
■

■■
■

■ ■■

■

■

■

■

■

-0.04 -0.03 -0.02 -0.01 0.00

0.000

0.001

0.002

0.003

0.004

0.005

Mean of Δ

Va
ria
nc
e
of

Δ

Figure 2: Statistics of difference vectors of equivalence relations
(∆Equivalence) and implication relations (∆Implication).

the points associated to the equivalence relations are accumu-
lated around the origin and the points associated to the impli-
cation relations are negative. This shows that LogicENN has
properly encoded these rules without using grounding for 30
implication and 68 equivalence relations in FB15k.

As Table 4 show, LogicENN∗R outperforms all state-of-the-
art in the terms of Raw Hits@10. We should note that the
originally reported result of ComplEx-N3 used d=2k as the
embedding dimension [Lacroix et al., 2018]. To have a fair
and equal comparison, we re-ran their code with the same
setting we used for all of our experiments, i.e. we used em-
bedding dimension of 200.

5 Conclusion and Future Work
In this work we introduced a new neural embedding model
(LogicENN) which is able to encode different rules. We
proved that LogicENN is fully expressive and we derived al-
gebraic formulae to enforce it to learn different relations. We
also showed how rules can be properly injected into learning.

Our extensive experiments on different benchmarks show
that LogicENN outperformed all embedding models on
FB15k in the raw and performed very well in the filtered set-
ting. For WN18, the model performed better than almost all
others in the raw and very close to the best models in the
filtered settings. On FB15k-237 the model was better than
non-rule-based models on raw Hit@10.

The expressiveness of other kinds of neural models as well
as the necessity and sufficiency conditions for injecting rules,
are targets of future work.



References
[Akrami et al., 2018] F. Akrami, L. Guo, W. Hu, and C. Li.

Re-evaluating embedding-based knowledge graph com-
pletion methods. In ACM-CIKM, 2018.

[Bordes et al., 2013] A. Bordes, N. Usunier, A. Garcia-
Duran, J. Weston, and O. Yakhnenko. Translating embed-
dings for modeling multi-relational data. In NIPS, 2013.

[Demeester et al., 2016] T. Demeester, T. Rocktäschel, and
S. Riedel. Lifted rule injection for relation embeddings.
arXiv:1606.08359, 2016.

[Dettmers et al., 2018] T. Dettmers, P. Minervini, P. Stene-
torp, and S. Riedel. Convolutional 2d knowledge graph
embeddings. In AAAI, 2018.

[Ding et al., 2018] B. Ding, Q. Wang, B. Wang, and L. Guo.
Improving knowledge graph embedding using simple con-
straints. In ACL, 2018.

[Dong et al., 2014] X. Dong, E. Gabrilovich, G. Heitz,
W. Horn, Ni Lao, K. Murphy, T. Strohmann, S. Sun, and
W. Zhang. Knowledge vault: A web-scale approach to
probabilistic knowledge fusion. In ACM-SIGKDD, 2014.

[Guan et al., 2018] S. Guan, X. Jin, Y. Wang, and X. Cheng.
Shared embedding based neural networks for knowledge
graph completion. In 27th ACM-CIKM, 2018.

[Guo et al., 2016] S. Guo, Q. Wang, L. Wang, B. Wang, and
Li Guo. Jointly embedding knowledge graphs and logical
rules. In EMNLP, 2016.

[Guo et al., 2018] S. Guo, Q. Wang, L. Wang, B. Wang, and
Li Guo. Knowledge graph embedding with iterative guid-
ance from soft rules. In AAAI, 2018.

[Guu et al., 2015] K. Guu, J. Miller, and P. Liang. Traversing
knowledge graphs in vector space. In EMNLP, 2015.

[Han et al., 2018] X. Han, C. Zhang, T. Sun, Y. Ji, and Z. Hu.
A triple-branch neural network for knowledge graph em-
bedding. IEEE Access, 6, 2018.

[Huang et al., 2000] G.B Huang, Y.Q Chen, and H.A Babri.
Classification ability of single hidden layer feedforward
neural networks. IEEE TNN, 11(3), 2000.

[Kazemi and Poole, 2018] S.M Kazemi and D. Poole. Sim-
ple embedding for link prediction in knowledge graphs.
arXiv:1802.04868, 2018.

