
[Re] Unsupervised Scalable Representation Learning
for Multivariate Time Series

Felix Liljefors*
KTH Royal Institute of Technology

felixlil@kth.se

Mohammad Moein Sorkhei*
KTH Royal Institute of Technology

sorkhei@kth.se

Sofia Broomé*
KTH Royal Institute of Technology

sbroome@kth.se

1 Introduction

The paper Unsupervised Scalable Representation Learning for Multivariate Time Series by Franceschi
et al. (2019) presents an unsupervised approach to learning representations for time series that can be
used for subsequent classification. An encoder architecture with dilated causal convolutional blocks is
trained to minimize a triplet loss. The triplet loss is based on the idea that a subseries, xpos, of a time
series, xref , should be closer to xref in representation space than the representation of a randomly
sampled time series from the dataset, xneg. This type of loss was first introduced by Schroff et al.
(2015).

To evaluate the strength of the learned representations, an SVM classifier is trained using the labels
corresponding to these representations. The evaluation is performed on 159 datasets, together
constituting the main benchmarking datasets for time series. The first group of datasets (the UCR
Archive, Dau et al. (2018)) contains univariate, short (between 15 and 2844 time steps) series; the
second group, the UEA dataset (Bagnall et al. (2018)), contains multivariate time series of up to
1345 dimensions and varying sample lengths. The last dataset, the Individual Household Electric
Power Consumption (IHEPC) dataset from the UCI Machine Learning Repository (Dua and Graff
(2017)), is a single seven-dimensional time series with more than two million time steps. The authors’
intention with using this variety of datasets is to show the universality of their method, which is one
of their main claims.

We have re-implemented the authors’ method from scratch as best as we could by using only the paper
as instruction. It should be noted that a code repository for the article was made public by the authors,
but this was not employed for the purpose of investigating the replicability of the work starting from
scratch. This means that we adhere to the Replication track of the Reproducibility challenge for
NeurIPS 2019. Our implementation, as well as the authors’, was made using the Pytorch (Paszke
et al. (2017)) library and can be found at https://github.com/lilfelix/reproducibility_
NeurIPS19.

The main motivation to do a full replication study, avoiding the use of readily provided code, is to
better be able to detect if there are parts of the implementation that are crucial for the results, but not
presented as such in the original paper. This risk exists generally in machine learning (Lipton and
Steinhardt (2019)), and has in particular been brought to light for deep learning (e.g. Henderson et al.
(2017), Melis et al. (2017)), due to the latter’s typically vast number of hyperparameters to tune.

1.1 Target questions

In this report, we mainly address the following questions.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

https://github.com/lilfelix/reproducibility_NeurIPS19
https://github.com/lilfelix/reproducibility_NeurIPS19


• Can the classification and regression results be reproduced using only the article’s description
of the method?

• Can we reproduce the claimed transferability of the method and its proposed success on
sparsely labeled datasets?

• Which missing instructions for the experiments might, if relevant, have affected the results?
• Which ’hidden’ assumptions, that mattered for the results, were made by the authors?

1.2 Additional contributions

We present results for the authors’ method on three additional datasets from the UCR Archive:
DodgerLoopDay, DodgerLoopGame and DodgerLoopWekend. These results can be found in Table 6
of the supplementary material.

The rest of the article is organized as follows: Section 2 presents the implementation details and the
results, in Section 3 we discuss the findings, and Section 4 is dedicated to the conclusions.

2 Experimental methodology and implementation details

In Sections 2.1-2.5, we will group the reproducibility experiments into the three dataset groups (UCR,
UEA and IHEPC). First, we will describe our general experimental methodology for this study and
some assumptions not mentioned in the original article that were necessary to make for all three
groups of datasets. A strength of the original paper is that experimental hyperparameters are listed to
a greater detail than is typically done in deep learning papers. Nevertheless, there are a number of
design choices of importance for the implementation that were not mentioned in the article.

We implemented Algorithm 1 from the paper (described in pseudo-code), to sample three subseries1

xref , xpos and xneg, used to compute the triplet loss. This algorithm is described by the authors as
generally applicable to all datasets. However, they also mention a variation of Algorithm 1, which
they claim speeds up the training time for datasets with fixed length time series, yet produces no
noticeable difference in the computed loss. We did not implement this variation for fixed length
time series, but instead used Algorithm 1 for all experiments. In the case of multivariate datasets,
we assume that the length of a subseries, e.g. size(xref ), is the same across all dimensions of the
time series being sampled from. In other words, when sampling xref from some d-dimensional time
series y, size(xi

ref ) is the same for all i ∈ [1, d].

Notably, except for IHEPC, the authors state that they have used a batch size of 10 throughout their
experiments. Mini-batch training requires sequence padding when there are samples of different
lengths. This is the case for these experiments since subseries are explicitly sampled at different
lengths from the dataset (see Algorithm 1 in Franceschi et al. (2019)). However, there is no mention
of how this padding is carried out in the article. For our experiments, we zero-pad the samples to the
maximal sample length for each batch.

