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ABSTRACT

We present a formal measure-theoretical theory of neural networks (NN) built
on probability coupling theory. Particularly, we present an algorithm framework,
Hierarchical Measure Group and Approximate System (HMGAS), nicknamed S-
System, of which NNs are special cases. In addition to many other results, the
framework enables us to prove that 1) NNs implement renormalization group
(RG) using information geometry, which points out that the large scale property to
renormalize is dual Bregman divergence and completes the analog between NNs
and RG; 2) and under a set of realistic boundedness and diversity conditions, for
large size nonlinear deep NNs with a class of losses, including the hinge loss, all
local minima are global minima with zero loss errors, using random matrix theory.

1 INTRODUCTION

The recent development in the algorithm family of neural networks (NN) (LeCun et al. (2015)) that
aim to solve high dimensional perception problems, has led to results that sometimes outperform
humans in particular datasets, e.g., vision (He et al. (2015)). It is a computational imitation of
biological NNs (Rosenblatt (1958) Fukushima (1980) Ruineihart et al. (1986)). From a theoretical
view, however, it has arguably progressed for six decades as a blackbox function approximator.
Researchers of various background have been intrigued by theoretical understanding of NNs. From
the perspective of physics, we have Mehta & Schwab (2014) Lin & Tegmark (2017) Choromanska
et al. (2015a); from that of applied mathematics, we have Mallat (2016); from that of information
theory, we have Amari (1995) Shwartz-Ziv & Tishby (2017); from that of theoretical computer
science, we have Arora et al. (2014); and from the machine learning perspective, we have Anselmi
et al. (2015) Anselmi et al. (2016) Jeffrey Pennington (2017) Ankit B. Patel et al. (2016) etc.

This work is also motivated for a better theoretical understanding of NNs. Our investigation in this
work has led to a measure-theoretical theory of NNs. To the best of our knowledge, we do not find
works that are intimately close to ours, and a very detailed discussion on related works is written in
appendix H. Our main contributions are summarized as follows.

• Built on the formalism of probability coupling theory, we derive an algorithm framework, named
Hierarchical Measure Group and Approximate System (HMGAS), nicknamed S-System, that is
designed to learn the complex hierarchical, statistical dependency in the physical world, of which
the hierarchical structure is formulated as measure-theoretical assumptions.

• We show that NNs are special cases of S-System when the probability kernels assume certain
exponential family distributions. Activation Functions are derived formally. We further endow
geometry on NNs through information geometry, and quantitatively show NNs implement Renor-
malization Group (RG), of which the large scale property to be renormalized is dual Bregman
divergence, or informally semantic difference, and completes the analog between NNs and RG.

• S-System shows NNs are inherently stochastic, and under a set of realistic boundedness and
diversity conditions, it enables us to prove that for large size nonlinear deep NNs with a class
of losses, including the hinge loss, all local minima are global minima with zero loss errors, and
regions around the minima are flat basins where all eigenvalues of Hessians are concentrated
around zero. This part is almost a complete work on its own right, and most of the contents have
to be put in the appendices. This unusual fact is because we feels like we need to solve a known
hard problem to convince ourselves and the community the plausibility of S-System proposed.

We summarize insights of our theoretical results as follows.
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• Inherent stochasticity of NNs and renormalization/coarse-graining on semantic differ-
ence/geometry on stochastic manifolds of NNs (summary of section 4). Activations in the
intermediate layers are function of estimated realization of random variables, of which the true
probability measure is transported from the input data. Activation functions used in practice actu-
ally assume the exponential family distributions, which explains why NNs learn templates, since
the mean of an exponential family distribution uniquely determines its distribution. Forward prop-
agation is maximization of expected data likelihood. A stochastic manifold structure is endowed
on the intermediate space of NNs, where the “distance” is defined to characterize the semantic
difference between events/samples. As the layers go deeper, the semantic difference potentially
becomes gradually coarse-grained to reflect the higher level semantic difference, e.g., dogs vs
cats, while ignoring lower level variations, e.g., textures (theorem 4.1). This is true due to the in-
formation monotony phenomenon: by blocking half of the information from propagating (using
ReLU as an example), information related to irrelevant variations could potentially be discarded.
The semantic difference is the physical quantity to renormalize to produce large scale properties,
which is missing in the incomplete analog between NNs and RG (Mehta & Schwab (2014) Lin &
Tegmark (2017)). Lastly, the event spaces of samples are the objects to study if one wants to study
the geometry of NNs, e.g., symmetry in the geometry. For example, robustness to deformation
in images can be characterized as a close “distance” between two event collections where one is
obtained by deforming all events in the other. An example is provided in example 4.1.

• Optimization in NNs (summary of section 5 and appendix F). The stochasticity identified en-
ables us to analyze NNs stochastically in its full complexity. It enables us to characterize the
optimization behaviors of NNs in theorem 5.1 described in the contributions above. It explains
the optimization myths of NNs that though being non-convex NNs can optimize the loss to zero,
and why learning progresses slowly when approaching the minima. Informally, a huge number
of cooperative yet diverse neurons can group samples into arbitrary groups corresponding to la-
bels. The assumptions made in the theorem are sufficient practice-guiding preconditions instead
of unrealistic assumptions made to make the proof work. It explains why centering of neuron
activation (Glorot & Bengio (2010)) is helpful, for it helps to let the eigenvalues of the Hessian of
the risk function be symmetric w.r.t. y-axis (theorem F.2), thus guaranteeing the existence of neg-
ative eigenvalues to provide loss-minimizing directions; why normalization of neuron activation
(Ioffe, Sergey and Szegedy (2015)) is helpful, for the boundedness and diversity conditions 5.1
5.2 ask the correlation between neurons, formulated as cumulants, to be small, and normalization
of standard deviation possibly maintains the conditions throughout the training (appendix F.3);
why the larger the network is, the easier for it to reach zero error, for our results on optimization
is a probably-approximately-correct type result where the error is controlled by the size of the
network — the underlying reason is complicated, and we refer readers to appendix F.2.

• Functional purpose of NNs (summary of section 3). This is the most important one, but also
perhaps the hardest one to get. S-System shows NNs work by grouping samples/events into groups
— which emerges through optimizing an objective function — and estimate/approximate their true
probability measure through empirical observations. The group is a formalization of semantics,
and explains how discrete labels emerge from continuous samples, i.e., a label identifies a group
of events/samples. A proper implementation of the above process applied hierarchically creates
an adaptive complex system that consists of a huge number of neurons. The neurons represent
different groups of events of low mutual correlation, which preconditions the optimization results.

2 NEURAL NETWORK, A POWERFUL INFERENCE MACHINE OF
PLAUSIBILITY OF EVENTS IN THE PHYSICAL WORLD

This section aims to give an intuitive description of the formal definition of NN given and its behav-
iors without delving into mathematical details; and it also serves as the paper outline. The rest of the
paper characterizes the informal description in this section formally.

If an agent wants to interact with the world, for whatever reasons, it first needs to perceive it. A
way to perceive the world is to measure certain physical objects of the world, which could be imple-
mented as sensors of the agent, e.g., a camera measuring the spatial configuration of photon intensity.
However, the measurement data (formalized in definition 1) record many events that happen in the
same spatial and temporal span, and those events are entangled in the measurements (formalized in
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assumption 3.5). To perceive events happening in the world, e.g., a lion is nearby, a mechanism is
needed to recognize it from measurement data, e.g., sensed spatial photon patterns.

This leads to the problem of the structure of the physical world, which the still unknown mechanism
at least needs to relate to if it aims to recognize events in the world well. This leads us to Complex
System (Bar-Yam (1997) Nicolis & Nicolis (2012) Newman (2009)). The research in the field
allows us to safely say that one of the most important structures of the physical world is hierarchy
(Amderson (1972)). Atoms form molecules; molecules form organism, and inorganic material;
organisms form creatures, which form ecology system; inorganic material forms planets, then solar
systems, then galaxies. Of the scales across the hierarchy of the world, the events at a lower scale
interacting with a particular way form events at a higher scale. The hierarchy in nature is formulated
as assumptions 3.1 3.2 3.3 3.4 3.5.

In section 3, S-System is introduced in definition 3 to recognize and represent the hierarchy of
events from measurement data, formulated measure-theoretically and based on probability coupling
theory (Thorisson (2000)). S-System formalizes the idea that a creature is not going to reproduce
an impartial representation of the world, it only captures the events that cater to its need, e.g., the
survival need to identify lion, and within its reach and capacity, i.e., the amount of measurements
it can gather. S-System recognizes a hierarchy of events from the measurements, not exactly in the
sense of physical reality — if a creature never measured/saw a black swan, it does not mean there
aren’t any — but in the sense of a manually created hierarchical groups of events, and each group is
perhaps given a tag/name. For examples, some low level object groups are named as edges; a higher
level, named textures; a higher level, named body parts; an even higher one, named body, e.g., lion.

In section 4, a NN is shown to be an implementation of an S-system (shown in definition 4), when
the measure is being approximated with compositional exponential family distributions (defined in
definition 6). Activation Function is derived formally in definition 5. The geometry structure of
the representation built by NNs is defined in definition 7 as stochastic manifolds, and benefits of
hierarchy are shown quantitatively as the coarse graining on “distance” in theorem 4.1, which is
the large scale physical quantity to renormalize in RG. The section shows that a NN is an inference
system to infer how plausible groups of events forming a hierarchy have occurred.

We have formally defined NNs and given the benefits of hierarchy, but the question remains is, “is
it practical?”. This is addressed in section 5. The hierarchical organization of NNs to recognize and
represent the hierarchical physical world has made itself a complex system. Contrary to existing
shallow models, or simple models, it is exactly the complexity built by a hierarchy that makes NNs
the most powerful inference model. A large collection of cooperative yet autonomous neurons,
formalized as assumptions 5.1 5.2, gives NNs the ability to partition events into arbitrary groups
and infer the plausibility of any groups of events (proved in theorem 5.1), which is the emergent
behavior emerging from the disorder in the NN complex system.

Lastly, we note the notation used. All scalar functions are denoted as normal letters, e.g., f ; bold,
lowercase letters denote vectors, e.g., x; bold, uppercase letters denote matrices, e.g., W ; normal,
uppercase letters denotes random elements/variables, all the remaining symbols are defined when
needed, and should be self-clear in the context. r.e. and r.e.s are short for random element, random
elements respectively, so are r.v. and r.v.s for random variable and random variables. To index entries
of a matrix, following Erdős et al. (2017), we denote J = [N ] := {1, . . . , N}, the ordered pairs of
indices by I = J × J. For α ∈ I, A ⊆ I, i ∈ J, given a matrix W , wα,WA,Wi:,W:i denotes the
entry at α, the vector consists of entries at A, the ith row, ith column ofW respectively. Given two
matrix A,B, the curly inequality � between matrices, i.e., A � B, means B − A is a positive
definite matrix. Similar statements apply between a matrix and a vector, and a matrix and a scalar.
� is defined similarly. κ denotes cumulant, whose definition and norms, e.g., |||κ|||, are reviewed at
appendix F.2. := is the “define” symbol, where x := y defines a new symbol x by equating it with
y. tr denotes matrix trace. dg(h) denotes the diagonal matrix whose diagonal is the vector h.

3 PHYSICS, CONDITIONAL GROUPING EXTENSION AND S-SYSTEM

In this section, a mechanism, Hierarchical Measure Group and Approximate System, nicknamed
S-System, to recognize and represent events in the physical world from measurements is introduced
with formalism from probability coupling theory (Thorisson (2000)) in a measure-theoretical way.
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3.1 PHYSICAL PROBABILITY MEASURE SPACE AND SENSOR

To begin with, we formally define the assumptions made on the physical world.
Assumption 3.1 (Physics). All events in the physical world makes a probability measure space
W := (Ω,FW , µW), where Ω denotes the event space, FW is the σ-algebra on Ω; µW is the
probability measure on Ω. We call W Physical Probability Measure Space (PPMS). To avoid
confusion, we note that Ω denotes the event space of PPMS throughout the paper.
Assumption 3.2 (Hierarchy). Ω has a hierarchical structure, which means Ω = ∪s∈SΩs, where s
is named scaled parameter, S is a poset, i.e., a set with a partial order, Ωs are event spaces, and
for s, s′ ∈ S, s < s′, Ωs′ ⊆ σ(Ωs), where σ(Ωs) is the σ-algebra generated by Ωs.

For s, s′ ∈ S, s < s′, we say Ωs′ is composed by Ωs. Furthermore, when ωs′ ∈ σ(∪s∈Is{ωs}),
where Is is an index set and for any s ∈ Is, ωs ∈ Ωs, we say ωs′ is composed by ωs. As motivated in
section 2, to perceive the events happening in the world, measurements need to be collected, which
is formalized as a r.e..
Definition 1 (Measurement Collection). A measurement collection is a random function X that
supported on PPMS W with an induced probability measure space X := (ΩX , EX , µX ), where
ΩX := {x|x : U→ V} and U,V are unspecified the domain and codomain.

We make the following assumptions on X . It characterizes the capability and limitation of a
sensor and the phenomenon that for an event ωs′ composed by a lower scale event ωs, the
time/place/support where ωs′ happens contains that of ωs.
Assumption 3.3 (Resolution). For any measurement collections, a lower bound of scale parameter
s0 exists, such that ∀s ∈ S , s is comparable with s0, and ∀ωs ∈ Ω, s < s0, µ

X (X(ωs)) = 0. We
call Ωs0 the events of the lowest measurable scale.
Assumption 3.4 (Measurability). measurements are physical, i.e., EX ⊆ σ(Ωs0).
Assumption 3.5 (Containment). Given any two comparable scale parameter s, s′, s < s′, ωs ∈
Ωs, ωs′ ∈ Ωs′ , where ωs′ is composed by ωs, we have supp(X(ωs)) ⊆ supp(X(ωs′)), where supp
denotes the support of X(ω) ∈ E, i.e., the domain of X(ω) where X(w) 6= 0 (we assume the zero
element is defined, and indicates nothing has been measured).