[Kuttler, 2011] Kenneth Kuttler. Multivariable calculus, ap-
plications and theory. 2011.

[Lacroix et al., 2018] T. Lacroix, N. Usunier, and G. Obozin-
ski. Canonical tensor decomposition for knowledge base
completion. arXiv:1806.07297, 2018.

[Lin et al., 2015a] Y. Lin, Z. Liu, H. Luan, M. Sun, S. Rao,
and S. Liu. Modeling relation paths for representation
learning of knowledge bases. In EMNLP, 2015.

[Lin et al., 2015b] Y. Lin, Z. Liu, M. Sun, Y. Liu, and
X. Zhu. Learning entity and relation embeddings for
knowledge graph completion. In AAAI, volume 15, 2015.

[Liu et al., 2017] H. Liu, Y. Wu, and Y. Yang. Analogical
inference for multi-relational embeddings. In ICML, 2017.

[Minervini et al., ] P. Minervini, T. Demeester,
T. Rocktäschel, and S. Riedel. Adversarial sets for
regularising neural link predictors. arXiv:1707.07596.

[Minervini et al., 2017] P. Minervini, L. Costabello,
E. Muñoz, V. Nováček, and P.Y Vandenbussche. Regular-
izing knowledge graph embeddings via equivalence and
inversion axioms. In ECML PKDD, 2017.

[Neelakantan et al., 2015] A. Neelakantan, B. Roth, and
A. McCallum. Compositional vector space models for
knowledge base completion. arXiv:1504.06662, 2015.

[Nguyen et al., 2018] D.Q Nguyen, T.D Nguyen, D.Q
Nguyen, and D. Phung. A novel embedding model for
knowledge base completion based on convolutional neural
network. In NAACL-HLT, 2018.

[Nickel et al., 2012] M. Nickel, V. Tresp, and H.P. Kriegel.
Factorizing YAGO: scalable machine learning for linked
data. In 21st conf. on World Wide Web. ACM, 2012.

[Nickel et al., 2016] M. Nickel, K. Murphy, V. Tresp, and
E. Gabrilovich. A review of relational machine learning
for knowledge graphs. Proc. of IEEE, 104(1), 2016.

[Rocktäschel et al., 2015] T. Rocktäschel, S. Singh, and
S. Riedel. Injecting logical background knowledge into
embeddings for relation extraction. In NAACL-HLT, 2015.

[Shi and Weninger, 2017] B. Shi and T. Weninger. Proje:
Embedding projection for knowledge graph completion.
In AAAI, volume 17, 2017.

[Socher et al., 2013] R. Socher, D. Chen, C.D Manning, and
Andrew Ng. Reasoning with neural tensor networks for
knowledge base completion. In NIPS, 2013.

[Sun et al., 2019] Z. Sun, Z. Deng, J. Nie, and J. Tang. Fac-
torizing yago: scalable machine learning for linked data.
In ICLR, 2019.

[Trouillon et al., 2016] T. Trouillon, J. Welbl, S. Riedel,
É. Gaussier, and G. Bouchard. Complex embeddings for
simple link prediction. In ICML, 2016.

[Trouillon et al., 2017] T. Trouillon, C. Dance, É. Gaussier,
J. Welbl, S. Riedel, and et al. Knowledge graph completion
via complex tensor factorization. JMLR, 18(1), 2017.

[Wang et al., 2014] Z. Wang, J. Zhang, J. Feng, and Z. Chen.
Knowledge graph embedding by translating on hyper-
planes. In AAAI, volume 14, 2014.

[Wang et al., 2017] Q. Wang, Z. Mao, B. Wang, and Li Guo.
Knowledge graph embedding: A survey of approaches and
applications. IEEE-TKDE, 29(12), 2017.

[Wang et al., 2018] Y. Wang, R. Gemulla, and H. Li. On
multi-relational link prediction with bilinear models. In
AAAI, 2018.

[Yang et al., 2015] B. Yang, W.t Yih, X. He, J. Gao, and
Li Deng. Embedding entities and relations for learning
and inference in knowledge bases. In ICLR, 2015.