Another training detail not made explicit in the article is whether the representations used for
classification should be obtained from full samples of the datasets (i.e. of length T , if T is the number
of time steps for one sample), or rather from randomly sampled subseries of the samples (i.e. of
length T ′, where T ′ ∈ [1, T ]). For our experiments, we used the full samples (length T ) in order to
use the training set maximally when training the classifier.

Regarding the SVM training, a hyperparameter optimization is performed for the weighting C of
the error term using cross-validation across the training set. The authors indicate that they avoided
this cross-validation for datasets with a small number of training samples or datasets with few
training samples per class. In lack of an exact list of which datasets they refer to, we avoided the
hyperparameter search only for the datasets that fell below the size limit set by the cross-validation
tool of scikit-learn (Pedregosa et al. (2011)).

1A subseries here is a contiguous sub-sequence of a time series.

2



2.1 The UCR Time Series Classification

The UCR Archive contains 128 univariate datasets. Each dataset consists of training and test time
series which may have different lengths and missing values. The paper’s authors decided to not use the
three datasets with missing values (DodgerLoopDay, DodgerLoopGame and DodgerLoopWekend).
However, the UCR Archive contains modified versions of these datasets with linearly interpolated
values that we used. Our motivation for this is that the UCR Archive briefing document recommends
that all available datasets are used, to allow for comprehensive comparisons and avoid cherry-picking
results.

For the task of time series classification on the UCR Archive datasets, the authors consider other state-
of-the art methods, some of which are based on neural networks. More specifically, they compare
their method to neural network methods, both unsupervised (TimeNet, Malhotra et al. (2017); RWS,
Wu et al. (2018)) and supervised (ResNet, He et al. (2015)), and non-neural network methods, both
unsupervised (Dynamic Time Warping (DTW)) and supervised (HIVE-COTE, Lines et al. (2016);
ST, Bostrom and Bagnall (2015); BOSS, Schäfer (2015); EE, Lines and Bagnall (2015)). The use of
ResNet as a baseline in the paper is motivated by referencing an extensive review made by Fawaz et al.
(2019), who found it to be the best supervised neural network method for time series classification.

In Table 1 of the paper, the authors present their accuracy scores on 6 datasets from the UCR Archive,
together with baseline2 accuracy scores from non-neural network models (both supervised and
unsupervised). In a similar fashion, Table 1 in this report presents our replicated accuracy scores for
the same datasets, together with the original results from the paper for comparison. We also introduce
a comparison of our replicated scores and the authors’ against neural network models in Table 2.

Table 1 and 2 present the highest accuracy for each dataset, across all values of K ∈ {1, 2, 5, 10}.
Results for all values of K and all datasets can be found in Table 6 of the supplementary material.
Further, these tables contain accuracy scores for three additional UCR datasets (not presented in
the original paper’s Table 1), for which we also have baseline scores of both RWS and TimeNet
(see Table 2). These are presented below the dashed line, and provide a comparison between the
non-neural network scores in Table 1 and the neural network scores in Table 2.

Table 1: Our best achieved scores compared to the authors’ best achieved scores along with the scores
for all the non-neural-network methods for some UCR datasets.

Baseline
Dataset Ours Authors’ DTW ST BOSS HIVE-COTE EE
ECGFiveDays 1 1 1 0.984 1 1 0.82
DiatomSizeReduction 0.987 0.993 0.967 0.925 0.931 0.941 0.944
FordB 0.785 0.81 0.62 0.807 0.711 0.823 0.662
Ham 0.762 0.724 0.467 0.686 0.667 0.667 0.571
Phoneme 0.225 0.289 0.228 0.321 0.265 0.382 0.305
SwedishLeaf 0.922 0.931 0.792 0.928 0.922 0.954 0.915
ECG5000 0.928 0.94 0.924 0.944 0.941 0.946 0.939
TwoPatterns 1 1 1 0.955 0.993 1 1
Wafer 0.998 0.995 0.98 1 0.995 0.999 0.997

2The authors adapted the results from http://www.timeseriesclassification.com/
singleTrainTest.csv, https://www.cs.ucr.edu/~eamonn/time_series_data_2018/, and
https://github.com/hfawaz/dl-4-tsc/blob/master/results/results-uea.csv

3

http://www.timeseriesclassification.com/singleTrainTest.csv
http://www.timeseriesclassification.com/singleTrainTest.csv
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://github.com/hfawaz/dl-4-tsc/blob/master/results/results-uea.csv


Table 2: Our best achieved scores compared to the authors’ best achieved scores along with the scores
for supervised and unsupervised neural network methods for some UCR datasets. Missing scores are
indicated by ’-’.