The containment phenomenon is troublesome, along with the phenomenon that it is possible for any
events ω, ω′ ∈ Ω to have overlapping support supp(X(ω)), supp(X(ω′)), even they do not have any
composition relationship. This is an inherent problem of measuring: it has collapsed all the events
across scales and within the same scale in the same measurement units of the sensor, e.g., pixels at
the same location in the image sensor. To perceive certain event has occurred from X , a mechanism
is needed to disentangle it from other events.

3.2 S-SYSTEM: HIERARCHICAL MEASURE GROUP AND APPROXIMATE SYSTEM

In this subsection, we introduce Hierarchical Measure Group and Approximate System, nicknamed
as S-System. Following the motivation described of S-System in section 2, we create extensions of
the probability measurable space X that “reproduce” measure of higher scale events. The extensions
are created hierarchically, by Conditional Grouping Extension (CGE). For a review of the coupling
theory and probability measure space extension, please refer to appendix A.
Definition 2 (Event Representation; (Partial) Conditional Grouping Extension). Let T be a r.e.
in measurable space (E, E) defined on a probability space (F,F , µ), a Conditional Grouping
Extension (CGE) of T is created as the following by conditioning extension and splitting extension.

First, a conditioning extension (ΩĤ
e

, Ĥe, µĤ) of T is created with ((E, E), (ΩĤ, Ĥ)) probability
kernel Q̂(·, ·), of which an external r.e. Ĥ in measurable space (ΩĤ, Ĥ) is created with law

µĤ(Ĥ|T ) = Q̂(T, Ĥ)

Then a splitting extension (ΩH
e

,He, µH) of (ΩĤ
e

, Ĥe, µĤ) is created with a ((E, E) ⊗
(ΩH,H), (ΩĤ , Ĥ)) probability kernel Q(·, ·) to support an external random element H in mea-
surable space (ΩH,H) with law ν, of which

µH(Ĥ|H,T ) = Q((T,H), Ĥ), and µĤ(Ĥ|T ) =

∫
Q((T,H), Ĥ)ν(dH;T )
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We assume that Q̂ is a kernel parameterized by W (T ;θ), a transport map W applied on T param-
eterized by θ. The extension is well defined due to Thorisson (2000) Theorem 5.1.

Let M := ((ΩH
e

,He, µH), {H, Ĥ, T}), we call M the event representation built on T through
a CGE — we define formally an event representation is a pair, of which the first element is a
probability measure space, and the second element is a set of r.e.s supported on the space, called
random element set ofM. When absence of confusion, we just call M the event representation
built on T . T is called the input random element ofM; H the group indicator random element;
Ĥ the coupled random element; (H, Ĥ) the output random elements when we would like to refer
to them in bunk; Q̂ the coupling probability kernel; Q the group coupling probability kernel;
(ΩH

e

,He, µH) the coupled probability measure space; µH the coupled probability measure; ν
the conditional group indicator measure; W (T ;θ) the transport map ofM. Given an ω ∈ ΩH,
we say W−1(ω) ⊂ E is an event represented/indexed/grouped by H . Since CGE will be used
recursively later, to emphasize, when M only builds on a subset of output r.e.s of another event
representation, to emphasize,M is called an event representation built by a Partial CGE.

We explain why they are named as Conditional Grouping Extension and Event Representation. By
assumption, Q̂ is a probability kernel parameterized by W (T ), e.g., the exponential family proba-
bility kernel ew

Tx−ψ(w), where T := X,W (T ) := wTX − ψ(w). Suppose X , a measurement
collection r.e., is supported by PPMSW , from definition 1. A transport map W applied on X is a
deterministic coupling (X,W (X)) that transports the measure µ(A) of an event A ∈ EX to W (A),
of which W (X) is a r.e. on a measurable space (ΩĤ, Ĥ) with law µĤ supported onW where

µĤ(W (A)) = µW(X−1(A)), A ∈ EX , X−1(A) ∈ FW

That is to say A is an event that are happening in the physical world, and is being measured by X .
The goal of S-System is to estimate the plausibility of the event A. However, the problem is that we
do not know µW (that’s not to say we do not have an estimation of µW empirically). That’s why
CGE is needed. CGE hypothesizes a probability kernel Q that approximates the probability µ(A) of
events being measured (conditioning extension) grouped by the r.e. H created by splitting extension.
Notice two key constructions to deal with two key challenges here: for the enormity of the event
space of PPMS, a.k.a. Ω, only events that happen along with current observation X is estimated
through conditioning extension; for events happening along with X , probability is approximated
in groups indexed by H through splitting extension, which physically could be broken down into
countless smaller scale events that compose A and some of the sub-events won’t be estimated.
The design could be understood as economic considerations, though probably it would be the only
feasible solution to reasonably approximate µW . Then, the r.e. set ofM is the manipulable object
that directly connects with events in the physical world, and is named event representation.

Yet, one more problem is looming around: how possiblyQ approximates µW(X−1(A)) reasonably?
Suppose A is a top scale event, by assumption 3.2, A ∈ σ(ΩsL) ⊂ σ(ΩsL−1

) ⊂ . . . ⊂ σ(Ωs0),
where Sl = {sl}0≤l≤L,l∈N is a finite set of scales. Thus, to approximate µW(W−1(A)) is to
approximate the joint distribution of events that compose A, which could be factorized into the
probabilities of events that compose A and the probability of A conditioning on the sub-events. This
asks to apply CGE recursively, through which we get an S-system.
Definition 3 (Hierarchical Measure Group and Approximate System). A Hierarchical Measure
Group and Approximate System (S-System) is a mechanism to extend the probability measure space
of a measurement collection r.e. recursively according to a poset structure SX as described in
algorithm 1. The poset is called the scale poset of the S-system. Ultimately, it creates an event
representationMW̄ := (W̄,OW̄), where W̄ := (Ω̄,FW̄ , µW̄) is the extended probability measure
space built and is called Approximated Probability Measure Space (APMS), and OW̄ is a r.e.
set indexed by elements of poset SX .MW̄ is called the event representation built by S-System.

4 NEURAL NETWORKS FROM THE FIRST PRINCIPLE AND ITS GEOMETRY

In the previous section, a mechanism S-System is introduced to transport, group and approximate
probability measures that are of interest. It focuses on deriving a mechanism to recognize events
through measurements from the first principle. In this section, we will show that Multiple Layer
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Algorithm 1 S-System. In the algorithm below, the predecessor(s) returns a index set I′ that
indexes elements in SX and ∀i ∈ I′, si ≤ s and successor(s) return a subset S ′ of SX , where
∀si ∈ S ′, si ≥ s. For examples of the functions, refer to appendix B.
Input: SX := {si}i∈I is a poset with a minimal element s0, whose elements are indexed by a set

I; X is a measurement collection r.e. supported on X := (ΩX , EX , µX ), of which the events of
the lowest measurable scale are Ωs0

Output: an event representationMW̄
Ms0 ← ((ΩHs0 ,Hs0 , µHs0 ) := X ,Os0 := (X)), Tout ← ∅, SXt ← SUCCESSOR(s0)
while SXt is not empty do
SXt′ ← ∅
for s ∈ SXt do

I′ ← PREDECESSOR(s)
H ←

⊗
i∈I′(Ω

Hsi ,Hsi , µHsi ), O ← ∪i∈I′Oi,M← (H,O)

Build an event representation Ms := ((ΩHs ,Hs, µHs),O ∪ {Hs, Ĥs}) on O through
conditional grouping extension that supports output r.e.s (Hs, Ĥs)

if SUCCESSOR(s) is empty then
Tout ← Tout ∪ {Ms}

else
SXt′ ← SXt′∪SUCCESSOR(s)

end if
end for
SXt ← SXt′

end while
MW̄ ← (

⊗
i∈I′′(Ω

Hsi ,Hsi , µHsi ),∪i∈I′′Oi), where I′′ indexes all event representations now in
the set Tout

Perceptrons (MLP) (Ruineihart et al. (1986)) is an implementation of an S-system. The derivation
serves as a proof of concept, and as an example of S-System, though we note that all existing NN
architectures, e.g., Residual Network (He et al. (2016)), Convolutional Neural Network (Simard
et al. (2003)), Recurrent Neural Network (Hochreiter et al. (1997)), Deep Belief Network (Hinton
et al. (2006)) could be derived by using different measurable spaces, posets, probability kernels
and successor, predecessor functions, along with manifold possibilities of new architectures. In
the derivation, we will see classical activation functions emerging naturally. Then, we go further
to endow geometry on event representations by defining the proper manifold structure on S-System
using information geometry. It enables us to quantitatively prove the benefits of hierarchy that MLPs
implement coarse graining that contracts the variations in the lower scale event spaces when creating
higher scale event extensions, which plays the same role as RG in physics.

4.1 THEORETICAL DERIVATION OF ACTIVATION FUNCTIONS AND MLPS

Let the CGE in definition 3 be MLPCGE (definition 4), the t̃ in MLPCGE be obtained by transport
map ReLU (definition 5), and the scale poset SX be a chain, i.e., a poset where all elements are
comparable. By algorithm 1, we would obtain a MLP. The definitions are given in the following.

Definition 4 (MLP Conditional Grouping Extension). An MLP Conditional Grouping Extension
(MLPCGE) is a CGE with the following measurable space and parametric forms of probability
kernels

(E, E) = (Dn,Dn)
⊗

(Rn,B(Rn)), ν(h|t) = eh
TWT t̃/

∑
h

eh
TWT t̃

Q̂(T, Ĥ) = q̂(t, ĥ) := e1
T ĥ(t)/(

∫
e1

T ĥ(t)dµ(t)) = e1
TWT t̃/(

∫
e1

TWT t̃dµ̃(t̃))

Q((T,H), Ĥ) = q((t,h), ĥ) := eh
T ĥ(t)/(

∫
eh

T ĥ(t)dν(h|t)dµ(t) = eh
TWT t̃/(

∫
eh

TWT t̃dν(h|t)dµ̃(t̃))

where Dn is a n-dimensional discrete-valued field, i.e., {0, 1}n or {−1, 1}n, Dn is the σ-algebra
generated by Dn, W is a matrix (in this case, the transport map W (T ;θ) is the matrix W and
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parameters θ are W ), t, ĥ,h are realizable values of r.e.s T, Ĥ,H , and t̃ is obtained by applying
a yet unspecified transport map on t — for now, it could be just taken as the output of an identity
mapping and other possible forms are introduced when discussing activation functions — and µ̃(t̃)
is the law on t̃ induced by the law µ(t) on the input r.e. of MLPCGE. The meaning of the rest of the
symbols is same with those in definition 2.

Note that it is not possible to compute q̂(t, ĥ), for µ(t) is unknown. However, we can compute
ν faithfully! This is because H is a manual creation/grouping instead of inherent events in PPMS
Here, with some further reasoning, we will have the marvelous trick done by NNs, i.e., the Activation
Function (AF). The key is only to build a full, or partial CGE upon r.e.s created by a previous CGE,
using an estimated value of H . The deeper principles of the estimation are described in appendix G,
which is the maximization of expected data log likelihood, and is part of the learning framework
of S-System. When a full CGE is created upon output r.e.s. of a previous CGE, D is {0, 1}n, and
the estimation is done through expectation or maximum, we recover the currently best performing
activation function Swish (Ramachandran et al. (2017)) or ReLU (Glorot et al. (2011)) respectively;
when a partial CGE is created on the group indicator r.e.s, the estimation is done through expectation,
and D is {0, 1} or {1,−1}, we recover classical activation functions Sigmoid or Tanh respectively.

We derive ReLU as an example. The group indicator r.e.s H divides the measure transported from
the event space of input r.e. T to the event space of Ĥ into groups. Intuitively, if H divides the mea-
sure into two groups indexed by elements of D, and we assume 1 collects the measure corresponds
to an event collection while 0 collects the complement of the event collection (meaning the event
collection does not occur), given a realization t of T , to recognize higher scale events composed by
lower scale events represented by H , we would like to estimate what events are present in t, and
create further coupling with another CGE on the events that are present. Formally,
Definition 5 (Rectified Linear Unit (ReLU)). Let T := (H, Ĥ) be r.e.s created by a CGE, an
estimation h̃ of a realization of the r.e. H is obtained by

h̃i = arg max
h∈D

ν(h|t) = ehW
T
:i t̃/

∑
h

ehW
T
:i t̃

A further coupling is created by MLPCGE upon T , of which t̃ is the estimated realization of the r.v.
obtained by applying a transport map ReLU on T

ReLU(T ) := H � Ĥ
where � denotes Hadamard product. Operationally, ReLU is a binary mask h applying on the
outputs (preactivation) ĥ of the transport mapW .

As can be seen, AFs is not a well defined object, which is actually a combination of operations from
two stages of computation.

4.2 NN MANIFOLD AND CONTRACTION EFFECT OF CONDITIONAL GROUPING EXTENSION

In Section 3, motivated by the hierarchy assumption 3.2, we designed S-System. Here, using MLP as
an example, and also a proof of concept, we quantitatively show the benefits of hierarchical grouping
done in S-System by showing that irrelevant/uninterested variations in the lower scale events could
be gradually dropped by repeatedly applying CGE, characterized by “shrinking distance” between
events.

To characterize the distance, we need a geometry structure on event representations. We give an
initial construction built on information geometry (Amari (2016)). For a review of manifold and
information geometry, please refer to appendix C D. To begin with, we define
Definition 6 (Compositional Exponential Family of Distributions). The form of compositional
probability distribution of exponential family is given by the probability density function

p(x,h;θ)dxdh = e(k(h,x;θ)−ψ(θ))dµ(x)dν(h), k(h,x;θ) = 〈f(θ;h), g(x)〉
where x is realizable values of a multivariate random variable, k is a function called composi-
tional kernel that for a given h, k is the inner product between certain vector function g(x), called
sufficient statistic, (of which the component functions are linearly independent) and certain vector
function f(θ;h), called composition function, ψ(θ) is the normalization factor, and µ, ν ares the
laws on r.v. x,h, respectively.
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Conditioning on h, p(x|h;θ) = ek(h,x;θ)dµ(x) is of the exponential family. Actually, it is of
Curved Exponential Family (Amari (1995)). The parametric form of kernel Q of MLPCGE is of the
compositional exponential family, where k(h,x;θ) = 〈hTW ,x〉, f(θ;h) = hTW , g(x) = x.