[Yoon et al., 2016] H.G Yoon, H.J Song, S.B Park, and S.Y
Park. A translation-based knowledge graph embedding
preserving logical property of relations. In NAACL-HLT,
2016.



[Zhang et al., 2019] Shuai Zhang, Yi Tay, Lina Yao, and
Qi Liu. Quaternion knowledge graph embedding. arXiv
preprint arXiv:1904.10281, 2019.

6 Supplementary Materials for the Paper:
LogicENN

This section contains supplementary materials for our paper
called: “LogicENN: A Neural Based Knowledge Graphs Em-
bedding Model with Logical Rules”

In Section 6.1, we first review the relevant neural based
models and describe their similarities and differences to Log-
icENN. Then in Section 6.2, we will provide our proposed
theorems with their detailed proofs.

6.1 LogicENN vs State-of-the-art Neural Based
Models

This section describes the relevant neural network based em-
bedding models. We divided them to models which do not
consider logical rules into their embeddings and those which
consider rules. We then compare their score functions with
LogicENN and discuss how it is different from other state-of-
the-art models.

Before progressing more, we first define the relevant nota-
tions. Vectors of are denoted by bold non-capital letters (e.g.
h or 0,1 as vectors of zeros and ones respectively), matrices
by bold capital letters and tensors by underlined bold capital
letters. W (.) are weight matrices which have no dependency
on h, r or t, while W (.)

r (W r) means that the weight matrix
(tensor) is associated to relation r. Moreover, h̄, r̄ and t̄ are
2D-reshape of h, r and t respectively.

Neural Network Based Embedding Models
E-MLP. [Socher et al., 2013] which is standard Multi Layer
Perceptron (MLP) for KGE. E-MLP uses one neural network
per each relations in the KG which has high space complexity.

ER-MLP. [Dong et al., 2014] In contrast to E-MLP which
uses one neural network per each relation, ER-MLP shares
its weights between all entities and relations. The relation
embedding is placed as input of the network.

NTN. [Socher et al., 2013] employs 3-way tensor in the
hidden layer to better capture interactions between features
of two entities. The score function of NTN is as follows:

fru,v = wT
1r tanh(uTW0htrv +W0hru+W0trv + br)

(3)

where W0htr ∈ Rd×d×L, br ∈ RL are the 3-way relation
specific tensor and bias of hidden layer respectively.

ConvE. [Dettmers et al., 2018] is a multi-layer convolu-
tional network for link prediction. The score function of
ConvE is as follows:

fru,v = g(Vec(g([ū; r̄] ∗ ω))W )v (4)

where ω is filter and W is a linear transformation matrix. g is
an activation function.

ConvKB. [Nguyen et al., 2018] is a multi-layer convolu-
tional network for link prediction with the following score
function:

fru,v = Concat(g([ū; r̄, v̄] ∗ ω))W (5)

Method Score Function (fr
h,t)

E-MLP wT
r tanh(W

(1)
r h + W

(2)
r t)

ER-MLP wT tanh(W (1)h + W (2)r + W (3)t)

NTN wT
r tanh(hTW rt + W

(1)
r h + W

(2)
r t + br)

ConvE g(Vec(g([h̄; r̄] ∗ ω))W ) t
ConvKB Concat(g([h̄; r̄, t̄] ∗ ω))w

Table 5: Comparison of score functions of the state-of-the-art rele-
vant models.

SENN. [Guan et al., 2018] defines three multi-layer neural
networks with Relu activation function for head, relation and
tail prediction. Then, it integrates them into one loss function
to train the model.

TBNN. [Han et al., 2018] is a triple branch neural network
in which parallel branched layers are defined on the top of an
interaction layer where each embedding of any element of a
KG is specified by its multi restriction. The loss function is
defined based on the score of three elements of each triple.

ProjE. [Shi and Weninger, 2017] is a two layer neural net-
work. The first layer is a combination layer which works on
tail and relation and the second layer is a projection layer
which projects the obtained vector from the last layer to the
candidate-entity matrix. The candidate-entity matrix is a sub-
set of entity matrix where entities can be sampled in different
ways.

In short, Table 5 specifies the score functions of different
neural based embedding models.