Baseline
Dataset Ours Authors’ ResNet TimeNet RWS
ECGFiveDays 1 1 0.99 - -
DiatomSizeReduction 0.987 0.993 0.301 - -
FordB 0.785 0.81 - - -
Ham 0.762 0.724 0.8 - -
Phoneme 0.225 0.289 0.333 - -
SwedishLeaf 0.922 0.931 0.955 0.901 -
ECG5000 0.928 0.94 0.935 0.934 0.933
TwoPatterns 1 1 1 0.999 0.999
Wafer 0.998 0.995 0.998 0.994 0.993

2.2 Sparse labeling experiment

Figure 1 shows our reproduction of the sparse labeling experiment of Section 5.1.1 of the paper,
where a comparison is made between the authors’ method and ResNet when training on fractions of
the labeled data from a randomly chosen dataset (TwoPatterns). Just as in the original article, there
is a striking difference between the ResNet and the encoder model from the article on the smaller
portions (< 50%) of training data. Hence our results are in line with the authors’ claim; an SVM
trained on labeled representations from their architecture performs better than ResNet trained on the
raw data when training data is sparsely labeled.

The shapes of the ResNet graphs (in blue and red in Figure 1) are different. This is likely explained
by the fact that, surprisingly, there are no details about which ResNet architecture was used for this
experiment, or with which set of hyperparameters, or whether it had been pre-trained in any capacity.
It is possible that this is made clear in the public code repository. Yet, for the sake of the replications
track, we did not look this up.

Instead, for this experiment, we chose to train the least deep among the standard ResNets provided
by PyTorch: ResNet-18. This choice was made considering the low dimensionality of the time series
data compared to image data which ResNet is typically trained on. Specifically, this experiment
was only run on univariate data from the UCR dataset, which further motivated our choice of an
as-simple-as-possible ResNet architecture. We trained the network from scratch since it required
modified input dimensions compared to the standard ResNet from the Pytorch library.

Figure 1: Reproduction of Figure 4 from the original article (right). The same striking difference
between ResNet and the authors’ method is observed when training on a limited amount of labeled
data.

4



2.3 Transferability experiment

In the supplementary material, we reproduced the transferability experiment from the original article.
These results are shown in Table 6 of the supplementary material, in the column entitled FordA. The
idea for the transferability was to train an encoder on the FordA dataset, then pass samples from
the other datasets through this encoder and see how well the SVM can learn from training on those
representations with labels. The idea with the experiment was to show the generality of such a learned
encoder and to show that classification results are comparable even if the encoder is trained on one
dataset and produces representations on other datasets. Our results are very similar to the authors’
results in Table S1 of the article.

2.4 The UEA Time Series Classification

The UEA archive contains 30 multivariate datasets, with the dimensions per sample ranging from
2 to 1345. Some of these datasets have missing values. While the handling of missing values was
not described in the paper, we chose to linearly interpolate these values before training the encoder.
For the four datasets with the longest samples (EigenWorms, EthanolConcentration, MotorImagery
and StandWalkJump) we needed to adjust the batch size to below 10 in order to fit the GPU memory.
These adjustments can be seen in Table 3.

Table 3: Adjusted batch sizes for datasets with the longest sample lengths

Dataset EigenWorms EthanolConcentration MotorImagery StandWalkJump
K = 5 4 10 6 8
K = 10 2 10 6 8
K = 20 1 8 6 8

The authors compare their scores on the UEA datasets to that of DTWD. DTWD, an extension of
DTW, is the best baseline known in the multivariate setting, according to the paper. In Table 4, we
present our best achieved accuracy (taken among results using different values of K) next to the
authors’ scores, along with the scores of DTWD for a random selection of UEA datasets.

As can be seen, our best scores closely match the best scores of the authors for these datasets. Our full
scores on all the UEA datasets except InsectWingBeat can be found in Table 7 of the supplementary
material. InsectWingBeat with its large number of training samples was unfeasible for our time
horizon to train the SVM with when using scikit-learn, see the discussion in Section 3. For K = 10,
the training would have taken more than 12 hours, so we decided to not include this dataset.

Table 4: Best scores achieved in our experiments compared to the authors’ best scores along with the
DTWD method on some UEA datasets

Baseline
Dataset Ours Authors’ DTWD

ArticularyWordRecognition 0.983 0.987 0.987
AtrialFibrillation 0.333 0.2 0.2
Libras 0.889 0.883 0.87
NATOPS 0.922 0.944 0.883
UWaveGestureLibrary 0.903 0.884 0.903

2.5 The IHEPC experiment

The Individual Household Electric Power Consumption (IHEPC) is a seven-dimensional time series
(not including the temporal dimension) containing over two million measurements. These measure-
ments were split by the authors into train and test sets of 500,000 and∼1,500,000 values, respectively.
The paper does not mention the multivariate property of the IHEPC dataset and describes that the
data was normalized in the same way as the univariate UCR datasets (multivariate normalization is
described separately). Further, the plotted result for the IHEPC experiment (Figure 5 in the paper)
shows only one feature (active power consumption), leading us to believe that only this feature was
used. This belief was also strengthened when we trained the encoder on a single time series of length
500,000 measurements, since using all seven features simply requires more GPU memory than the

5



authors specified in the report (16 GB). Lastly, the dataset has missing values which we chose to
linearly interpolate, as the paper does not specify how these were handled.