Definition 7 (Neural Network Manifolds). LetM be an event representation built on a measurement
collection r.e. X through an S-system. If probability kernels Q, Q̂ of all CGE in the S-system are of
the compositional exponential family, of which the composition kernel is parameterized by the CGE
transport map, then the function spaceMs of measure µHs (Ĥ, T |H), s ∈ SX , where SX is the scale
poset of the S-system, is a Riemannian manifold with the following properties:

• Ms has a coordinate system ηs|h = (η1, . . . , ηn) that is the dual affine coordinate system of an
exponential family distribution, where

ηs|h := ∇f(θ;h)ψ(θ) = E[t|h] =

∫
t dµHs (Ĥ, T |H) =

∫
t q((t,h), ĥ)dµ(t)

θ is the parameters of the transport map W (T ;θ), ∇f(θ;h) takes derivatives w.r.t. composition
function of k and t is realizations of T . We call the coordinates neuron coordinates.
• Ms has a Riemannian metric derived by the second order Taylor expansion of the dual Bregman

divergence defined by

Dψ∗ [η
′
s|h : ηs|h] := ψ∗(η′s|h)− ψ∗(ηs|h)−∇ψ∗(ηs|h)T (η′s|h − ηs|h)

where ψ∗ is the Legendre dual of ψ. We call the divergence defined neuron divergence.

In the above definition, the stochastic manifold is defined by conditioning on group indicator
r.e.s H . To appreciate the definition, let’s return back to MLP. Let M be the event representa-
tion built on a measurement collection r.e. X by a MLPCGE, i.e., the measure of output r.e.s
being µH = eh

TWTx−ψ(W )µ(x)ν(h|x). When h is fixed, letting f0 = hTW T we have
µH(x|h) = ef

T
0 x−ψ(W )µ(x). It is known (Nielsen & Garcia (2009)) that the expectation statis-

tics, i.e., η|h = ∇f0ψ(f0(W )), uniquely determines µH(x|h). It implies that given h, µH is a
probability distribution, of which the most “salient” feature is the expectation. This explains why
the visualization of NN representations tends to be templates (Mahendran & Vedaldi (2015) Zhang
& Zhu (2018)), and the template based theories (Riesenhuber & Poggio (1999) Ankit B. Patel et al.
(2016) Balestriero & Baraniuk (2018)) are partially right. Thus, the group indicator h represents
the events of M, of which the expectation is the representative. Let the transport map of M be
W : x 7→ hTW Tx, µH(x|h) approximates the measure µW(X−1W−1(A)), A ⊆ Rn in PPMS.
That’s why instead of using the canonical coordinate of exponential family distribution, we use its
dual affine coordinate. Though essentially the two coordinate systems are dual views on the same
object, we define the manifold this way to characterize the fact that for a given NN, Dψ∗ charac-
terizes the degree of separation between two events A,A′ ∈ Ω of which the probability measures
µW(A), µW(A′) are transported by W (X(A)),W (X(A′)) and approximated by µH. Furthermore,
the divergence is defined by conditioning reflects the fact events can be compared using multiple
criteria, though to evaluate its implication more works are needed. For how the above definitions
relate to classical definitions on NNs in information geometry, please refer to appendix H.4.

By a directed application of theorem 14 of Liese & Vajda (2006), which is called information
monotony in Amari (2016), we have

Theorem 4.1 (Contraction of divergence between events). LetA := A′∪A′′ be an event collection
in event space Ω of PPMS consisting of two event collections, and two measurement collection r.e.s
X ′, X ′′ are created forA′,A′′ respectively. Let S be an S-System,M′,M′′ be event representations
built on X ′, X ′′ by S respectively, and SX be the scale poset of S. Then ∀s1, s2 ∈ SX , s1 < s2, we
have

D[η′s1 |h1
: η′′s1 |h1

] ≥ D[η′s2 |h2
: η′′s2 |h2

]

where η′s1 ,η
′
s2 are the neuron coordinates at scale s1, s2 ofM′ respectively; so are η′′s1 ,η

′′
s2 of those

ofM′′; h1,h2 are arbitrarily fixed realizations of group indicator r.e.s at scale s1, s2 respectively.

Example 4.1 (Contraction of divergence induced by deformation). Let g be a diffeomorphism group,
and X ′ = g.X , the deformed r.e. created by applying g on a r.e. X . By the above theorem, for
event representations created by an S-system, coordinated as η|h,η′|h, their distance is gradually
contracted in term of neuron divergence. For a review of diffeomorphism group, refer to appendix C.
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The theorem has twofold significance. First, it shows that a recursive application of CGE would
shrink the discrepancy between events, thus possessing the capacity to contract irrelevant variations
in the events, though further characterizations are needed to give operational guidance. It completes
the incomplete analog between NNs and RG (Lin & Tegmark (2017)), which lacks a physical quan-
tity to renormalize to produce large scale properties. The physical quantity is shown as the neuron
divergence between event representations, or more informally, semantic difference between sam-
ples. We note essentially the large scale quantity is group indicator r.e.s of high scales that represent
events that gradually have semantic meaning, of which the neuron divergence is a property. We have
present it this way since a quantity like distance is more concrete and easy to understand. Contrary to
clear-cut physical quantities like temperature emerging in physics through RG, a meaningful event
group emerges through learning, which leads us to the next section. Second, along with definition 7,
it identifies the proper object if the geometry of NNs is to be studied. For example, to study the
symmetry in the geometry, the object to investigate is the symmetry in the event space, of which
the diffeomorphism group is a type of symmetry, and invariance is the mapping of events to the
same neuron coordinates. This is in contrast with existing works that study symmetry by studying
the equivariance (Cohen & Welling (2016) Dieleman et al. (2016)), or invariance (Anselmi et al.
(2016)), or linearization of diffeomorphism (Mallat (2016)) in NNs through studying the changes
induced by group actions in feature maps in the intermediate layers of a sample, which is a rather ad
hoc object. The event space perhaps is the “mathematical ghost” lurking in Mallat (2016).

5 LEARNING AND OPTIMIZATION LANDSCAPE OF NNS AND S-SYSTEM

We have introduced a new algorithm family, i.e., S-System, to estimate probabilities, and shown
MLP is an implementation of an S-system. Yet, to construct an operational theory of S-System, we
still need a strategy to learn the parameters of probability kernels of S-System. In other word, how
possibly can we ground the probability approximation created by coupling on “reality”? We will
show that despite possessing the normally undesirable complexity, non-identifiability and singularity
(Amari (2016)) properties, S-System could be marvelously powerful. Stating in a more familiar
language, the problem translates to how a many latent variable model is able to learn? This is
addressed in this section, and is the long standing optimization issue of NNs. We aim at investigating
the principle underlying instead of proving the most general case. More specifically, when a set of
boundedness and diversity conditions hold, we show that a NN can approximate the probability
distribution of any binary group indicator r.e. given empirical measure of the r.e.; or in other words,
for a class of losses, including the hinge loss, and a class of NNs, including MLP and CNN, we
prove that all local minima of the empirical risk function are global minima with zero loss values.

The problem is formulated as the following. Let MW̄ be an event representation built by an S-
system S on a measurement collection r.e. Z supported on the PPMSW; the measurable space Z
and measure on Z are X × Y and µZ respectively, where X := Rn,Y := {−1, 1}. Let the scale
poset of S be a chain, symbolically represented as an integer set SX = {0, . . . , L}, 0 < . . . < L,
and (Hl, Ĥl), l ∈ SX the output r.e.s ofMW̄ . A reward-penalty mechanism is introduced to give
feedback on the “faithfulness” of approximated measure µHL as a discrepancy measure between
ν(HL|H{1,...,L−1}, X) and µZ(Y |X), where (X,Y ) ∈ Z . We can see that supervised learning ac-
tually uses the group indicator r.e. HL to approximate the grouping of samples arbitrated by labels.
In a certain way, it formalizes semantics. The problem formulation is a part of the general learning
framework of S-System described in appendix G, which also includes unsupervised learning, though
we do not have space to discuss here.

The problem setting above is principally the same with the formulation of a binary supervised learn-
ing problem in statistic learning theory (SLT). For a classic-style formulation, the readers may refer
to appendix E. The key insight of SLT is that instead of seeking a fully probabilistic formulation, the
discrepancy can be formulated as an empirical risk that measures the discrepancy between HL and
Y , calculated on a set of training samples {Xi, Yi}i=1,...,m:

R(T ) =
1

m

m∑
i=1

l(T (Xi;θ), Yi) =
1

m

m∑
i=1

l(ĤL(Xi), Yi) (1)

where T here denotes the hierarchical transport map built, l is a loss function, and ĤL(Xi) is the
coupled r.e. built on X at scale L.
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Our goal is to investigate the fundamental principle that makes R(T ) tractable. To do this, we study
the risk landscape by studying the Hessian of R(T ) of a particular class of loss functions, of which
the eigenvalue spectrum dictates whether critical points of R(T ) are local minima, or saddle points.
To motivate the class of losses, observing that

d2

dθ2
l(T (x;θ), y) = l′′(T (x;θ), y)

d

dx
T (x;θ)

d

dx
T (x;θ)T + l′(T (x;θ), y)

d2

dx
T (x;θ) (2)

We study the class L0 of functions l and the class of NNs T , such that for l ∈ L0, it satisfies: 1)
l : R → R+, when y is taken as a constant; 2) l is convex; 3) the second order derivatives d2

dx2 l
is zero; 4) minx l(x, y) = 0, while for T it satisfies: dim(T (x;θ)) = 1. The restriction allows
us to study the most critical aspect of the risk function of supervised NNs by making the first term
above zero, while the second term a single matrix (instead of an addition of matrices). The class
of l includes important loss functions like the hinge loss max(0, 1 − ĤLY ), and the absolute loss
|ĤL − Y |, which were studied in Choromanska et al. (2015a) under unrealistic assumptions. The
class of T is the NN with a single output neuron, which can be written as

T (x;θ) = xT
L−1∏
i=1

Widg(h̃i)α (3)

where α is a vector, dg(h̃i) is the diagonal matrix whose diagonal is the estimated value of Hi, and
the meaning of rest symbols is the same as those of MLPCGE in definition 4. Notice that both x
and hi are realizations or estimation of r.e.s, thus the Hessian of T (x;θ) is a random matrix (Tao
(2012)), which implies the Hessian H of R(T ) is a random matrix created by summing random
matrices, each of which is a gradient l′ multiplies the Hessian of T .

Thus, the problem converts to study the eigen-spectrum of a random matrix H . The conversion
looks straightforward now, but is actually a major obstacle that stops Choromanska et al. (2015a)
Jeffrey Pennington (2017), where a confusion about the source of randomness led them astray (the
point is discussed in detail in appendix H.5). With the following realistic assumptions on H (for
a discussion on the practicality of the assumptions, refer to appendix F.3), we show that l has a
surprising benign landscape. SupposeH is a N ×N matrix, and let

A := E[H],
1√
N
W := H −A,S[R] :=

1

N
EW [WRW ]

where the expectation in S is taken w.r.t. W while keeping R fixed — it is a linear operator on the
space of matrices.
Assumption 5.1 (Boundedness). 1) ∃C ∈ R,∀N ∈ N, ||A|| ≤ C, where ||A|| denotes the
operator norm. 2) ∃µq ∈ R,∀q ∈ N,∀α ∈ J,E[|Wα|q] ≤ µq , where J = I × I, and
I = {1, . . . , N}. 3) ∃C1, C2 ∈ R,∀R ∈ N, ε > 0, |||κ|||iso

2 ≤ C1, |||κ||| ≤ C2N
ε; 4)

∃0 < c < C, ∀T � 0, c N−1tr T � S[T ] � CN−1tr T .
Assumption 5.2 (Diversity). There exists µ > 0 such that the following holds: for
every α ∈ I and q,R ∈ N, there exists a sequence of nested sets Nk =
Nk(α) such that α ∈ N1 ⊂ N2 ⊂ · · · ⊂ NR = N ⊂ I, |N | ≤
N1/2−µ and κ(f(WI\∪jNnj+1(αj)), g1(WNn1

(α1)\∪j 6=1N (αj)), . . . , gq(WNnq (αq)\∪j 6=qN (αj))) ≤
N−3q||f ||q+1

∏q
j=1 ||gj ||q+1, for any n1, . . . , nq < R, α1, . . . , αq ∈ I and real analytic func-

tions f, g1, . . . , gq , where ||||p is the Lp norm on function space. We call the setN of α the coupling
set of α.
Theorem 5.1. Let R(T ) be the risk function defined at eq. (1), where the loss function l is of class
L0, and the transport map T is a neural network defined at eq. (3). If the Hessian H of R(T )
satisfies assumptions 5.1 5.2, E(H) = 0, and N →∞, then

1. all local minima are global minima with zero risk
2. A constant λ0 ∈ R exists, such that the operator norm ||H|| of H is upper bounded by

Em[l′(T (X), Y )]λ0, where Em[l′(T (X), Y )] is the empirical expectation of l′. It implies the
regions around the minima are flat basins, where the eigen-spectrum of H is increasingly con-
centrated around zero.

For the elaboration of the theorem, refer to appendix F. For the proof directly and further discussion
of the theorem, refer to F.4. The error for finite N is discussed at the remarks of theorem F.1.
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APPENDICES

All definitions present in the appendices are adopted and reproduced from existing literature with
sources cited, for the purpose of making exact the terminology used in the paper.

A COUPLING THEORY

The following definitions are adapted from Thorisson (2000) unless otherwise noted.
Definition A.1 (Random Element; Random Variable; Random Function). A random element in a
measurable space (E, E) defined on a probability space (F,F , µ) is a measurable mapping T from
(F,F , µ) to (E, E), where

T−1A ∈ F , A ∈ E ;T−1A := {w ∈ F : T (w) ∈ A}

We say T is supported by probability measure space (F,F , µ), (F,F , µ) is the support of T , T is
an F/E measurable mapping from F to E, and the induced measure µ(T−1(A)) is the law of T .
Some r.e.s have special names. When (E, E) is the measurable space (R,B(R)), where R is the real
number field and B(R) is the Borel set, X is also named as a random variable, whose abbreviation
is r.v.; when (E, E) is the multivariate real measurable space, T is named as a multivariate r.v.; when
(E, E) is a function space satisfying certain conditions (Ionescu–Tulcea theorem, or Kolmogorov’s
extension theorem (Klenke (2012))), T is named as a random function.