KG Embedding Models with Logical Rules
RUGE. provides a general framework to iteratively inject
logical rules in KGE. Given a set of soft logical rules R =
{(lp, λp)} where lp is a rule and lp is its confidence value,
rules are represented as mathematical constraints to obtain
soft labels for unlabeled triples. Then, an optimization prob-
lem is solved to update embedding vectors based on hard and
soft labeled triples. The framework is used to train ComplEx
model as case study.

ComplEx-NNE+AER. [Ding et al., 2018], which is a
model dependent approach, derives formula for entailment
rule to avoid grounding in ComplEx. The model outperforms
RUGE on FB15K in the terms of Meanrank and Hit@k.

Comparison of LogicENN with Other Models
LogicENN uses the scoring function (1). We formulate the
score function to separate the entity and relation spaces. This
enables the model to map entities by a universal hidden layer
mapping Φh,t. Since we prove that Φh,t is universal, we can
share it between all relations. Since Φh,t is used by several re-
lations, we have fewer parameters. Several neural embedding



models such as NTN and E-MLP didn’t share parameters of
hidden layer. Therefore, for each relation, a separate neural
network is used. ER-MLP feeds entity pairs as well as rela-
tion to the neural network. Inclusion of relation in the hidden
layer disables the model to avoid grounding for implication
rule. The same problem happens for ConvE and ConvKB.
Moreover, full expressiveness of ConvE and ConvKB is not
investigated yet.

Regarding encoding techniques, we derive formula for the
proposed NN to encode function free Horn clause rules. For
implication and equivalence rules, we approximate the orig-
inal formula by avoiding grounding. Since we proved that
our model is fully expressive, we can encode all Horn clause
rules.

Regarding the last column of the Table 1, we add slack
variables to better handle uncertainty during injection of rules
in the embeddings. The uncertainty is inherited from the fact
that KG contain False positive triples.

6.2 Theorems and Proofs
In this section we state the theorems which prove the full ex-
pressiveness of our proposed model LogicENN.

Theorem 3. Let F be the set of all possible networks defined
as above, F be dense in C(R2d) where d ≥ 1 is arbitrary
embedding dimension. Given any ground truth in a KG with
τ true facts, there exists a LogicENN in F with embedding
dimension d, that can represent the ground truth. The same
holds when F is dense in C(Ω) where Ω = ΩE × ΩE is the
Cartesian product of two compact sets.

Proof. Regarding the assumption of the theorem, ΩE is a
compact set. Ω is a compact set, since the Cartesian prod-
uct of two compact set is also compact [Kuttler, 2011]. Re-
garding lemma 2.1 in [Huang et al., 2000], given N disjoint
regions K1, . . . ,KN ⊂ R2d, there exists at least one con-
tinuous function f : R2d → R such that f(x) = ci when
x ∈ Ki, i = 1, . . . , N . ci, i = 1, . . . , N are arbitrary dis-
tinct constant values. Therefore, dealing with ground truth,
ci ∈ {0, 1}, there exists a continuous function f that rep-
resents the ground truth. Because F is dense in C(R2d) or
C(Ω), there exists at least one neural network in F that ap-
proximates the function f . As a conclusion, there exists a
LogicENN that can represent the ground truth.

Remark: The density assumption of F in Theorem 3 de-
pends on the activation function of Equation (1) of the pa-
per. When the activation function is continuous, bounded,
and non-constant, then F is dense in C(Ω) for every compact
set Ω. When it is unbounded and non-constant, then the set is
dense in Lp(µ) for all finite measure µ. In this case, the com-
pactness condition can be removed. For non-polynomial ac-
tivation functions which are locally essentially bounded, the
set is dense in C(Rd).

Theorem 4. For all h, t, s ∈ E , set ξh,t = 0 in column “For-
mulation based on NN” of Table 6. For each relation type
given in Table 6, LogicENN can infer it if and only if the cor-
responding equation in column “Formulation based on NN”
holds (ξh,t is set to 0).

Proof for the Equivalence Relation. Based on the theorem
statement, we want to show that LogicENN can infer equiva-
lence rule if and only if ΦTh,t(β

r1 − βr2) = 0.
If r is an equivalence relation, we have:

(h, r1, t)↔ (h, r2, t).