The paper mentions that the encoder took no more than a few hours to train on a single Nvidia Tesla
P100 GPU. For us it took 10.5 hours to complete the 400 optimization steps on a Tesla T4 GPU which
has the same memory capacity and notably a higher computing performance than the P100. However,
it is noteworthy that the triplet loss stopped improving after ∼50 optimization steps (reaching a loss
of 4.5 from an initial loss of 800). After 50 optimization steps, the loss fluctuated up and down, but
never went lower than 4.5.

The information regarding how the encoder was used for a regression task after being trained on
IHEPC was quite sparse in the paper, which led us to spend a lot of time determining the most feasible
procedure. What we concluded was the following. The encoder is first trained for 400 optimization
steps on a single univariate long time series (500,000 measurements), using the feature Global active
power. Next, the trained encoder is used to generate two tuples of representations which we denote
{Rtrain

day ,Rtest
day } and {Rtrain

quarter,R
test
quarter}.

To generate Rtrain
day , the train set is split into subseries of length 1440, corresponding to the number

of measurements in a day, extracted as sliding windows with stride one (a day window). Each
day window is then passed through the encoder to generate a representation. Next a label for each
representation is computed as the difference of the mean measurements in the previous and subsequent
day window, producing a set of labels Ltrain

day for Rtrain
day .

Finally a linear regressor is trained on {Rtrain
day ,Ltrain

day }, and tested on {Rtest
day ,L

test
day }, using mini-

mization of MSE as objective. An analogous experiment can also be performed using subseries of
length 12 · 7 · 1440 corresponding to a quarter window. This experiment thus involves training and
testing another regressor on {Rtrain

quarter,L
train
quarter}, {Rtest

quarter,L
test
quarter}. The only description in

the paper concerning the linear regressors come from the following quote:

We compare linear regressors, trained using gradient descent, to minimize the mean
squared error between the prediction and the target, applied either on the raw time
series or on the previously computed representations.

Therefore, we made the following assumptions. We used the same optimizer (including its hyper-
parameters, such as learning rate) for the regressors as we did for the encoder, i.e. Adam (Kingma
and Ba, 2014). Further, we trained the regressors for 2000 optimization steps (the default number
of optimization steps specified in the paper). Since the regressor is trained on representations of the
encoder, we had to encode all windows (either day or quarter) of both the train and test time series
(∼ 2 million measurements in total). To measure the efficiency of the representations, the authors
compared the regressors trained on representations with regressors trained on the raw, actual values
in the IHEPC dataset. It is noteworthy that the train and test datasets consisting of representations are
orders of magnitude smaller in size than the raw-valued datasets. The number of scalars representing
an encoded window (either day or quarter) is 80, which is the output dimension of the encoder. In
contrast, the length of each window of raw values is 1440 and 7 · 12 · 1440 for day and quarter
windows, respectively. We replicated the experiment by training and testing regressors on both
the representations and the raw values, and the results are summarized in Table 5. We observed
similar time efficiency when evaluating the regressors as the authors reported. As explained by the
authors in their original report, the large discrepancy in the wall time when using representations
versus raw values on the quarter task is due to raw-valued windows having much larger size than
their corresponding representations. For the raw regressors, we observed test MSEs similar to those
reported by the authors. For the regressors trained on the representations however, we saw the training
loss drop significantly after only a few optimization steps. These regressors also produced much
lower MSEs compared to the those trained on raw values, which was unexpected. The authors didn’t
report such a discrepancy in test MSE between representations and raw values, and we aren’t sure
what caused this result in our experiment. In summary, our results are not completely aligned with
the numbers reported by the authors, yet we saw that the simple linear regressor was more successful
in predicting the labels when trained on windows with compact representations.

6



Table 5: Replicated results on regression task of IHEPC experiment

Task Metric Our Representations Raw values
Day Test MSE 40.64 · 10−5 2.02 · 10−2

Wall time 8.67s 9min 39s
Quarter Test MSE 6.21 · 10−5 13.28 · 10−2

Wall time 1min 38s 31min 27s

3 Discussion of findings

The main advantage of the authors’ method is that it is flexible with respect to sequence lengths and
domains. Time series with different lengths and dimensionality can be embedded by the encoder
architecture. In the bulk of the many experiments, our results closely match those of the authors, both
in the univariate and multivariate datasets. In order to formally measure the difference between the
results of our experiments and the authors’ experiments, the difference between our scores and those
of the authors was computed for each possible value of K, for each dataset in both the UCR and UEA
Archives. Then we computed the average difference by taking the average of the differences for each
possible value of K (including the FordA score) in each dataset.

We observe that the average difference is less than 5% in 68%, less than 8% in 80% and less than
10% in 88% of the UCR datasets. The corresponding numbers for UEA are: less than 5% in 69%,
less than 8% in 76% and less than 10% in 76% of the UEA datasets. An offset is expected since
the experiments were only run once for each dataset, as in the article. There is stochasticity in the
sampling of the sub-sequences during the training of the encoder. These differences seem to be
within the expected range and indicate that we have achieved quite similar results without using their
implementation. Please note that our focus is to compare our results with the authors’ results only to
ensure reproducibility of the experiments, rather than comparing our scores with the state-of-the-art
methods. Since we have achieved very similar results to those of the authors, we believe that the
distribution of rankings of different methods also generally holds true in our experiments. Thus, for
the first target question we conclude that the classification results can be reproduced.