Definition A.2 (Coupling). A probability measure µ on
⊗

i∈I(Ei, Ei) is a coupling of µi, i ∈ I, if
µi is the ith marginal of µ, that is, if µi is induced by the ith projection mapping:

µ({x : xi ∈ A}) = µi(A), A ∈ Ei, i ∈ I

where I is an index set, µi is a probability measure on a measurable space (Ei, Ei), and⊗
i∈I(Ei, Ei) := (

∏
i∈IEi,

⊗
i∈I Ei),

∏
i∈IEi is the Cartesian product of Ei and

⊗
i∈I Ei is the

product σ-algebra.

The general idea of coupling is to find a dependence structure (joint distribution) from fixed marginal
distributions that fits one’s purpose.
Definition A.3 (Coupling of Random Element; Deterministic Coupling; Transport Map). Given
two r.e.s X,Y , a coupling (X,Y ) refers to the coupling of probability measure µ, ν of probability
space (E, E , µ), (F,F , ν), where µ, ν is the probability measure of r.e. X,Y respectively. The
coupling (X,Y ) is called deterministic if there exists a measurable function T : E → F such that
Y = T (X). T is normally referred as transport map. Informally, we say that T transports measure
µ of X to measure ν of Y . The definitions are adapted from Villani (2008).

To recognize an event ωs that is composed of events of the lowest detectable scale Ωs0 , the idea is
to transport the probability measure of the event ωs through a deterministic coupling, and construct
a r.e. that represents possible states ωs may take. We introduce concepts needed in the following.
Definition A.4 (Extension of Probability Space). A probability space (F̄ , F̄ , µ̄) is an extension of
another probability space (F,F , µ), if (F̄ , F̄ , µ̄) supports a r.e. ξ in (F,F) having law µ. If T
is a r.e. in (E, E) defined on (F,F , µ), then it has a copy T̄ , i.e., the r.e. T̄ defined on (F̄ , F̄ , µ̄)
by T̄ (ω̄) = T (ξ(ω̄)), ω̄ ∈ Ω̄ and µ̄(T̄ (·)) = µ(T (·)). T̄ is called original r.e.. New r.e.s may be
created, which is called external r.e.s.

The goal of S-System is to create extensions of a measurement collection r.e. X to reconstruct Ωs
for some s ∈ S in PPMS, such that µX (Hs = hs) = µW(ωs), where Hs is a r.e. created through
extension, and hs is a realized value of it. However, we do not possess the p.d.f. of X , which
we have to rely on realizations of X . What we can do is to leverage and only leverage available
information through conditioning extension.
Definition A.5 (Probability Kernel). Given two measurable space (E1, E1), (E2, E2), a function
Q(·, ·) fromE1×E2 to [0, 1] is an ((E1, E1), (E2, E2)) probability kernel if 1)Q(·, A) is E1/B([0, 1])
measurable for each A ∈ E2 2) and Q(y, ·) is probability measure on (E2, E2) for each y ∈ E1.
A probability kernel uniquely determines a probability measure on (E1, E1)

⊗
(E2, E2) (Ash (1972)

Section 2.6.2).
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Definition A.6 (Conditioning Extension). Let T1 be an r.e. in (E1, E1) defined on a probability mea-
sure space (F,F , µ), and let Q(·, ·) be an ((E1, E1), (E2, E2)) probability kernel. A conditioning
extension (F̄ , F̄ , µ̄) of (F,F , µ) is created by letting

(F̄ , F̄) := (F,F)
⊗

(E2, E2) µ̄(A×B) :=

∫
A

Q(T (ω), B)µ(dω), A ∈ F , B ∈ E2

ξ(ω, t) := ω, ω ∈ Ω, t ∈ E2 T̄1(ω, t) := T1(ω), ω ∈ Ω, t ∈ E2 T̄2(ω, t) := t, t ∈ E2

T̄1 is the original r.e.s in the new probability space, while T̄2 is a new external r.e. created. Condi-
tioning extension can be repeated countably many times (Ash (1972) Section 2.7.2).

Definition A.7 (Splitting Extension). Let T1, T2 be r.e.s in (E1, E1), (E2, E2) respectively, defined
on a probability space (F,F , µ). Let ν be a probability measure on a Polish space (E3, E3), let
Q(·, ·) be an ((E3, E3), (E2, E2)) probability kernel, and suppose

µ(T2 ∈ A) =

∫
Q(t, A)ν(dt), A ∈ E2

Then a splitting extension of (F,F , µ) is to create an extension to support a r.e. T3 in (E3, E3)
having distribution ν, and such that

µ(T2 ∈ ·|T3 = t) = Q(t, ·), t ∈ E3
Furthermore, T1 is conditionally independent of T3 given T2.

B S-SYSTEM DETAILS

Algorithm 2 Example implementations of S-System functions successor and predecessor.
function SUCCESSOR(s)

return the set of elements in SX that are the immediate successors of s (immediate successors
of s is the set of smallest elements that are comparable with s and larger than s, though themselves
are not comparable)
end function
function PREDECESSOR(s)

return the set of indices of elements in SX that are the immediate predecessors of s (imme-
diate predecessors of s is the set of smallest elements that are comparable with s and smaller than
s, though themselves are not comparable)
end function

C MANIFOLD AND DIFFEOMORPHISM GROUP

The following definitions have been adapted from Lee (2012) unless otherwise noted.

Definition C.1 (Topological Manifold). Suppose M is a topological space. We say that M is a
topological manifold of dimension n or a topological n-manifold or just a n-manifold if it has
the following properties:

• M is a Hausdorff space: for every pair of distinct points p, q ∈ M , there are disjoint open
subsets U, V ⊆M such that p ∈ U and q ∈ V .

• M is second-countable: there exists a countable basis for the topology of M .
• M is locally Euclidean of dimension n: each point of M has a neighborhood that is homeomor-

phic to an open subset of Rn.

Definition C.2 (Smooth Mapping; Diffeomorphism). If U, V are open subsets of Euclidean spaces
Rn and Rm, respectively, a function f : U → V is said to be smooth (or C∞, or infinitely
differentiable) if each of its component functions has continuous partial derivatives of all orders. If
in addition f is bijective and has a smooth inverse map, it is called a diffeomorphism.

Definition C.3 (Chart; Coordinate Chart; Smooth Compatible). LetM be a topological n-manifold.
A coordinate chart (or just a chart) on M is a pair (U,ψ), where U is an open subset of M and
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ψ : U → Û is a homeomorphism from U to an open subset Û = ψ(U) ⊆ Rn. U is called a coordi-
nate domain, or just domain, ψ is called a (local) coordinate map, and the component functions
(x1, . . . , xn) of ψ, defined by p ∈ M,ψ(p) = (x1(p), . . . , xn(p)), are called local coordinates
on U . Two (U, φ), (V, ψ) are called smoothly compatible if either U ∩ V = ∅, or ψ ◦ φ−1 is a
diffeomorphism.
Definition C.4 (Atlas; Smooth Atlas; Maximal Atlas). Let M be a topological manifold. An atlas
A for M is a collection of charts whose domain cover M . If any two charts in A is smoothly
compatible with each other, it is called a smooth atlas. A smooth atlas A on M is maximal if it is
not properly contained in any larger smooth atlas.
Definition C.5 (Smooth Manifold). A smooth manifold is a pair (M,A), whereM is a topological
manifold and A is a maximal smooth atlas on M . When no confusion exists, we may just say “M is
a smooth manifold”.
Definition C.6 (Riemannian Metric). A Riemannian metric g of a smooth manifoldM is a symmet-
ric covariant 2-tensor field on M that is positive definite at each point. It defines an inner product
on M , which informally, could be represented by a quadratic form ηTGη′, where G = (gij) is a
matrix and η,η′ are the local coordinates of two points in M .
Definition C.7 (Riemannian Manifold). A Riemannian manifold is a pair (M, g), where M is a
smooth manifold and g is a Riemannian manifold. Or in short, we could say M is a Riemannian
manifold if M is understood to be endowed with a specific Riemannian metric.

The following definition is adopted from Banyaga (1997).
Definition C.8 (C∞ Diffeomorphism Group). Let C∞(M,N) denote the space of all C∞ mapping
f : M → N , whereM,N are smooth manifolds. The diffeomorphism group, denoted by Diff∞(M),
is the set of all C∞ diffeomorphisms of M , the group action of which is the mapping composition.

To make the definition more concrete to help understanding, we provide an example adopted from
Mallat (2016).
Example C.1. The diffeomorphism group is the set of deformation that may be applied to objects,
e.g., images, of which we can define a norm to characterize the deformation. A small diffeomorphism
acting on a function x(u) defined on Rn can be written as a translation of u by a g(u):

g.x(u) = x(u− g(u)), g ∈ Diff∞(Rn)

Note that the smooth condition is not necessary, and is only used to avoid introducing further def-
initions. The diffeomorphism translates points by at most ||g||∞ = supu∈Rn |g(u)|. Small diffeo-
morphism corresponds to ||∇g||∞ = supu |∇g(u)| < 1, where |∇g| is the matrix norm of the
Jacobian matrix of g at u. Thus, an element in a subset of Diff∞(Rn) can be understood as a small
deformation of images where the deformation is bounded.

D INFORMATION GEOMETRY

The following definitions are adapted from Amari (2016).
Definition D.1 (Divergence). Suppose that M is a n-manifold, of which the points have a local
coordinates system η. Given two points p, q ∈M , the coordinates of which are ηp,ηq respectively,
a divergence is a function of ηp,ηq , written as D[p : q] or D[ηp : ηq], which satisfies the following
criteria.

• D[p : q] ≥ 0.
• D[p : q] = 0, if and only if p = q.

When p and q are sufficiently close, andD is differentiable, by denoting their coordinates by ηp and
ηq = ηp + dη, the Taylor expansion of D is written as

D[ηp : ηq + dη] =
1

2

∑
gij(ηp)dηiηj +O(|dη|3)

, and matrixG = (gij) is positive-definite, depending on ηp.
Definition D.2 (Bregman Divergence). Given a convex function ψ(η), a Bregman divergence de-
rived from ψ is a divergence defined as

Dψ[η : η′] = ψ(η′)− ψ(η)−∇ψ(η)T (η′ − η)
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Definition D.3 (Legendre Dual; Legendre Transform). Given a convex function ψ(η), the Legendre
dual of ψ is the function ψ∗

ψ∗(η∗) = ηTη∗ − ψ(η)

where η = f(η∗) and f is the inverse function of η∗ = ∇ψ(η). ψ∗ is a convex function. ∇ψ(η) is
called the Legendre Transform of η.
Definition D.4 (Dual Bregman Divergence). Given a convex function ψ(η), and Dψ the Bregman
divergence derived by ψ. Let ψ∗ be the Legendre dual function of ψ, then the Bregman divergence
Dψ∗ defined by ψ∗ is called the Dual Bregman Divergence derived by ψ. We have

Dψ∗ [η
∗ : η′∗] = Dψ[η′ : η]

Definition D.5 (Exponential Family of Probability Distributions; Stochastic Manifold; Affine Coor-
dinate System; Dual Affine Coordinate System). The form of probability distribution of exponen-
tial family is given by the probability density function

p(x;θ)dx = e(θTh(x)−ψ(θ))dµ(x)

where x is a realizable value of a multivariate random variable, h(x) is a vector function of x
which are linearly independent, ψ(θ) is the normalization factor, and µ is the law on r.v. x.

Since ψ is a convex function w.r.t. θ, the exponential family distributions is a Riemannian manifold
(M, g) with an affine coordinate system θ = (θ1, . . . , θn), and g is given by the second order
Taylor expansion of the Bregman divergence derived from ψ. It is called the stochastic manifold
of exponential family distribution. θ is called natural or canonical parameters. An alternative
coordinate system of M is given by the Legendre transform

η = ∇ψ(θ) =

∫
heθ

Th(x)dµ(x)

of θ, which is well known as the expectation parameter in statistics, and is called dual affine co-
ordinate system. Correspondingly, an alternative Riemannian metric is derived from the Legendre
dual of ψ. The Bregman divergence derived is the well known discrepancy measure on probability,
the KL divergence.

E STATISTICAL LEARNING THEORY

Assume a sample space Z = X × Y , where X is the space of input data, and Y is the label space.
We use Sm = {si = (xi, yi)}mi=1 to denote the training set of size m whose samples are drawn
independently and identically distributed (i.i.d.) according to an unknown distribution P . Given a
loss function l, the goal of learning is to identify a function f : X 7→ Y in a hypothesis space (a
class F of functions) that minimizes the expected error

R(f) = Ez∼P [l (f(x), y)] ,

where z = (x, y) ∈ Z is sampled i.i.d. according to P . Since P is unknown, the observable quantity
serving as the proxy to the true risk R(f) is the empirical error

Rm(f) =
1

m

m∑
i=1

l (f(xi), yi) .

F DERIVATION, PROOF, AND FURTHER INTERPRETATION OF THEOREM 5.1

F.1 HESSIAN OF NN IS INHERENTLY A HUGE RANDOM MATRIX

As explained in section 5, to study the landscape of the loss function, we study the eigenvalue
distribution of its Hessian H at the critical points. First, we derive the Hessian H of loss function
of class L0 composed upon NNs with a single output. For a review of matrix calculus, the reader
may refer to Magnus & Neudecker (2007).