Without loss of generality, letM, 0 show scores of NN for
positive and negative triples respectively. To be equivalence,
both triples should be true or false simultaneously. Therefore,
if fr1(h, t) = M then fr2(h, t) = M and if fr1(h, t) = 0
then fr2(h, t) = 0. We conclude that fr1(h, t) = fr2(h, t).

From Equation (1) in the paper, we have ΦTh,tβ
r1 −

ΦTh,tβ
r2 = 0. Therefore, we have ΦTh,t(β

r1 − βr2) = 0.

Proof for the Symmetric Relation. Based on the theorem
statement, we want to show that LogicENN can infer sym-
metric rule if and only if (ΦTh,t − ΦTt,h)βr = 0.

If r is an Symmetric relation, we have

(h, r, t)↔ (t, r, h).

To be Symmetric relation, both triples should be true or
false simultaneously. Therefore, if fr(h, t) = M then
fr(t, h) = M or if fr(h, t) = 0 then fr(t, h) = 0. We
conclude fr(h, t) = fr(t, h).

From Equation (1) in the paper, we have ΦTh,tβ
r1 −

ΦTh,tβ
r2 = 0.

Therefore, we have:

ΦTh,tβ
r = ΦTt,hβ

r

We conclude that:

(ΦTh,tβ
r − ΦTt,h)βr = 0.

Proof for the Implication Relation. Based on the theorem
statement, we want to show that LogicENN can infer impli-
cation rule if and only if ΦTh,t(β

r1 − βr2) ≤ 0.
If r is implication rule, we have:

(h, r1, t)→ (h, r2, t).

To satisfy the implication rule, if fr1(h, t) = M then
fr2(h, t) = M or if fr1(h, t) = 0 then fr2(t, h) = 0 or
fr2(t, h) =M. We conclude fr(h, t) ≤ fr(t, h).

From Equation (1) in the paper, we have:

ΦTh,tβ
r1 ≤ ΦTh,tβ

r2 .

We conclude that:

ΦTh,t(β
r1 − βr2) ≤ 0.

Proof for the Transitivity Relation. To prove transitivity, we
can use the truth table of the rule. Considering Equation (1),
we already assume that fr(h, t) =M > 0 denotes True and
fr(h, t) = 0 denotes False.

In the following conditions, the rule is True:
If (h, r, t) is True, (t, r, s) is True then (h, r, s) is True.



Rule Definition
∀h, t, s ∈ E : . . .

Formulation based
on score function

Formulation based on NN Equivalent regularization form
(Denoted asRi in Equation (2) )

Equivalence (h, r1, t)⇔ (h, r2, t) fr1h,t = fr2h,t + ξh,t ΦTh,t(β
r1 − βr2) = ξh,t max(‖βr1 − βr2‖1 − ξEq, 0)

Symmetric (h, r, t)⇔ (t, r, h) frh,t = frt,h + ξh,t (Φh,t − Φt,h)Tβr = ξh,t max(|(Φh,t − Φt,h)Tβr| − ξSy, 0)

Asymmetric (h, r, t)⇒ ¬(t, r, h) frh,t = frt,h +Mh,t (Φh,t − Φt,h)Tβr =M NC

Negation (h, r1, t)⇔ ¬(h, r2, t) fr1h,t = M − fr2h,t +
ξh,t

ΦTh,t(β
r1 +βr2) =M+ξh,t NC

Implication (h, r1, t)⇒ (h, r2, t) fr1h,t ≤ f
r2
h,t ΦTh,t(β

r1 − βr2) ≤ 0 max(
∑
i(β

r1
i − β

r2
i ) + ξIm, 0)

Inverse (h, r1, t)⇒ (t, r2, h) fr1h,t ≤ f
r2
t,h ΦTh,tβ

r1 − ΦTt,hβ
r2 ≤ 0 max(ΦTh,tβ

r1 − ΦTt,hβ
r2 + ξIn, 0)

Reflexivity (h, r, h) frh,h =M− ξh,h ΦTh,hβ
r =M− ξh,h NC

Irreflexive ¬(h, r, h) frh,h = ξh,h ΦTh,hβ
r = ξh,h NC

Transitivity (h, r, t) ∧ (t, r, s) ⇒
(h, r, s)

σ(frh,s) ≥ σ(frh,t) ×
σ(frt,s)