Regarding the main advantages of the authors’ model over other state-of-the-art supervised methods,
we observed in the FordA experiment that the representations generated by the encoder trained on
the FordA dataset can be applied for classification in other datasets and achieve acceptable results.
This provides support to the authors’ claim that the representations generated by such an encoder are
transferable and can be applied to classification tasks for other datasets.

Furthermore, we observed in our experiment with the ResNet model that in the case of datasets with
limited labeled samples, the authors’ unsupervised method can perform significantly better than the
ResNet model. This provides support for the claim of performing well with sparse labeled data.

The two last target questions concern missing instructions and hidden assumptions and whether these
have a crucial influence on the results. We were able to reproduce the experiments conducted with
the UCR and UEA datasets using the paper’s instructions, while the long time series experiment
(IHEPC dataset) proved more difficult. The long time series experiment lacked many details in its
methodology, which led us to make multiple assumptions in order to produce results. For the UCR
and UEA experiments, the authors motivated the use of SVMs in the classification step by claiming it
allows for efficient training (a matter of minutes in most cases). This held true for the majority of the
datasets in our replication study, but for the datasets with the largest number of samples, the training
of SVMs took several hours. In the IHEPC experiment, we observed similar efficiency in terms of the
wall times when evaluating the regressors on the test set, and we observed similar test errors when
training the regressors on the raw values. For the regressors trained on the representations however,
we observed lower test errors compared to the numbers reported by the authors. We also saw the
training converging much faster with a significant drop in loss after a few optimization steps.

Finally, the fact that we managed to reproduce most results indicates that any hidden assumptions
made by the authors were not crucial in the end, unless we accidentally made the exact same set of
assumptions, which does not seem likely.

7



4 Conclusions

In this work, we have presented a replication study of the work by Franceschi et al. (2019) and found
that most of the results are replicable. We have reproduced almost a thousand3 (942) results from the
original article and they largely follow the results obtained by the authors. Since our experiments
were run with a set of additional assumptions, this speaks in favor of the robustness of the authors’
method.

References
A. Bagnall, H. A. Dau, J. Lines, M. Flynn, J. Large, A. Bostrom, P. Southam, and E. Keogh. The uea

multivariate time series classification archive, 2018. arXiv preprint arXiv:1811.00075, 2018.

A. Bostrom and A. Bagnall. Binary shapelet transform for multiclass time series classification. In
S. Madria and T. Hara, editors, Big Data Analytics and Knowledge Discovery, pages 257–269,
Cham, 2015. Springer International Publishing. ISBN 978-3-319-22729-0.

H. A. Dau, E. Keogh, K. Kamgar, C.-C. M. Yeh, Y. Zhu, S. Gharghabi, C. A. Ratanamahatana,
Yanping, B. Hu, N. Begum, A. Bagnall, A. Mueen, G. Batista, and Hexagon-ML. The ucr
time series classification archive, October 2018. https://www.cs.ucr.edu/~eamonn/time_
series_data_2018/.

D. Dua and C. Graff. UCI machine learning repository, 2017. URL http://archive.ics.uci.
edu/ml.

H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller. Deep learning for time series
classification: a review. Data Mining and Knowledge Discovery, 33(4):917–963, 2019.

J. Franceschi, A. Dieuleveut, and M. Jaggi. Unsupervised scalable representation learning for
multivariate time series. CoRR, abs/1901.10738, 2019. URL http://arxiv.org/abs/1901.
10738.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. arXiv preprint
arXiv:1512.03385, 2015.

P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger. Deep rein-
forcement learning that matters, 2017. URL http://arxiv.org/abs/1709.06560. cite
arxiv:1709.06560Comment: Accepted to the Thirthy-Second AAAI Conference On Artificial
Intelligence (AAAI), 2018.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

J. Lines and A. Bagnall. Time series classification with ensembles of elastic distance measures.
Data Mining and Knowledge Discovery, 29(3):565–592, May 2015. ISSN 1573-756X. doi:
10.1007/s10618-014-0361-2. URL https://doi.org/10.1007/s10618-014-0361-2.

J. Lines, S. Taylor, and A. Bagnall. Hive-cote: The hierarchical vote collective of transformation-
based ensembles for time series classification. In 2016 IEEE 16th International Conference on
Data Mining (ICDM), pages 1041–1046, Dec 2016. doi: 10.1109/ICDM.2016.0133.

Z. C. Lipton and J. Steinhardt. Troubling trends in machine learning scholarship. Queue, 17
(1):80:45–80:77, Feb. 2019. ISSN 1542-7730. doi: 10.1145/3317287.3328534. URL http:
//doi.acm.org/10.1145/3317287.3328534.

P. Malhotra, V. TV, L. Vig, P. Agarwal, and G. Shroff. Timenet: Pre-trained deep recurrent neural
network for time series classification. CoRR, abs/1706.08838, 2017. URL http://arxiv.org/
abs/1706.08838.
3942 = 128*5 + 24*5*2 + 20*3 + 2 (4 values of K plus FordA transferability for each of the 128 UCR

datasets, 5 runs at 24 different fractions of the training data on the TwoPatterns dataset for two models, 3 values
of K for the 20 multivariate datasets from UEA, one experiment for days and one for quarters for IHEPC).