The first partial differential of l w.r.t. Wp is

∂l(Tx, y) = l′(Tx, y)αT
L−1∏
j=p+1

(dg(h̃′j)W
T
j )dg(h̃′p)⊗ xT

p−1∏
i=1

(Widg(h̃i))∂vecWp
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where ⊗ denotes Kronecker product. Note that for clarity of presentation, we use the partial dif-
ferential the same way as differential is defined and used in Magnus & Neudecker (2007), i.e., ∂l
is a number instead of an infinitely small quantities, though in the book, partial differential is not
defined explicitly. h̃′ is an abuse of notation for clarity and needs some explanation. Recall that
{hi}i=1,...,L−1 are the group indicator r.e.s, and {h̃i}i=1,...,L−1 are the estimation of them based on
transport maps. h̃i is a scalar function, and denote it as h̃i(a), where a is the computed input. When
computing the partial differential w.r.t. Wp, by the chain rule, the differential of h̃i(a) w.r.t. Wp is
∂h̃i(a)/∂a. To avoid introducing too much clutter, we denote h̃′i as ∂h̃i(a)/∂a.

Since H is symmetric, we only need to compute the block matrices by taking partial differential
w.r.t. Wq , where q > p — taking partial differential w.r.t. Wp again gives zero matrix.

∂2l(Tx, y) =l′(Tx, y)

[(αT
L−1∏
k=q+1

(dg(h̃′′k)W T
k )dg(h̃′′q )⊗ dg(h̃′p)

q−1∏
j=p+1

(Wjdg(h̃′j))∂vecWq)
T

⊗ xT
p−1∏
i=1

(Widg(h̃i))]∂vecWp

=l′(Tx, y)

(∂vecWq)
T [dg(h̃′′q )

L−1∏
k=q+1

(Wkdg(h̃′′k))α⊗
q−1∏
j=p+1

(dg(h̃′j)W
T
j )dg(h̃′p)

⊗ xT
p−1∏
i=1

(Widg(h̃i))]∂vecWp

where again h̃′′ is an abuse of notation, it is actually h̃′� h̃′, the hamadard product of partial differ-
entials obtained by taking partial differential w.r.t. Wp, and w.r.t. Wq . The two partial differentials
are the same because a, the input the h, is the same throughout. Notice that the estimation h̃ of
group indicator r.e.s H is merely a function of Ĥ . It implies h̃ is a realization of a r.e. created by a
deterministic coupling by applying a transport map on Ĥ . The deeper principles of the estimation
will be explained in appendix G. For now, it suffices to stop with the fact that the entries of H is
a random variable. As an example, for estimation done by ReLU, h̃ would be h̃i = max{0, ĥi}.
Thus,H is an ensemble of real symmetric random matrix with correlated entries. Denote

Hpq = l′(Tx, y)dg(h̃′′q )

L−1∏
k=q+1

(Wkdg(h̃′′k))α⊗
q−1∏
j=p+1

(dg(h̃′j)W
T
j )dg(h̃′p)⊗ xT

p−1∏
i=1

(Widg(h̃i))

(4)
We have the Hessian of l as

H =


0 HT

12 . . . HT
1L

H12 0 . . . HT
2L

...
. . . . . .

...
H1L H2L . . . 0

 (5)

F.2 EIGENVALUE DISTRIBUTION OF SYMMETRY RANDOM MATRIX WITH SLOW
CORRELATION DECAY

In this section, we show how to obtain the eigen-spectrum of H through random matrix theory
(RMT) (Tao (2012)). RMT has been born out of the study on the nuclei of heavy atoms, where
the spacings between lines in the spectrum of a heavy atom nucleus is postulated the same with
spacings between eigenvalues of a random matrix (Wigner (1957)). In a certain way, it seems to be
the backbone math of complex systems, where the collective behaviors of sophisticated subunits can
be analyzed stochastically when deterministic or analytic analysis is intractable.

The following definitions can be found in Tao (2012) unless otherwise noted.
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The eigen-spectrum is studied as empirical spectral distribution (ESD) in RMT, define as

Definition F.1 (Empirical Spectral Distribution). Given a N ×N random matrix H , its empirical
spectral distribution µH is

µH =
1

N

N∑
i=1

δλi

where {λi}i=1,...,N are all eigenvalues ofH and δ is the delta function.

Given a hermitian matrixH , its ESD µH(λ) can be studied via its resolventG.

Definition F.2 (Resolvent). Let H be a normal matrix, and z ∈ H a spectral parameter. The
resolventG ofH at z is defined as

G = G(z) =
1

H − z
where

H := {z ∈ C : =z > 0}
C denotes the complex field, and = is the function gets imaginary part of a complex number z.

G compactly summarizes the spectral information of H around z, which is normally analyzed by
functional calculus on operators, and defined through Cauchy integral formula on operators

Definition F.3 (Functions of Operators).

f(T ) =
1

2πi

∫
C

f(λ)

λ− T
dλ (6)

where f is an analytic scalar function and C is an appropriately chosen contour in C.

The formula can be defined on a range of linear operators (Dunford & Schwartz (1957)) (Recall that
a linear operator is a mapping whose domain and codomain are defined on the same field). Since the
most complex case involved here will be a normal matrix, we stop at stating that the formula holds
true when T is a normal matrix.

ResolventG is related to eigen-spectrum ofH through stieltjes transform of µH(λ).

Definition F.4 (Stieltjes Transform). Let µ be a Borel probability measure on R. Its Stieltjes trans-
form at a spectral parameter z ∈ H is defined as

mµ(z) =

∫
R

dµ(x)

x− z

With some efforts, it can be seen that the normalized trace of G is stieltjes transform of eigen-
spectrum ofH

mµH
(z) =

1

N
tr G

For a proof, the reader may refer to proposition 2.1 in Alt et al. (2018). µH can be recovered from
mµH

through the inverse formula of Stieltjes-Perron.

Lemma F.1 (Inverse Stieljies Transform). Suppose that µ is a probability measure on R and let mµ

be its Stieltjes transform. Then for any a < b, we have

µ((a, b)) +
1

2
[µ({a}) + µ({b})] = lim

=z→0

1

π

∫ a

b

=mµ(z)d<z

where < is the function that gets the real part of z. The proof can be found at Tao (2012) p. 144.

Consequently, the problem converts to obtain G if we want to obtain µH . A recent advance in the
RMT community has enabled the analysis of ESD of symmetric random matrix with correlation
(Erdős et al. (2017)) from the perspective of mean field theory (Kadanoff (2000)), which we debrief
in the following.
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The resolventG holds an identity by definition

HG = I + zG (7)

Note that in the above equationG is a functionG(H) ofH . When the average fluctuation of entries
of G w.r.t. to its mean is small as N grows large, eq. (7) can be turned into a solvable equation
regarding G instead of merely a definition. Formally, it is achieved by taking the expectation of
eq. (7)

E[HG] = I + zE[G] (8)

When fluctuation of moments beyond the second order are negligible, we can obtain a class of
random matrices whose ESD can be obtained by solving a truncated cumulant expansion of eq. (8).
With the above approach, using sophisticated multivariate cumulant expansion, Erdős et al. (2017)
provesG can be obtained as the unique solution to Matrix Dyson Equation (MDE) below

I + (z −A+ S[G])G = 0,=G � 0,=z > 0 (9)

where =G � 0 means =G is positive definite,

A := E[H],
1√
N
W := H −A,S[R] :=

1

N
EW [WRW ] (10)

S is a linear map on the space of N ×N matrices andW is a random matrix with zero expectation.
The expectation is taken w.r.t. W , while takingR as a deterministic matrix.

We describe their results formally in the following, which begins with some more definitions,
adopted from Erdős et al. (2017).

Definition F.5 (Cumulant). Cumulants of κm of a random vector w = (w1, . . . , wn) are defined
as the coefficients of log-characteristic function

logEeit
Tw =

∑
m

κm
itm

m!

where
∑
m is the sum over all n-dimensional multi-indicesm = (m1, . . . ,mn).

To recall, a multi-indices is

Definition F.6 (Multi-index). a n-dimensional multi-index is an n-tuple

m = (m1, . . . ,mn)

of non-negative integers. Note that |m| =
∑n
i=1mi, andm! =

∏n
i=1mi!.

Similar with the more familiar concept moment, cumulant is also a measure of statistic properties
of r.e.s. Particularly, the k-order cumulant κ characterizes the k-way correlation of a set of r.v.s.
The key of insight of the paper is to identify the condition where a matrix entry wα, α ∈ I is only
strongly correlated with a minority of WI\{α}, and higher order cumulants tend to be weak and
not influential in large N limit. Thus, a proper formulation of the correlation strength is needed,
and is defined as the cumulant norms on entries of W in the following. Given k entries Wα at
α = {αi}i=1,...,k, αi ∈ I of matrix W , where duplication is allowed, denote κ(α1, . . . , αk) =
κ(wα1 , . . . , wαk

).
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Definition F.7 (Cumulant Norms).
|||κ||| := |||κ|||≤R := max

2≤k≤R
|||κ|||k, |||κ|||k := |||κ|||av

k + |||κ|||iso
k

|||κ|||av
2 := || |κ(∗, ∗)| ||, |||κ|||av

k := N−2
∑

α1,...,αk

|κ(α1, . . . , αk)|, k ≥ 4 (11a)

|||κ|||av
3 := ||

∑
α1

|κ(α1, ∗, ∗)| ||+ inf
κ=κdd+κdc+κcd+κcc

(|||κdd|||dd + |||κdc|||dc + |||κcd|||cd + |||κcc|||cc)

(11b)

|||κ|||cc = |||κ|||dd := N−1

√∑
b2,a3

(
∑
a2,b3

∑
α1

|κ(α1, a2b2, a3b3)|)2

|||κ|||cd := N−1

√∑
b3,a1

(
∑
a3,b1

∑
α2

|κ(a1b1, α2, a3b3)|)2, |||κ|||dc := N−1

√∑
b1,a2

(
∑
a1,b2

∑
α3

|κ(a1b1, a2b2, α3)|)2

|||κ|||iso
2 := inf

κ=κd+κc

(|||κd|||d + |||κc|||c), |||κd|||d := sup
||x||≤1

||||κ(x∗, ·∗)|| ||, |||κ|||c := sup
||x||≤1

|| ||κ(x∗, ∗·)|| ||

(11c)

|||κ|||iso
k := ||

∑
α1,...,αk−2

|κ(α1, . . . , αk−2, ∗, ∗)| ||, k ≥ 3

where in eq. (11b), the infimum is taken over all decomposition of κ in four symmetric functions
κdd, κdc, κcd, κcc; in eq. (11c) the infimum is taken over all decomposition of κ into the sum of
symmetric κc and κd. The norms defined in eq. (11a) and eq. (11c) need some explanation on the
notation. If, in place of an index α ∈ J, we write a dot (·) in a scalar quantity then we consider the
quantity as a vector indexed by the coordinate at the place of the dot. For example, κ(a1·, a2b2) is
a vector, the i-th entry of which is κ(a1i, a2b2) and therefore the inner norms in eq. (11a) indicate
vector norms. In contrast, the outer norms indicate the operator norm of the matrix indexed by star
(∗). More specifically, ||A(∗, ∗)|| refers to the operator norm of the matrix with matrix elements
Aij . Thus || ||κ(x∗, ∗·)|| || is the operator norm ||A|| of the matrix A with matrix elements Aij =
||κ(xi, j·)||. κ(xb1, a2b2) denotes

∑
a1
κ(a1b1, a2b2)xa1

, where x is a vector.

We do not want to explain the cumulant norms beyond what has been said, considering it is too
technically involved and rather a distraction. For interested readers, we suggest reading the paper
Erdős et al. (2017). Equipped with the cumulant norms, we would have the assumptions stated in
assumption 5.1 5.2 that make MDE valid.
Remark. In Erdős et al. (2017), the functions f, g1, . . . , gq in assumption 5.2 are assumed to be
functions without any qualifiers. We change it to analytic functions for further usage. In the proof of
theorem F.1, the functions are only required to be analytic, thus even if the assumptions are changed,
the conclusion still holds.

The diversity assumption requires that a matrix entry wα only couples with a minority of the over-
all entries, and for the rest of the entries, the coupling strength does not exceed a certain value
N−3q||f ||q+1

∏q
j=1 ||gj ||q+1 characterized by cumulants. For example, suppose q = 1, given a

entry α1, the assumption essentially states that the entries in the coupling set N (α1) is not strongly
coupled with the resting of the population WI\Nn1+1(α1). The explanation goes similar as q grows,
of which the coupling strengh is characterized by higher order cumulants. While boundedness
assumptions 1)2)3)4) states the expectation of H is bounded, moments are finite, cumulants are
bounded for the entries that do strongly couples, and S[W ] is bounded in the sense of eigenvalues.

When the assumptions satisfies, we have the resolventG of a random matrixH close to the solution
to the MDE probabilistically with some regular properties as the following, adopted in an informal
style to ease reading from Erdős et al. (2017) theorem 2.2, Helton et al. (2007) theorem 2.1, and Alt
et al. (2018) theorem 2.5.
Theorem F.1. Let M be the solution to the Matrix Dyson Equation eq. (9), and ρ the density
function (measure) recovered from normalized trace 1

N trM through Stieljies inverse lemma F.1.
We have

1. The MDE has a unique solutionM = M(z) for all z ∈ H.
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2. suppρ is a finite union of closed intervals with nonempty interior. Moreover, the nonempty interi-
ors are called the bulk of the eigenvalue density function ρ.

3. The resolventG ofH converges toM as N →∞.
Remark. theorem F.1.3 is a probably-approximately-correct type result, where the error depends
on N . We do not present the exact error bound here, for that it is rather complicated, and does not
help understanding — since we are not working on finer behaviors of NNs with a particular size,
and do not need such a fine granularity characterization yet. We refer interested readers to Erdős
et al. (2017) theorem 2.1, 2.2, where the exact error bounds are present.

F.3 DIVERSITY ASSUMPTION IS A PRECONDITION TO THE POWER OF NNS AND S-SYSTEM

Before we leverage MDE to obtain the eigen-spectrum of the Hessian H of NNs derived at eq. (5),
we explain the meaning of the assumptions 5.1, 5.2 in the NN and S-System context, so to point to
the potential of the assumptions to give practical guidance on training NNs.