σ(Φh,tβ
r) × σ(Φt,sβ

r) −
σ(ΦTh,sβ

r) ≤ 0
max(σ(Φh,tβ

r) × σ(Φt,sβ
r) −

σ(ΦTh,sβ
r) + ξTr, 0)

Composition (h, r1, t) ∧ (t, r2, s) ⇒
(h, r3, s)

σ(fr1h,s) ≥ σ(fr2h,t) ×
σ(fr3t,s)

σ(Φh,tβ
r1)× σ(Φt,sβ

r2)−
σ(ΦTh,sβ

r3) ≤ 0
max(σ(Φh,tβ

r1) × σ(Φt,sβ
r2) −

σ(ΦTh,sβ
r3) + ξCo, 0)

Table 6: Formulation and representation of rules (NC: Not considered for implementation).

If (h, r, t) is False, (t, r, s) is True, then (h, r, s) is True.
If (h, r, t) is True, (t, r, s) is False, then (h, r, s) is True.
If (h, r, t) is False, (t, r, s) is False, then (h, r, s) is True.
Otherwise, the rule is False.
The constraint σ(Φh,tβ

r) × σ(Φt,sβ
r) − σ(ΦTh,sβ

r) ≤ 0
follows the truth table.

The proof for relations Asymmetric, Negation, Inverse, Re-
flexive, Irreflexive and Composition are similarly done.

References
[Akrami et al., 2018] F. Akrami, L. Guo, W. Hu, and C. Li.

Re-evaluating embedding-based knowledge graph com-
pletion methods. In ACM-CIKM, 2018.

[Bordes et al., 2013] A. Bordes, N. Usunier, A. Garcia-
Duran, J. Weston, and O. Yakhnenko. Translating embed-
dings for modeling multi-relational data. In NIPS, 2013.

[Demeester et al., 2016] T. Demeester, T. Rocktäschel, and
S. Riedel. Lifted rule injection for relation embeddings.
arXiv:1606.08359, 2016.

[Dettmers et al., 2018] T. Dettmers, P. Minervini, P. Stene-
torp, and S. Riedel. Convolutional 2d knowledge graph
embeddings. In AAAI, 2018.

[Ding et al., 2018] B. Ding, Q. Wang, B. Wang, and L. Guo.
Improving knowledge graph embedding using simple con-
straints. In ACL, 2018.

[Dong et al., 2014] X. Dong, E. Gabrilovich, G. Heitz,
W. Horn, Ni Lao, K. Murphy, T. Strohmann, S. Sun, and
W. Zhang. Knowledge vault: A web-scale approach to
probabilistic knowledge fusion. In ACM-SIGKDD, 2014.

[Guan et al., 2018] S. Guan, X. Jin, Y. Wang, and X. Cheng.
Shared embedding based neural networks for knowledge
graph completion. In 27th ACM-CIKM, 2018.

[Guo et al., 2016] S. Guo, Q. Wang, L. Wang, B. Wang, and
Li Guo. Jointly embedding knowledge graphs and logical
rules. In EMNLP, 2016.

[Guo et al., 2018] S. Guo, Q. Wang, L. Wang, B. Wang, and
Li Guo. Knowledge graph embedding with iterative guid-
ance from soft rules. In AAAI, 2018.

[Guu et al., 2015] K. Guu, J. Miller, and P. Liang. Traversing
knowledge graphs in vector space. In EMNLP, 2015.

[Han et al., 2018] X. Han, C. Zhang, T. Sun, Y. Ji, and Z. Hu.
A triple-branch neural network for knowledge graph em-
bedding. IEEE Access, 6, 2018.

[Huang et al., 2000] G.B Huang, Y.Q Chen, and H.A Babri.
Classification ability of single hidden layer feedforward
neural networks. IEEE TNN, 11(3), 2000.

[Kazemi and Poole, 2018] S.M Kazemi and D. Poole. Sim-
ple embedding for link prediction in knowledge graphs.
arXiv:1802.04868, 2018.

[Kuttler, 2011] Kenneth Kuttler. Multivariable calculus, ap-
plications and theory. 2011.

[Lacroix et al., 2018] T. Lacroix, N. Usunier, and G. Obozin-
ski. Canonical tensor decomposition for knowledge base
completion. arXiv:1806.07297, 2018.