8

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://arxiv.org/abs/1901.10738
http://arxiv.org/abs/1901.10738
http://arxiv.org/abs/1709.06560
https://doi.org/10.1007/s10618-014-0361-2
http://doi.acm.org/10.1145/3317287.3328534
http://doi.acm.org/10.1145/3317287.3328534
http://arxiv.org/abs/1706.08838
http://arxiv.org/abs/1706.08838


G. Melis, C. Dyer, and P. Blunsom. On the state of the art of evaluation in neural language models.
CoRR, abs/1707.05589, 2017. URL http://arxiv.org/abs/1707.05589.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga,
and A. Lerer. Automatic differentiation in PyTorch. In NIPS Autodiff Workshop, 2017.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

P. Schäfer. The boss is concerned with time series classification in the presence of noise. Data Min.
Knowl. Discov., 29(6):1505–1530, Nov. 2015. ISSN 1384-5810. doi: 10.1007/s10618-014-0377-7.
URL http://dx.doi.org/10.1007/s10618-014-0377-7.

F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding for face recognition and
clustering. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 815–823, 2015.

L. Wu, I. E.-H. Yen, J. Yi, F. Xu, Q. Lei, and M. Witbrock. Random warping series: A random
features method for time-series embedding. In International Conference on Artificial Intelligence
and Statistics, pages 793–802, 2018.

Supplementary material for [Re] Unsupervised Representation Learning for
Multivariate Timeseries

In this section, we present the full results of our experiments on the UCR and UEA Archives.

5 UCR Archive Results

Table 6: Test accuracy scores for all 128 UCR datasets.

Dataset K=1 K=2 K=5 K=10 K=combined FordA (K=5)
ACSF1 0.74 0.82 0.81 0.74 0.74 0.75
Adiac 0.739 0.726 0.716 0.721 0.76 0.762
AllGestureWiimoteX 0.679 0.65 0.657 0.677 0.67 0.666
AllGestureWiimoteY 0.681 0.676 0.686 0.69 0.716 0.706
AllGestureWiimoteZ 0.64 0.674 0.654 0.647 0.699 0.68
ArrowHead 0.777 0.777 0.834 0.771 0.76 0.76
Beef 0.733 0.367 0.667 0.7 0.7 0.733
BeetleFly 0.75 0.75 0.55 0.55 0.75 0.85
BirdChicken 0.75 0.75 0.75 0.85 0.75 0.75
BME 0.953 0.813 0.92 0.953 0.98 0.987
Car 0.75 0.817 0.8 0.783 0.8 0.8
CBF 0.99 0.986 0.94 0.94 0.989 0.98
Chinatown 0.781 0.942 0.843 0.921 0.883 0.965
ChlorineConcentration 0.649 0.606 0.64 0.594 0.7 0.629
CinCECGTorso 0.693 0.775 0.7 0.758 0.799 0.638
Coffee 1 0.929 0.964 1 1 1
Computers 0.656 0.692 0.696 0.7 0.68 0.68
CricketX 0.703 0.674 0.664 0.649 0.736 0.651
CricketY 0.597 0.603 0.597 0.582 0.656 0.6
CricketZ 0.692 0.641 0.685 0.633 0.721 0.682
Crop 0.725 0.721 0.711 0.716 0.74 0.719
DiatomSizeReduction 0.922 0.951 0.987 0.915 0.944 0.98
DistalPhalanxOutlineAgeGroup 0.748 0.748 0.734 0.741 0.748 0.719
DistalPhalanxOutlineCorrect 0.79 0.772 0.797 0.772 0.775 0.775
DistalPhalanxTW 0.691 0.633 0.683 0.676 0.662 0.655

9

http://arxiv.org/abs/1707.05589
http://dx.doi.org/10.1007/s10618-014-0377-7


Table 6: Test accuracy scores for all 128 UCR datasets.