Recall that the objective function is the empirical risk function R(T ) at eq. (1). Given a set of i.i.d.
training samples (Xi, Yi)i=1,...,m, R(T ) is a summation of the i.i.d. random matrices. Formally,
reusing the notation to denote H the Hessian of R(T ) and Hi the Hessian of l(T (Xi;θ), Yi), we
have

H =
1

m

m∑
i=1

Hi (12)

Acute reader may realize that by the multivariate central limiting theorem (Klenke (2012) theorem
15.57), H will converge to a Gaussian ensemble, i.e., a random matrix of which the distribution of
entries is a Gaussian process (GP), asymptotically as m→∞. For a GP, all higher order cumulants
are zero, which greatly simplifies the picture, and gives much clearer meaning on the assumptions
5.1 5.2 made. In the following, we will explain the practicality, and also how they may serve as
guidance to design and improve NNs, in the asymptotically large sample limit, which gives a picture
that can be described using more widely used terms, i.e., mean and covariance.

The practicality of boundedness assumptions is obvious, since we do not want values to blow up. We
only note for the two outliers. First, the lower bound in 4) in boundedness assumption, cN−1trG �
S[G], which is not about infinity. It asks the eigenvalues of S[G] to stay close to its average value,
so to let S[G] stay in the cone of the positive definite matrices to ensure the stability of the MDE.
It is essentially a constraint on the interaction of second order cumulants, and is realizable in a
NN, though we are not clear on its physical meaning for the time being. Second, the boundedness
assumption 3), as briefly discussed before, is a bound that bounds the strength of the entries of H
that do correlate, while the diversity assumption is about the weakness of the entries that are not
correlated. The practicality of the former is straightforward. To see the practicality of diversity
assumption in the NN context, first we come back to the concrete form of Hessian. We rewrite
eq. (4) in the following form (the equation should be read vertically)

Hpq = l′(Tx, y)W̃q∼(L−1)dg(h̃′′L−1)α = α̃q (13a)

⊗ W̃p∼(q−1) ⊗ W̃p∼(q−1) (13b)

⊗ xTW̃1∼(p−1) ⊗ x̃Tp−1 (13c)

where

W̃q∼(L−1) := dg(h̃′′q )

L−2∏
k=q+1

(Wkdg(h̃′′k))WL−1, α̃q := W̃q∼(L−1)dg(h̃′′L−1)αl′(Tx, y)

W̃p∼(q−1) :=

q−1∏
j=p+1

(dg(h̃′j)W
T
j )dg(h̃′p),

W̃1∼(p−1) :=

p−1∏
i=1

(Widg(h̃i)), x̃Tp−1 := xTW̃1∼(p−1)

With some efforts, using NN terminologies, it can be viewed that eq. (13a) is a vector α̃q created by
back propagating the vector dg(h̃′′L−1)αl′(Tx, y) to layer q by left multiplying W̃q∼(L−1)— note
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that if you replace h′′k with h′k, you get the back propagated gradient; eq. (13b) is the covariance
matrix without removing the mean between neurons at layer p and layer q− 1, when taking expecta-
tion w.r.t. samples, i.e., Ez∼µZ [W̃p∼(q−1)]; eq. (13c) is the forward propagated activation at layer
p − 1. Now it is quite clear what the correlation between entries of the Hessian is about. It is the
correlation between the product of forward propagated neuron activation at layer p − 1, the back
propagated “gradient” at layer q, and the strength of activation paths that connects the two sets of
neurons.

WhenH is a Gaussian ensemble, all higher order cumulants vanishes, thus the diversity assumption
is solely about the second order cumulants, and the case when q = 1 and q = 2. Since f, {gi}i=1,...,q

are analytic, κ(f(·), g1(·)) is a generalized cumulant (McCullagh (1987) Chapter 3), which can be
decomposed into a sum of cumulants of entries of the Hessian. So is κ(f(·), g1(·), g2(·)). Con-
sidering that only first and second cumulants exist, which are means and covariance respectively,
κ(f(·), g1(·)) thus is a sum of means of entries of the Hessian and covariance between entries of the
Hessian. So is κ(f(·), g1(·), g2(·)). Using κ(f(·), g1(·)) as an example, the diversity assumption
states that for any α ∈ I, nested setsN1 ⊂ N2 = N , |N | ≤ N1/2−µ exist (when only cumulants up
to the second order exist, it suffices to let R be 2 instead of every R ∈ N (Erdős et al. (2017))), such
that κ(f(WI\N ), g1(WN1

)) =
∑
β∈N ′1⊂N1∪I\N κ(β) +

∑
β,γ∈N ′⊂N1∪I\N κ(β, γ), where N ′1,N

are subsets noted that depends on f, g1. The interpretation is qualitative. But even from the qual-
itative interpretation, it can see that the diversity assumption is on the smallness of the mean and
covariance of α̃iw̃jkx̃l, the product of “gradient”, activation path correlation strength, and for-
ward activation. Additionally, to prove theorem 5.1, we need a further assumption that E[H] = 0.
It clearly connects to the experiment tricks used in the community, such as the early initialization
schemes that tries to keep mean of gradient and activation zero, and standard deviation (std) small
(Glorot & Bengio (2010) He et al. (2015)), the normalization schemes that keep the mean of activa-
tion zero and std small (Ioffe, Sergey and Szegedy (2015)Salimans & Kingma (2016)), though some
more works are needed to reach there rigorously.

To recap, as stated similarly in section 2, appendix F.2, the diversity assumption states that a diversity
should exist in the neuron population, so that for any neurons, it does not strongly correlate with the
majority of the neuron population. The diversity in r.e.s. of S-System is not a built-in feature, but a
design choice in its implementations.

Qualitatively, we can see the design of NNs resonates with the diversity assumption: 1) different
group indicator r.e.s. are assumed to be independent given input r.e.s., referring to definition 4 5, in
which case, the coupling aims to group the measure that is distinctive w.r.t. other couplings created
through grouping, thus, r.e.s that are not coupled together are likely to be uncorrelated; 2) activa-
tion function creates couplings that only couple higher scale events with the “active” lower scale
events, thus implementing coarse graining that creates events that are composed by different lower
scale events. The above design may not be the only choice, however, it helps create uncorrelated
r.e.s within a scale and across scales, consequently making the product of the forward propagated
activation, activation paths, and back propagated “gradient” tend to be uncorrelated.

Yet, this is a rather general explanation on why diversity occurs without taking into the finer statistics
structure in the data. More improvements may still be made. For instance, the low correlation existed
in CNN is the result of a coupling that considers the spatial symmetry, where output r.e.s in a large
spatial distance simply does not couples, thus tending to be uncorrelated.

S-System is a fabulous mechanism that can indefinitely increase the number of parameters, thus its
learning capacity, in a meaningful way, i.e., creating higher scale coupling yet maintaining the di-
versity of the r.e.s created. Such mechanism does not normally hold in other systems or algorithms.
Taking linear NNs for example, though with the potential to infinitely increase its parameters, ma-
trices that multiply together still have a highly correlation structure within, thus cannot create a
population of diverse neurons that are of low correlation with a majority of the other neurons. Ac-
companying the result we will prove in the next section, which states R(T ) can be optimized to
zero, assuming assumptions 5.1 5.2, we can see that the diversity assumption actually characterizes
a sufficient precondition to the optimization power of NNs.
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F.4 NN LOSS LANDSCAPE: ALL LOCAL MINIMA ARE GLOBAL MINIMA WITH ZERO
LOSSES

We have obtained the operator equation to describe the eigen-spectrum of the Hessian of NNs and
explained its assumptions. With one further assumption, we show in this section that for NNs with
objective function belonging to the function class L0, all local minima are global minima with zero
loss values.

We outline the strategy first. Since MDE is a nonlinear operator equation, it is not possible to obtain
a close form analytic solution. The only way to get its solution is an iterative algorithm (Helton
et al. (2007)), which is not an easy task given the millions of parameters of a NN — remembering
that we are dealing with large N limit — though it can serve as an exploratory tool. However, we
do are able to get qualitative results by directly analyzing the equation. Our goal is to show all
critical points are saddle points, except for the ones has zero loss values, which are global minima.
To prove it, we prove that at the points where R(T ) 6= 0, the eigen-spectrum µH of the Hessian
H is symmetric w.r.t. the y-axis, which implies that as long as non-zero eigenvalues exist, half
of them will be negative. To prove it, we prove the stieltjes transform mµH

(z) of µH satisfies
=mµH

(−z∗) = =mµH
(z), where z∗ denote the complex conjugate of z. In the following, we

present the proof formally.
Lemma F.2. LetM(z),M ′(−z∗) be the unique solution to the MDE at spectral parameter z,−z∗
defined at eq. (9) respectively, andA = 0. We have

M ′ = −M∗

where ∗ means taking conjugate transpose.

Proof. First, we rewrite the MDE. Note that S[G] is positivity preserving, i.e., ∀G � 0,S[G] � 0
by assumption 5.1 4). In addition, we have =z > 0, thus =(z + S[G]) � 0. Then, by Haagerup &
Thorbjørnsen (2005) lemma 3.2, we have z + S[G] � 0, so it is invertable. Thus, we can rewrite
the MDE into the following form

G = −(z + S[G])−1 (14)

Suppose M is a solution to the MDE at spectral parameter z. The key to the proof is the fact that
S[G] is linear and commutes with taking conjugate, thus by replacing M with −M∗, and z with
−z∗, we would get the same equation. We show it formally in the following.

First, note that S[M ] is a linear map ofM , so the we have

S[−M ] = −S[M ]

Also, S[M ] commutes with ∗, for the fact

S[M∗] = E[WM∗W ] = E[(WMW )∗] = E[WMW ]∗ = S[M ]∗

Furthermore, we ∗ is commute with taking inverse, for the fact

AA−1 = I

=⇒ (AA−1)∗ = I

=⇒ A−1∗A∗ = I

=⇒ A−1∗ = A∗−1

With the commutativity results, we do the proof. The solutionM satisfies the equation

M = −(z + S[M ])−1

ReplacingM with −M∗, z with −z∗, we have

−M∗ = −(−z∗ + S[−M∗])−1

=⇒ M∗ = −(z∗ + S[M∗])−1

=⇒ M∗ = −(z∗ + S[M ]∗)−1

=⇒ M∗ = −(z + S[M ])−1∗

=⇒ M = −(z + S[M ])−1
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After the replacement, we actually get the same equation. Thus, −M∗,−z∗ also satisfy eq. (14).
Since the pair also satisfies the constrains =M � 0,=z > 0, and by theorem F.1, the solution is
unique, we proved the solutionM ′ at the spectral parameter −z∗ is −M∗.

Theorem F.2. Let H be a real symmetric random matrix satisfies assumptions 5.1 5.2, in addition
to the assumption that A = 0. Let the ESD of H be µH . Then, µH is symmetric w.r.t. to y-axis.
In other words, half of the non-zero eigenvalues are negative. Furthermore, non-zero eigenvalues
always exist, implyingH will always have negative eigenvalues.

Proof. By theorem F.1, the resolventG ofH is given by the the unique solution to eq. (9) at spectral
parameter z. Let the solution to eq. (9) at spectral parameter z,−z∗ be M ,M ′, By lemma F.2, we
have the solutions satisfies

M ′ = −M∗

By F.1, the ESD ofH at <z is given at

µH(<z) = lim
=z→0

1

π
=mµH

(z)

Since mµH
(z) = 1

N tr M , we have

µH(<z) = lim
=z→0

1

π

1

N
=tr M

Similarly,

µH(<(−z∗)) = lim
=(−z∗)→0

1

π

1

N
=tr M ′

Note that

µH(<(−z∗)) = lim
=(−z∗)→0

1

π

1

N
=tr M ′

=⇒ µH(<(−z∗)) = lim
=(−z∗)→0

1

π

1

N
=tr (−M∗)

=⇒ µH(−<z) = lim
=z→0

1

π

1

N
=tr M

Thus, µH(λ), λ ∈ R is symmetric w.r.t. y-axis. It follows that for all non-zero eigenvalues, half of
them are negative.

By theorem F.1 2, there are always bulks in suppµH , thus there are always non-zero eigenvalues.
Since half of the non-zero eigenvalues are negative, it follows H always has negative eigenvalues.

Proof of theorem 5.1. First, we prove part 1 of the theorem. The majority of the proof of part 1 have
been dispersed earlier in the paper. What the proof here does mostly is to collect them into one
piece.

The Hessian H of the risk function eq. (1), can be decomposed into a summation of Hessians of
loss functions of each training sample, which is described in eq. (12). For each Hessian in the
decomposition, it is computed in eq. (5), and it has been shown that H is a random matrix in
section 5 and appendix F.1.

The analysis of the random matrixH needs to break down into two cases: 1) for all training samples,
at least one sample (x, y) has non-zero loss value; 2) and all training samples are classified properly
with zero loss values.

We first analyze case 1), since the loss l belongs to function class L0, l is convex and is valued zero
at its minimum. When l(x, y) 6= 0, we have l′(x, y) 6= 0, thus H is a random matrix — not a zero
matrix. The analysis of this type of random matrix is undertaken in appendix F.2. For a NN, the
assumptions 5.1 5.2 can be satisfied, and the eigen-spectrum µH ofH is given by the MDE defined
at eq. (9). The practicality and its potential to guide real world NN optimization is discussed in
appendix F.3.
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By theorem F.2, µH is symmetric w.r.t. y-axis, and half of its non-zero eigenvalues are negative.
Thus, for all critical points ofR(T ), its will have half of its non-zero eigenvalues negative. It implies
all critical points are saddle points.

Now we turn to the case 2). In this case, all training samples are properly classified with zero loss
value. Considering the lower bound of l is zero, we have reached the global minima. Also, since all
critical points in case 1) are saddle points, local minima can only be reached in case 2), implying all
local minima are global minima. Thus, the first part of the theorem is proved.

Now we prove part 2 of the theorem.

Note that the minima is reached for the fact that we have reached the situation where the Hessian
H has degenerated into a zero matrix. Thus, each local minimum is not a critical point, but an
infimum, where in a local region around the infimum in the parameter space, all the eigenvalues are
increasingly close to zero as the parameters of the NN approach the parameters at the infimum. We
show it formally in the following.