[Lin et al., 2015a] Y. Lin, Z. Liu, H. Luan, M. Sun, S. Rao,
and S. Liu. Modeling relation paths for representation
learning of knowledge bases. In EMNLP, 2015.

[Lin et al., 2015b] Y. Lin, Z. Liu, M. Sun, Y. Liu, and
X. Zhu. Learning entity and relation embeddings for
knowledge graph completion. In AAAI, volume 15, 2015.

[Liu et al., 2017] H. Liu, Y. Wu, and Y. Yang. Analogical
inference for multi-relational embeddings. In ICML, 2017.

[Minervini et al., ] P. Minervini, T. Demeester,
T. Rocktäschel, and S. Riedel. Adversarial sets for
regularising neural link predictors. arXiv:1707.07596.



[Minervini et al., 2017] P. Minervini, L. Costabello,
E. Muñoz, V. Nováček, and P.Y Vandenbussche. Regular-
izing knowledge graph embeddings via equivalence and
inversion axioms. In ECML PKDD, 2017.

[Neelakantan et al., 2015] A. Neelakantan, B. Roth, and
A. McCallum. Compositional vector space models for
knowledge base completion. arXiv:1504.06662, 2015.

[Nguyen et al., 2018] D.Q Nguyen, T.D Nguyen, D.Q
Nguyen, and D. Phung. A novel embedding model for
knowledge base completion based on convolutional neural
network. In NAACL-HLT, 2018.

[Nickel et al., 2012] M. Nickel, V. Tresp, and H.P. Kriegel.
Factorizing YAGO: scalable machine learning for linked
data. In 21st conf. on World Wide Web. ACM, 2012.

[Nickel et al., 2016] M. Nickel, K. Murphy, V. Tresp, and
E. Gabrilovich. A review of relational machine learning
for knowledge graphs. Proc. of IEEE, 104(1), 2016.

[Rocktäschel et al., 2015] T. Rocktäschel, S. Singh, and
S. Riedel. Injecting logical background knowledge into
embeddings for relation extraction. In NAACL-HLT, 2015.

[Shi and Weninger, 2017] B. Shi and T. Weninger. Proje:
Embedding projection for knowledge graph completion.
In AAAI, volume 17, 2017.

[Socher et al., 2013] R. Socher, D. Chen, C.D Manning, and
Andrew Ng. Reasoning with neural tensor networks for
knowledge base completion. In NIPS, 2013.

[Sun et al., 2019] Z. Sun, Z. Deng, J. Nie, and J. Tang. Fac-
torizing yago: scalable machine learning for linked data.
In ICLR, 2019.

[Trouillon et al., 2016] T. Trouillon, J. Welbl, S. Riedel,
É. Gaussier, and G. Bouchard. Complex embeddings for
simple link prediction. In ICML, 2016.

[Trouillon et al., 2017] T. Trouillon, C. Dance, É. Gaussier,
J. Welbl, S. Riedel, and et al. Knowledge graph completion
via complex tensor factorization. JMLR, 18(1), 2017.

[Wang et al., 2014] Z. Wang, J. Zhang, J. Feng, and Z. Chen.
Knowledge graph embedding by translating on hyper-
planes. In AAAI, volume 14, 2014.

[Wang et al., 2017] Q. Wang, Z. Mao, B. Wang, and Li Guo.
Knowledge graph embedding: A survey of approaches and
applications. IEEE-TKDE, 29(12), 2017.

[Wang et al., 2018] Y. Wang, R. Gemulla, and H. Li. On
multi-relational link prediction with bilinear models. In
AAAI, 2018.

[Yang et al., 2015] B. Yang, W.t Yih, X. He, J. Gao, and
Li Deng. Embedding entities and relations for learning
and inference in knowledge bases. In ICLR, 2015.

[Yoon et al., 2016] H.G Yoon, H.J Song, S.B Park, and S.Y
Park. A translation-based knowledge graph embedding
preserving logical property of relations. In NAACL-HLT,
2016.

[Zhang et al., 2019] Shuai Zhang, Yi Tay, Lina Yao, and
Qi Liu. Quaternion knowledge graph embedding. arXiv
preprint arXiv:1904.10281, 2019.