Dataset K=1 K=2 K=5 K=10 K=combined FordA (K=5)
DodgerLoopDay 0.55 0.5 0.475 0.488 0.488 0.475
DodgerLoopGame 0.891 0.804 0.797 0.855 0.862 0.848
DodgerLoopWeekend 0.884 0.957 0.848 0.754 0.884 0.957
Earthquakes 0.748 0.748 0.748 0.748 0.748 0.748
ECG200 0.9 0.85 0.83 0.86 0.91 0.89
ECG5000 0.922 0.91 0.923 0.914 0.928 0.917
ECGFiveDays 0.998 1 1 0.997 1 0.956
ElectricDevices 0.697 0.68 0.679 0.691 0.701 0.665
EOGHorizontalSignal 0.547 0.511 0.494 0.569 0.536 0.481
EOGVerticalSignal 0.401 0.409 0.42 0.403 0.434 0.425
EthanolLevel 0.374 0.4 0.388 0.426 0.412 0.476
FaceAll 0.78 0.827 0.756 0.773 0.8 0.766
FaceFour 0.477 0.682 0.545 0.773 0.75 0.727
FacesUCR 0.836 0.84 0.804 0.818 0.86 0.815
FiftyWords 0.721 0.721 0.723 0.725 0.736 0.708
Fish 0.914 0.857 0.834 0.84 0.88 0.874
FordA 0.898 0.914 0.898 0.897 0.918 0.899
FordB 0.778 0.744 0.762 0.751 0.785 0.769
FreezerRegularTrain 0.986 0.991 0.989 0.982 0.989 0.993
FreezerSmallTrain 0.811 0.741 0.783 0.887 0.791 0.916
Fungi 0.742 0.871 0.941 0.962 0.941 0.871
GestureMidAirD1 0.538 0.546 0.615 0.631 0.569 0.615
GestureMidAirD2 0.515 0.523 0.446 0.485 0.538 0.5
GestureMidAirD3 0.3 0.254 0.331 0.323 0.292 0.323
GesturePebbleZ1 0.645 0.564 0.529 0.622 0.669 0.535
GesturePebbleZ2 0.563 0.791 0.551 0.57 0.709 0.595
GunPoint 0.933 0.98 0.973 0.987 0.98 0.973
GunPointAgeSpan 0.94 0.959 0.937 0.908 0.949 0.949
GunPointMaleVersusFemale 1 1 1 1 1 0.994
GunPointOldVersusYoung 1 1 1 1 1 1
Ham 0.743 0.657 0.59 0.562 0.762 0.676
HandOutlines 0.932 0.916 0.916 0.93 0.935 0.916
Haptics 0.484 0.474 0.477 0.442 0.477 0.474
Herring 0.547 0.5 0.641 0.594 0.578 0.594
HouseTwenty 0.832 0.874 0.849 0.891 0.882 0.824
InlineSkate 0.367 0.404 0.387 0.431 0.407 0.442
InsectEPGRegularTrain 1 1 1 1 1 1
InsectEPGSmallTrain 1 1 1 1 1 1
InsectWingbeatSound 0.599 0.563 0.57 0.548 0.605 0.567
ItalyPowerDemand 0.934 0.941 0.927 0.954 0.946 0.913
LargeKitchenAppliances 0.752 0.784 0.816 0.76 0.776 0.765
Lightning2 0.852 0.689 0.82 0.754 0.836 0.836
Lightning7 0.753 0.699 0.74 0.699 0.712 0.644
Mallat 0.93 0.906 0.939 0.946 0.974 0.953
Meat 0.917 0.85 0.9 0.917 0.9 0.933
MedicalImages 0.754 0.717 0.709 0.708 0.757 0.724
MelbournePedestrian 0.285 0.283 0.29 0.288 0.286 0.299
MiddlePhalanxOutlineAgeGroup 0.656 0.643 0.656 0.662 0.636 0.63
MiddlePhalanxOutlineCorrect 0.801 0.808 0.828 0.794 0.814 0.818
MiddlePhalanxTW 0.558 0.578 0.571 0.584 0.565 0.597
MixedShapesRegularTrain 0.918 0.911 0.908 0.917 0.919 0.912
MixedShapesSmallTrain 0.862 0.844 0.876 0.826 0.868 0.868
MoteStrain 0.779 0.802 0.823 0.83 0.81 0.813
NonInvasiveFetalECGThorax1 0.921 0.907 0.895 0.902 0.922 0.926
NonInvasiveFetalECGThorax2 0.931 0.926 0.922 0.916 0.933 0.924
OliveOil 0.8 0.833 0.767 0.8 0.8 0.833

10



Table 6: Test accuracy scores for all 128 UCR datasets.