Writing a block Hpq (defined at eq. (4)) in the Hessian Hi of one sample (defined at eq. (5)) in the
form of

Hpq = l′(Tx, y)H̃pq

where i is the index of the training samples, defined at eq. (1). Then, putting together H̃pq together
to form H̃i,Hi is rewritten in the form of

Hi = l′(Txi, yi)H̃i

Then the Hessian H (defined at eq. (12)) of the risk function defined eq. (1) can be rewritten in the
form of

H =
1

m

m∑
i=1

l′(Txi, yi)H̃i

Taking the operator norm on the both sides

||H|| = || 1
m

m∑
i=1

l′(Txi, yi)H̃i|| ≤
1

m

m∑
i=1

|l′(Txi, yi)| ||H̃i||

Denote maxi{||H̃i||} as λ0, we have

||H|| ≤ 1

m

m∑
i=1

|l′(Txi, yi)|λ0

= Em[l′(TX, Y )]λ0

The above inequality shows that, as the risk decreases, more and more samples will have zero loss
value, consequently l′ = 0, thus Em[l′] will be increasingly small, thus the operator norm of H . At
the minima where all l′ = 0, the Hessian degenerates to a zero matrix.

Remark. It is not necessary for the assumption A = 0 to be held for the theorem to hold, or more
specifically, forH to have negative eigenvalues at its critical points. By proposition 2.1 in Alt et al.
(2018)

suppµH ⊂ SpecA+ [−2||S||1/2, 2||S||1/2]

where SpecA denotes the support of the spectrum of the expectation matrixA and ||S|| denotes the
norm induced by the operator norm. Thus, it is possible for the spectrum µH of H to lie at the left
side of the y-axis, as long as the spectrum ofA is not too way off from the origin. However, existing
characterizations on suppµH based on bound are too inexact to make sure the existence of support
on the left of the y-axis. To get rid of the zero expectation assumption, more works are needed to
obtain a better characterization, and could be a direction for future work.

The the phenomenon characterized by theorem 5.1.1 is rather remarkable, if not marvelous. It
shows that instead of seeing non-convex optimization as something to avoid, a class of non-convex
objective functions can be that powerful to the point of “solving” — minimizing the error to the
point of vanishing — complex problems that nature is dealing with in a rather reliable fashion. We
feel like this is how a brain is doing optimization. We envision that a much larger class of functions
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possess such benign loss landscapes than the one here we have studied. Actually, we have isolated
a function class that represents some of the most essential characteristics of a more general class
of function as shown in eq. (2), so that we can show the principle underlying. That is, diverse yet
cooperative subunits aggregating together to form a system can optimize an objective consistently.
This larger class of function could be as important as the concept of convexity, and would play an
important role in optimization. The goal of the paper is to lay the backbone of the theory of the NNs
that make the principles underlying clear, instead of presenting the theory in its complete form in
one go. Thus, essential properties of the function class are yet to be identified, and will be part of
our future work.

The theorem also contributes to explaining why depth is crucial. The large N limits of the Hessian
can be achieved by adding more layers (in the terminology of S-System,using a scale poset having
a longer chain as a subset), even though the number of neurons in each of the layers may be quite
small compared with the overall number of neurons. The diversity of neurons is possible due to
activation functions (in the terminology of S-System, conditional grouping extension on estimated
realizations of previous created output r.e.s.).

The phenomenon characterized by theorem 5.1.2 explains why there are two phases in the training
dynamics of NNs, i.e., the rapid error decreasing phase when loss value is high, and the slow error
decaying phase when the loss value is close to minima. As the error decreases, the expectation of the
derivative of loss values in R(T ) will increasingly approach zero, thus the suppµH will concentrate
around zero increasingly, making the landscape increasingly flat and the training process slowly.
It probably also explains why we need to gradually decrease the step size in the gradient descent
algorithms in practice. Very likely the flat regions are of a small volume compared with the overall
parameter space. Thus, if the training goes conservatively, and inches towards the global minima, the
risk will gradually decrease. But if we give a powerful kick to the training that induces a large shift in
the parameter space, it may kick the current parameter out of the flat region that can inch toward the
global minima, like kicking a ball from a valley to another mountain in the hyperspace, thus making
the training starts all over again to find a valley to decrease the risk. A further characterization of
the landscape goes beyond infinitesimal local regions may rigorously prove the conjecture. It even
poses the possibility to move across the flat region rather swiftly, as long as we figure out how to
stay in the valley as we stride big.

G LEARNING FRAMEWORK OF S-SYSTEM

As described in the problem formulation in section 5, supervised statistical learning is to mini-
mize the discrepancy between the approximated measure and the empirical measure. Created by
S-System, the approximated measure is to approximate the measure of a group of events in the
PPMS. Thus, supervised learning in S-System trained by gradient descent through back propagation
(BP) already has a solid theoretical foundation with well explained behaviors. Yet, it is not the com-
plete picture. We present here initially the learning framework of S-System, of which supervised
learning and unsupervised learning are two special cases.

LetMW̄ be an event representation built by an S-system with scale poset SZ built on a measurement
collection r.e. Z := (X,Y ) with measure µZ supported on the PPMSW . The measurable space Z
is a product space X × Y , where X denotes the data space, and Y denotes label space. LetMs be
the event representation built at scale s. Let µHs , s ∈ SZ be the probability measure on output r.e.s
(Hs, Ĥs) ofMs, and νs the law on conditional group indicator r.e.. The learning of S-System is to
minimize the discrepancy between measure µW(X−1(W−1

s (A))) and µHs (A) assigned to a event
A ⊂ ΩH

e
s , where ΩH

e
s is the event space of the probability measure space of Ms, and Ws is the

transport map of the coupling probability kernel ofMs. One way to characterize the discrepancy is
Maximum Likelihood Estimation (MLE), where the parameters that most likely to generate the data
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consist the best estimator. The likelihood function ofMW̄ is

p(X;θ) =
∑
OW̄\X

p(OW̄ ;θ)

=
∏

sL∈SL

∑
hsL

∫
ĥsL

∑
hs′ ,s

′∈p(sL)

∫
ĥs′ ,s

′∈p(sL)

∑
hs′′ ,s

′′∈p(s′)

∫
ĥs′′ ,s

′′∈p(s′)
. . .

µHsL(HsL , ĤsL |Hp(sL), Ĥp(sL))
∏

s′∈p(sL)

µHs′ (Hs′ , Ĥs′ |Hp(s′), Ĥp(s′))
∏

s′′∈p(s′)

. . . µZ(X)

whereOW̄ and θ are the r.e. set and the parameters ofMW̄ respectively, SL denotes the set of largest
element in SZ , and p(s) denotes the elements in SZ that are the predecessors of s. Depending on
whether Hs, Ĥs are discrete or not, the summation may be changed to integral, vice versus. It could
be understood as getting the marginal probability distribution of X from a factorized probability of
a direct acyclic graph in probabilistic graphical model (PGM) (Koller & Friedman (2009)).

Needless to say, the likelihood function is intractable when the r.e. setOW̄ gets large. Perhaps more
importantly, we do not know µZ(X), so we do not know µHs since it is built on the transport map
applied on X . Thus, to make the estimation tractable, and to faithfully estimate measure on events
groups already seen without making assumptions on µZ(X), we make the following decomposition
of the log likelihood function to focus on estimating measures on group indicators r.e.s

ln p(OW̄ ;θ) = L({νs}s∈SZ ,θ) +
∑
s∈SZ

Ds
KL(νs||µX (Hs|Ws(X)))

where

L({νs}s∈SZ ,θ) =
∑

hs,s∈OW̄\X

q(OW̄ \X) ln
µZ(X)

q(OW̄ \X)

q(OW̄ \X) =
∏

sL∈SL

µHsL(HsL |ĤsL)
∏

s′∈p(sL)

µHs′ (Hs′ |Ĥs′)
∏

s′′∈p(s′)

. . .

=
∏

sL∈SL

νsL
∏

s′∈p(sL)

νs′
∏

s′′∈p(s′)

. . .

Ds
KL(νs||µX (Hs|Ws(X))) =

∑
Hs

νs ln
µX (Hs|Ws(X))

νs

Note that µHs (Hs|Ĥs) is used instead of µHs (Hs|Ĥs, Ĥp(s)) because in CGE,Hs is conditional inde-
pendent with previous output r.e.s given Ĥs. L({νs}s∈SZ ,θ) is called expected data log likelihood,
ln p(OW̄ ;θ) the complete data log likelihood and Ds

KL(νs||µX (Hs|Ws(X))) is the KL divergence
at scale s between estimated measure and true measure.

The decomposition has been used widely in PGM (Bishop (2006)). Successful techniques derived
from it have been invented known as Variation Inference and Expectation Propagation etc. Yet,
one remarkable difference in the above decomposition and existing decomposition is that here we
decompose the probability measure on physical events in APMS W̄ , and estimate measure νs that
aims to approximate the measure of groups of events in the event space of the PPMSW , while in
existing decomposition, their approaches are to hallucinate some parametric probabilistic models on
OW̄ (under the context of S-System), and because the “exact” inference is intractable, they use the
decomposition to make the inference tractable. In essence, we are not making any assumptions on
Z, but only on how they are supposed to group together, while existing approaches using the de-
composition is solely about making assumptions on Z, and how to make the computation tractable,
thus likely leading to significant model biases.

With the above decomposition, we can see what the training of a supervised NN is. Forward propa-
gation (FP) is to estimate values of group indicator r.e.s by assigning Hs a value that maximizes the
expected data log likelihood L({νs}s∈SZ ,θ) w.r.t. q(OW̄ \X) through activation function (though
depending on the activation function chosen, it may not always reach the maximum), while holding
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θ fixed. BP is to minimize the KL divergence Ds
KL at scale s w.r.t. θ whenever there is a super-

visory information/label on Hs supervising how the events are supposed to group, while holding
q(OW̄ \X) fixed.

The decomposition not only includes supervised NNs, but also includes variational autoencoder
(VAE) (Welling (2014)), where further assumptions on probability measure of X are assumed.
When absent of labels, a normal distribution on Hs is assumed, thus encouraging each group in-
dicator r.e. to learn a grouping that is supposed to be disentangled with the rest. When some labels
exist, we recover semi-supervised VAE.

Thus, supervised learning is never something that stands on its own, so is unsupervised learning.
They are two perspectives to look at the same thing, or they are Yin and Yang of the Tao in Chinese
philosophy, or the thesis and anti-thesis of dialectics. They are different ways with different as-
sumptions to get information to approximate the measure of events groups, e.g., the group indicator
r.e.s in S-System, which represents what has been recognized. Even pure supervised learning can
do some unsupervised learning — by pushing KL divergence Ds

KL at some scales to zero, the ex-
pected data log likelihood will be closer to the complete data log likelihood. This partly explains the
emergence of generic feature in NNs (though the maximization of L({νs}s∈SZ ,θ) perhaps is the
main reason). So pure unsupervised learning can do some supervised learning — the maximization
of L({νs}s∈SZ ,θ) leads to a smaller KL divergence. We do not observe it in an obvious way in
experiments because the grouping does not necessarily concur to the grouping we humans already
have. By imposing some structure on the grouping scheme, e.g., imposing a normal distribution, we
can discover manifolds that groups events that make sense, e.g., facial expression or digit variations
(Welling (2014)).

Lastly, we note Bayesian aspects can be further included in the learning framework by endowing
assumptions further on the parameter space.

H RELATED WORKS

H.1 HIERARCHY

The idea that the data space that NNs process is hierarchically structured and NNs are only operat-
ing in a rather small subset of the space, has been more or less a folklore by the researchers in the
neural network community. However, the wide recognition of hierarchy has come late, mostly be-
cause the seminal work by Krizhevsky et al. (2012) that proves the significance of hierarchy in NNs
experimentally. The hierarchy is mostly motivated by the imitation of biological neural networks
(Fukushima (1980) Riesenhuber & Poggio (1999) Riesenhuber & Poggio (2000)), where neuro-
science shows that it has a hierarchical organization (Kruger et al. (2013)), and does not make the
connection to the hierarchy in nature, which is reasonable since at the time NNs/Perceptron (Rosen-
blatt (1958)) was invented, the Complex System (Simon (1962) Amderson (1972)) that studies the
hierarchy in nature did not exist yet. The connection between hierarchy in nature and NNs has been
discussed qualitatively by physicists (Lin & Tegmark (2017) Mehta & Schwab (2014)), though to
the best of our knowledge, a fully measure-theoretical characterization of the hierarchy in the data
space, described in section 3.1 does not exist before. It gives a theoretical motivation of a hierarchi-
cally built hypothesis space, i.e., S-System, contrary to the motivation of artificial NNs, which is an
imitation.

H.2 HIERARCHICAL HYPOTHESIS SPACE OF NNS

Many works have been studying the hierarchical structure of the hypothesis space of NNs. Though
perhaps surprisingly, an informal idea similar with S-System has been underlying the design of
CNN (Lecun et al. (1998)) at the beginning, where in the unpublished report Bottou et al. (1996),
they describe that it is better to defer normalization as much as possible since it “delimiting a priori
the set of outcomes”, and pass scores as unnormalized log-probabilities. However, perhaps due to
a lack of rigor, they removed the discussion in the formal publication. The passing of scores corre-
sponds to the deterministic coupling that transports true measure in the PPMS, while normalization
corresponds to assuming a probability kernel to approximate the true measure transported.
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Further analysis on the hierarchical behavior of NNs waited for two decades. Early pioneers ana-
lyzes from the perspective of kernel space and harmonics. At the end of the dominant era of support
vector machine (SVM), Smale et al. (2009) seeks to give NNs a theoretical foundation in Repro-
ducible Kernel Hilbert Space (RKHS) (Vapnik (1999) Scholkopf & Smola (2001)), which is an
analogy but may only give limited insights. We will discuss how RKHS relates to S-System later
when we discuss the difference between S-System and RKHS based nonlinear algorithms. Many
works in this direction have been done, either taking NNs as a recursively built RKHS (Daniely
et al. (2016)), or applying the recursion idea to existing kernel methods (Mairal et al. (2014)). We
do not aim to cover all kernel works. We envision it as a tool to aid analysis, and design probabil-
ity kernels in S-System, yet not as the fundamental underpinning. A work (Anselmi et al. (2016))
in the line of RKHS has also sought foundation in probability measure theory, though its focus is
the invariance and selectivity of the one layer representation built by NNs. It studies the measure
transport due to compact group transformations, and points out that the output of the activation func-
tion of NNs could be the probability distribution of low dimensional projection of the measure of
data and its transformations, which is similar to the case where S-System only couples group indi-
cator r.e. — they both analyze the grouping of measure transported by transport maps — though
when taking on the hierarchical behavior, it falls back to RKHS, and think recursion as “distribu-
tions on distributions” instead of coarse grained probability coupling. We believe the work could be
inspirational to further refined analysis on r.e.s created by S-System. Under the umbrella of com-
putational harmonics, Mallat (2012) Mallat (2016) understand NNs as a technique that learns a low
dimensional function Φ(x), x ∈ X that linearizes the function f(x) to approximate on complex
hierarchical symmetry groups from a high dimensional domain X . It achieves this by progressively
contracting space volume and linearizing transformation that consists of groups of local symmetries
layer by layer. However, the group formalism used is an analogy that only rigorously character-
izes Scattering Network (Mallat (2012)), a hierarchical hypothesis space simplified from NNs, and
does not characterizes NNs. The group formalism is referred as the “mathematical ghost” in Mallat
(2016). We believe these works are important to further incorporate symmetry structure in nature in
S-System in future works.

More recently, Ankit B. Patel et al. (2016) interprets NNs in Probabilistic Graphical Model (PGM).
It takes activation as log-probabilities that propagate in the net. As the description suggests, it con-
fuses the transported measure to be approximated, and the approximated probability obtained by
a probability kernel. Thus, it has to rely on the Gaussian assumption to justify the interpretation,
of which the mean serves as templates, and the noise free assumption to justify ReLU activation
function. Also, the assumption makes it a generative model that has to make assumptions on the
data distribution, while an S-system is able to only make assumptions on how measure is supposed
to group. From the spline theory perspective, Balestriero & Baraniuk (2018) understands NNs as a
composition of max-affine spline operators, which implies NNs construct a set of signal-dependent,
class-specific templates against which the signal is compared via an inner product. From S-System
point of view, it is an analysis on the functional form of coupled r.e.s of an S-system that assumes
compositional exponential probability kernels and does maximal estimation on group indicator r.e.s.
It connects more with the function approximation results, that takes “signal-dependent” as a fact
to see what that implies, than the goal of S-System, i.e., giving a theoretical formal definition and
interpretation to NNs. We think it may contribute to the refined analysis of decision boundaries in
S-System in the future. Analogizing with statistical mechanics, Trevisanutto (2018) takes the group
indicator r.e.s. with binary values as gates, of which the expectation will multiply with the coupled
r.e.s. to decide how much the “computation” done should be passed on to next layers. However,
what is being computed is left unspecified. As in the definition of S-System, the computation is to
extend the probability measure space of the measurement collection r.e. that aims to approximate
probability measure of events in the event space of PPMS. The group indicator r.e.s. is not a gate,
but serves to group measure. It behaves like a gate when its value is binary, yet underlying it serves
to create further coupling of grouped measure. Thus, the analog does not unveil the deeper prin-
ciples underlying, e.g., probability measure space extension and the probability estimation/learning
happening in S-System (refer to section 5 appendix G).

H.3 MACHINE LEARNING ALGORITHM PARADIGM

We envision S-System as an attempt that tries to investigate a measure-theoretical foundation of al-
gorithmic modeling methods (Breiman (2001)) for designing machine learning algorithms. Now we
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can see NNs as an implementation of S-System, which is a way to transport, group and approximate
probability measure. From S-System, we can see that we do not need to make assumptions on the
distribution of data to justify that our model is probabilistic — the randomness comes from the data
source itself, and it is the probability measure space that a model is manipulating, not the probability
values. Thus, we can break from statistics methods developed ever since Ronald Fisher that has to
make assumptions on data, and proceed from there. This measure manipulation paradigm may be a
promising candidate to the theoretical issue facing high dimensional data analysis (Donoho (2000)).
Thus, we discuss current major algorithm paradigms in machine learning/high dimensional data
analysis, i.e., Support Vector Machine with Kernels (SVMK) and Probabilistic Graphical Model
(PGM).

It is well known that SVMK can be analogized to a NN with one hidden layer. The hypothesis f of
SVM can be expressed as a linear combination of inner product between test samples xi and support
vectors f(·) =

∑
i αik(·,xi), where k is the kernel function, and αi scalars. Writing f in the form

of f(X) =
∑
i αik(X,xi), it can be seen that the hypothesis is actually a deterministic coupling,

where f is the transport map. As happening in section 5, the training of SVM is also minimizing
a surrogate risk between the true data probability measure and the transported measure, though no
probability distributions are ever introduced. The probability kernels in S-System is replaced by
a positive semi-definite (PSD) kernel, whose output value is a real number indicating something
similar with the coupled probability measure of S-System. This observation may seem surprising,
however, it makes much sense when we notice the fact that probability is just a function. SVM is
a function approximation techniques designed specifically for the case where the data are of high
dimensional, yet the number of samples available is small. To combat the curse of dimensionality,
it uses a PSD integral operator (Aronszajn (1950)) that maps the sample to a high dimensional
space, which can be taken as templates, and only approximates measure that is in the vicinity of
those templates and ignores the rest of the space. The kernel can also be built hierarchically, which
is discussed in appendix H.2. For the time being, S-System does not contain SVMK as a special
case, while we envision by properly generalizing the probability kernels in CGE, a large class of
algorithms may include SVM.

As for PGM, it is a special case of S-System. As mentioned repeatedly throughout the paper,
S-System merely makes assumptions on how measure is supposed to group, without making as-
sumptions on the actual distribution of the data. The learning framework of S-System described
in appendix G is actually the same as PGM when only considering the unsupervised case, where
assumptions on data distribution have to be made. Thus, S-System is a superset of algorithms in-
cluding PGM. The graph in PGM is actually a poset. However, the insight comes from where they
differ. Relying heavily on the assumptions on the distribution of data, which is in reality unknown,
it introduces large model biases, which perhaps is the reason why it alone cannot compete with
NNs on complex high dimensional data. Furthermore, S-System is naturally compatible with super-
vised labels, since hidden variables/group indicator r.e.s map one-to-one to labels, which dictates
how measure should be grouped. This point is discussed more thoroughly in appendix G, where
supervised and unsupervised learning are taken as dual perspectives on the same object.

H.4 GEOMETRY

In the related works on hierarchical hypothesis space discussed earlier, all of them have their own
geometry, we only discuss related works in this subsection that are related to the geometry defined
in section 4.2.

Most of the works we are aware of that try to endow a geometry on NNs through information geom-
etry (IG) were done before the deep learning era, not surprisingly, by Amari, who developed IG. All
the works study NNs with a single hidden layer. Amari & Nagaoka (2007) formulates the manifold
parameterized by all parameters of a NN as neuromanifold, while in section 4.2, the manifold we de-
fined focuses on the submanifolds indexed by a scale poset, which will be discussed more in the next
paragraph. Actually, the neuromanifold is the stochastic manifold consisting of possible probability
measure on the random element set of the event representation built by S-System. Two directions
of analysis have been made. The first is to study the behavior of the curved exponential families
obtained by conditioning, which is done in Amari (1995), and falls in the category of generative
training. The other is to study supervised trained NNs, and study the neuromanifold, with a focus
on the impact of singularities on training dynamics (Amari et al. (2006)). The later proposed the
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Natural Gradient Descent methods, and many works have been working on it thereafter, which we
will not discuss. The study on the hierarchy has been limited on decomposition of high order inter-
actions in a single hidden layer NN (Amari (2001)) without attacking the recursion in NNs, though
we tend to think NNs with more layers unroll higher order interactions, but we do not find that they
pursue this path. As mentioned, the study of hierarchical behaviors of NNs has been absent, which
is the focus of this paper, and is emphasized in the paragraph below.

The geometry defined in section 4.2 is to investigate the hierarchical geometry of NNs. The compo-
sitional exponential family gives the definition of Neural Network Manifolds that properly identifies
the curved exponential families, or in other words, submanifolds, in a probability family built by the
overall parameter space of NNs, which is complicated, e.g., containing singularities (Amari et al.
(2006)). Note that we do not differentiate submanifolds with manifolds in the main content to avoid
clutters. As discussed, the submanifolds are well represented by their expectation statistics, and the
definition identifies how coarse graining in divergence happens in theorem 4.1. Thus, definitions
given are distinctive in characterizing the hierarchical geometry of NNs, which is absent in previous
works, which either stay in the realm of single hidden layer (Amari (1995) Amari (2001)), or take the
whole parameter space as the parameterization of a manifold that contains singularities (which rig-
orously is not a manifold) (Amari et al. (2006)), though we are well aware that the works present in
this paper are merely scratching the surface. Our focus for now is merely to show the coarse graining
contraction effect of CGE quantitatively, and much more works are to be done, e.g., the hierarchical
and within-layer interactions between these submanifolds. As a concrete example, it is known that
the EM algorithm has an IG interpretation (Amari (1995)). The expectation, KL divergence mini-
mization interpretation of the back propagation algorithm in appendix G can be interpreted similarly
from the IG perspective. Thus, Amari (1995) can be generalized to NNs with arbitrary number of
layers, and in generative or supervised training settings. It implies the two directions mentioned in
the previous paragraph can be unified, though further analysis on its impact, e.g., the analysis of
singularities, needs more works.

Very recently, at the time of writing this paper, a few reports have been submitted on the archive
that try to attack the supervised deep NNs (Amari et al. (2018a) Amari et al. (2018b)). But again,
they follow their old idea that analyzes the whole neuromanifold. It assumes weights and biases
of NNs to be Gaussian, and study how properties related to the distribution of activations of each
layer change, e.g., fisher information matrix, without trying to formally define the geometry, or the
submanifold structure in the intermediate layers of NNs.

Lastly, we note that Lin & Tegmark (2017) also tries to discuss the coarse graining effect in term of
the information monotony phenomenon as “information distillation”, but it does that rather generally
and qualitatively, does not put the phenomenon in an exact NN context, and not make the connection
between it and the geometry in information.

H.5 LEARNING AND OPTIMIZATION

We cover related works on learning and optimization of NNs and S-System in this subsection.

The learning framework is an application of a general probability estimation framework on the par-
ticular case of S-System, thus, the reader may find the learning framework similar with variational
inference widely used in existing probabilistic graphical models. However, the similarity lies in the
fact that both S-System and PGM approximate probability, of which the decomposition of com-
plete data likelihood is about probability to be estimated, not about specific hypotheses in use. The
difference between S-System and PGM has been detailed in appendix H.3. Previously, the BP al-
gorithms have mostly been viewed as a heuristic tool, instead of having a theoretically rigorous
derivation. The learning framework of S-System shows that the FP and BP are actually maximizing
the complete data likelihood, and are not merely minimizing the discrepancy between the estimated
conditional probability of labels given data with the true conditional probability through empirical
risk minimization, but also maximizing the expected data likelihood through activation function.

Similar to the study on the hierarchical hypothesis of NNs, the study on optimization gains its
moment rather recently. We focus on the works that attack the full complexity of optimization
problem of deep NNs, while for more related works, we refer the readers to related works discussed
in Dauphin et al. (2014) Nguyen & Hein (2017) Liang et al. (2018) for works before the deep
learning era, on shallow networks and NP-hardness of NN optimization.
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Roughly, two approaches have been taken in analyzing the optimization of NNs, one from the linear
algebra perspective, the other from mean field theory using random matrix theory. Our work falls
in the latter approach. The linear algebra approach, as the name suggests, shies away from the
nonlinear nature of the problem. Kawaguchi (2016) proves all local minima of a deep linear NN are
global minima when some rank conditions of the weight matrices are held. Nguyen & Hein (2017)
Nguyen & Hein (2018) prove that if in a certain layer of a NN, it has more neurons than training
samples, which makes it possible that the feature maps of all samples are linearly independent, then
the network can reach zero training errors. A few works following in the linear-algebraic direction
(Laurent & von Brecht (2018) Liang et al. (2018) Yun et al. (2018)) improve upon the two previous
results, but using essentially the same approach. As the conditions in Kawaguchi (2016) indicate,
the rank related linear algebraic condition does not transport to nonlinear NNs. While for Nguyen
& Hein (2017), it characterizes a phenomenon that if in a layer of a NN, it can allocate a neuron to
memorize each training sample, then based on the memorization, it can reach zero errors. In a certain
way, we believe NNs are doing certain memorization, for the fact that the output elements in the
intermediate event representations are learning template/mean of events, as discussed in section 4.2.
However, it does it in a smart way, where the templates are decomposed hierarchically. Thus, it is
likely we do not need so many linearly independent intermediate features, which would lead to poor
generalization. Thus, to truly understand the optimization behavior of NNs, we need to step out of
the comfort zone of linearity.

The mean field theory approach using the tools of random matrix theory can attack the optimization
of NNs in its full complexity, though existing works tend to be confused on the source of ran-
domness. Due to an inadequate understanding of the randomness induced by activation function,
Choromanska et al. (2015a) tries to get rid of the group indicator r.e.s. by assuming that its value
is independent of the input r.e.s. of CGE, which is unrealistic (Choromanska et al. (2015b)), nev-
ertheless it is a brave attempt, and the first paper to attack a deep NN in its full complexity. After
Choromanska et al. (2015a) which approaches by analogizing with spin glass systems — it is a
complex system, as NNs are — some researchers start to study NNs from mean field theory from
the first principle instead of by analog. Again, confused with the source of randomness in activation
in the intermediate layers of NNs, Jeffrey Pennington (2017) just assumes data, weights and errors
are of i.i.d. Gaussian distribution, which are mean field approach assumptions and unrealistic, and
proceeds to analyze the Hessian of the loss function of NNs, though due to limitations of their as-
sumptions, they can only analyze a NN with one hidden layer. By laying a theoretical foundation of
NNs, S-System accurately points out where randomness arises in NNs, and what reminds to prove
theorem 5.1 is to find the right random matrix tools.
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