Dataset K=1 K=2 K=5 K=10 K=combined FordA (K=5)
OSULeaf 0.719 0.607 0.702 0.678 0.744 0.653
PhalangesOutlinesCorrect 0.773 0.797 0.787 0.793 0.759 0.788
Phoneme 0.207 0.205 0.207 0.192 0.225 0.187
PickupGestureWiimoteZ 0.54 0.66 0.74 0.58 0.7 0.62
PigAirwayPressure 0.216 0.207 0.221 0.236 0.226 0.269
PigArtPressure 0.736 0.615 0.663 0.663 0.702 0.774
PigCVP 0.495 0.481 0.476 0.481 0.519 0.577
PLAID 0.46 0.475 0.471 0.466 0.495 0.471
Plane 0.99 1 0.99 0.981 0.99 0.99
PowerCons 0.922 0.906 0.939 0.933 0.939 0.939
ProximalPhalanxOutlineAgeGroup 0.834 0.844 0.854 0.849 0.834 0.863
ProximalPhalanxOutlineCorrect 0.859 0.873 0.856 0.859 0.869 0.859
ProximalPhalanxTW 0.785 0.81 0.82 0.82 0.815 0.81
RefrigerationDevices 0.515 0.525 0.504 0.504 0.541 0.536
Rock 0.56 0.62 0.76 0.64 0.66 0.5
ScreenType 0.381 0.443 0.44 0.411 0.467 0.424
SemgHandGenderCh2 0.84 0.848 0.817 0.795 0.828 0.85
SemgHandMovementCh2 0.636 0.607 0.593 0.569 0.667 0.578
SemgHandSubjectCh2 0.758 0.773 0.709 0.716 0.764 0.702
ShakeGestureWiimoteZ 0.78 0.72 0.86 0.8 0.84 0.9
ShapeletSim 0.511 0.522 0.561 0.594 0.589 0.55
ShapesAll 0.812 0.798 0.825 0.823 0.84 0.838
SmallKitchenAppliances 0.691 0.696 0.717 0.704 0.723 0.707
SmoothSubspace 0.947 0.92 0.98 0.973 0.973 0.947
SonyAIBORobotSurface1 0.745 0.837 0.651 0.659 0.739 0.752
SonyAIBORobotSurface2 0.793 0.795 0.799 0.869 0.842 0.811
StarLightCurves 0.968 0.97 0.97 0.964 0.971 0.968
Strawberry 0.946 0.914 0.935 0.932 0.938 0.957
SwedishLeaf 0.906 0.912 0.91 0.907 0.922 0.898
Symbols 0.908 0.886 0.847 0.886 0.923 0.941
SyntheticControl 0.983 0.997 0.977 0.98 0.99 0.99
ToeSegmentation1 0.864 0.781 0.816 0.864 0.886 0.816
ToeSegmentation2 0.8 0.877 0.838 0.785 0.854 0.808
Trace 1 1 1 1 1 1
TwoLeadECG 0.971 0.792 0.965 0.857 0.935 0.985
TwoPatterns 1 1 1 1 1 1
UMD 0.986 0.882 0.972 0.979 1 0.972
UWaveGestureLibraryAll 0.934 0.916 0.918 0.9 0.951 0.908
UWaveGestureLibraryX 0.805 0.795 0.786 0.79 0.808 0.775
UWaveGestureLibraryY 0.716 0.718 0.714 0.708 0.736 0.702
UWaveGestureLibraryZ 0.736 0.731 0.714 0.729 0.752 0.732
Wafer 0.994 0.991 0.994 0.995 0.998 0.995
Wine 0.611 0.5 0.5 0.5 0.5 0.5
WordSynonyms 0.621 0.589 0.6 0.619 0.65 0.599
Worms 0.558 0.545 0.61 0.519 0.623 0.597
WormsTwoClass 0.662 0.636 0.662 0.61 0.662 0.636
Yoga 0.828 0.8 0.814 0.781 0.859 0.786

6 UEA Archive Results

The following is our full results on the 30 UEA datasets. Note that we were not able to reproduce
the SVM results for the InsectWingbeat dataset since it has a very large number of samples (30,000
training and 20,000 test samples), and we could not manage to train the SVM on it in a timely manner
(training the SVM was taking more than a day using the scikit-learn library.)

11



Table 7: Test accuracy for all the datasets in the UEA archive.

Dataset K=5 K=10 K=20 K=combined
ArticularyWordRecognition 0.957 0.963 0.957 0.983
AtrialFibrillation 0.333 0.333 0.333 0.2
BasicMotions 0.925 0.975 0.925 0.975
CharacterTrajectories 0.985 0.985 0.985 0.989
Cricket 0.972 0.903 0.972 0.944
DuckDuckGeese 0.4 0.42 0.42 0.38
EigenWorms 0.641 0.595 0.366 0.55
Epilepsy 0.906 0.942 0.884 0.957
ERing 0.796 0.711 0.548 0.815
EthanolConcentration 0.3 0.266 0.304 0.3
FaceDetection 0.512 0.534 0.531 0.524
FingerMovements 0.54 0.55 0.47 0.5
HandMovementDirection 0.243 0.216 0.311 0.243
Handwriting 0.313 0.347 0.339 0.396
Heartbeat 0.717 0.727 0.741 0.732
InsectWingbeat
JapaneseVowels 0.951 0.973 0.954 0.962
Libras 0.883 0.856 0.883 0.889
LSST 0.397 0.405 0.386 0.398
MotorImagery 0.58 0.49 0.46 0.51
NATOPS 0.922 0.9 0.911 0.922
PEMS-SF 0.636 0.676 0.642 0.647
PenDigits 0.983 0.981 0.979 0.985
PhonemeSpectra 0.189 0.2 0.18 0.22
RacketSports 0.704 0.776 0.809 0.783
SelfRegulationSCP1 0.816 0.819 0.846 0.816
SelfRegulationSCP2 0.561 0.528 0.539 0.561
SpokenArabicDigits 0.927 0.925 0.929 0.957
StandWalkJump 0.467 0.667 0.333 0.467
UWaveGestureLibrary 0.828 0.85 0.875 0.903

12


	Introduction
	Target questions
	Additional contributions

	Experimental methodology and implementation details
	The UCR Time Series Classification
	Sparse labeling experiment
	Transferability experiment
	The UEA Time Series Classification
	The IHEPC experiment

	Discussion of findings
	Conclusions
	UCR Archive Results
	UEA Archive Results

