
Under review as a conference paper at ICLR 2020

DEEP INTERACTION PROCESSES FOR TIME-EVOLVING
GRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

Time-evolving graphs are ubiquitous such as online transactions on an e-commerce
platform and user interactions on social networks. While neural approaches have
been proposed for graph modeling, most of them focus on static graphs. In this
paper we present a principled deep neural approach that models continuous time-
evolving graphs at multiple time resolutions based on a temporal point process
framework. To model the dependency between latent dynamic representations of
each node, we define a mixture of temporal cascades in which a node’s neural
representation depends on not only this node’s previous representations but also
the previous representations of related nodes that have interacted with this node.
We generalize LSTM on this temporal cascade mixture and introduce novel time
gates to model time intervals between interactions. Furthermore, we introduce a
selection mechanism that gives important nodes large influence in both k−depth
subgraphs of nodes in an interaction. To capture temporal dependency at multiple
time-resolutions, we stack our neural representations in several layers and fuse
them based on attention. Meanwhile, our method can process unseen nodes and
their interactions. Experimental results on interaction prediction and classification
tasks – including a real-world financial application – illustrate the effectiveness of
the time gate, the selection and fusion mechanisms of our approach, as well as its
superior performance over the alternative approaches.

1 INTRODUCTION

Representation learning over graph data has become a core machine learning task with a wide range
of applications including e-commerce, finance, social networks, and bioinformatics. Various neural
graph representations such as (Perozzi et al., 2014; Grover & Leskovec, 2016; Wang et al., 2016;
Kipf & Welling, 2017; Defferrard et al., 2016; Scarselli et al., 2009; Ying et al., 2018; Hamilton et al.,
2017b; Monti et al., 2017; Den Berg et al., 2017) have been proposed to learn from static graph data
and successfully used for downstream tasks (e.g., classification). Graph data, however, are often
dynamic in practice; nodes and interactions between them can grow and shrink. A straightforward
approach to handle dynamic graphs is to compress them into one or several static graphs. The
drawbacks of this approach are multifold; we not only blur temporal structural information but also
miss time information that can be critical for real-world applications. An illustrative example is given
in figure 1.

To handle continuous time-evolving graph, we can approximate a by a sequence of snapshot graphs,
each of which includes all interactions that occur during a user-specified discrete-time interval, as
shown in (Goyal et al., 2018; Leskovec et al., 2007; Zhou et al., 2018; Sankar et al., 2019). This
treatment reduces time resolution and it is tricky to specify the appropriate aggregation granularity. To
avoid these problems, Nguyen et al. (2018) proposed continuous-time dynamic networks (CTDNE)
that generalize deep walk methods to learn time-dependent network embedding. As a transductive
method, CTDNE cannot handle the growth of new nodes. Dai et al. (2016) applied temporal point
processes to model time-evolving graphs and, as a nonparametric Bayesian approach, their approach
can naturally cope with the growth of new nodes and interactions. They used recurrent neural networks
(RNNs) to define an intensity function in temporal point processes. These RNN models are shallow
and one-step unrolled, making it easy to compute but relatively limited in modeling power. Trivedi
et al. (2019) extended this approach by modeling two-time scale and adopting temporal-attention
mechanism.

1

Under review as a conference paper at ICLR 2020

(a) An illegal cash-out event (b) Legal transactions

Figure 1: An illustrative example. Figure (a) shows an illegal cash-out event. It can be revealed by
high-frequency transactions with multiple merchants. However, if we merge the transaction data into
a static graph, we cannot distinguish it from the static graph generated from normal online shopping
activities. Thus, learning from such a static graph will fail to detect the cash-out event.

In this paper we present a powerful deep neural approach that models continuous time-evolving graphs
at multiple time resolutions based on a temporal point process framework. We name the new approach
deep interaction processes (DIPs). To model the dependency between latent dynamic representations
of each node, we define a mixture of temporal cascades in which a node’s neural representation
depends on not only this node’s previous representations but also the previous representations of
related nodes that have interacted with this node. We generalize LSTM on this temporal cascade
mixture and introduce novel time gates to model time intervals between interactions. Furthermore,
We introduce a selection mechanism that gives important nodes large influence in both k−depth
subgraphs of nodes in an interaction. To obtain representations from fine-to-coarse time-resolutions,
we stack our neural representations in several layers and fuse them based on attention. Based on the
temporal point process framework, our approach can naturally handle growth of graph nodes and
interactions, making it inductive.

The rest of the paper is organized as follows. In Section 2 we give background on temporal point
processes and in Section 3 we present the new DIP approach. In Section 4 we discuss related works.
In Section 5 we report experimental results on multiple interaction prediction and classification
tasks including an important real-world anti-fraud financial application, demonstrating superior
performance of the new approach over the alternatives.

2 TEMPORAL POINT PROCESSES

We first describe temporal point processes (a class of nonparametric Bayesian models) that our
approach is based on. Specifically, a temporal point process is a stochastic process that generates
a sequence of discrete events localized at times {ti}Ni=1 in any given observed time window [0, T],
where N is the number of events. An important way to characterize temporal point processes is
via the conditional intensity function λ (t|Ht) -the stochastic model for the next event time t given
all historical events before time t, denoted as Ht = {ti|ti < t}. Formally, within a small time
window [t, t + dt), λ (t|Ht) dt is the probability for the occurrence for a new event given the Ht:
λ (t|Ht) dt = P { event in [t, t+ dt)|Ht}. From the survival analysis theory(Aalen et al., 2008),
given the times of the past events {t1, t2, . . . , ti}, the conditional density that an event occurs at ti+1 is
given as follows:p

(
ti+1|Hti+1

)
= λ

(
ti+1|Hti+1

)
exp

{
−
∫ ti+1

ti
λ (t|Ht) dt

}
,where the exponential

part in the above equation means the conditional probability that no event happens during [ti, ti+1).
The functional forms of the conditional intensity function λ (t|Ht) can represent certain forms of
dependencies of the historical events. For instance, for Poisson processes(Kingman, 2005) we set λ to
be constant – making the assumption that the process is stationary and the temporal events in history
are independent of each other. For classical Hawkes processes(Hawkes, 1971), the intensity function
λ is often set to be a sum of multiple exponential functions, assuming that the mutual excitation
among events is positive, additive over the past events, and exponentially decaying with time. Mei &
Eisner (2017a) removed these limiting assumptions using LSTM to learn λ from data.

3 DEEP INTERACTION PROCESSES

In this section, we present a new neural non-parametric Bayesian approach over continuous-time
evolving graphs. First, we present a temporal dependency graph that is a mixture of the temporal
cascades, to model interdependence between graph nodes (as well as latent node representations).

2

Under review as a conference paper at ICLR 2020

Then we present a novel deep model to learn dynamic node representations in the temporal dependency
graph. This model naturally generalizes a chain-structured LSTM to a temporal Graph-structured
LSTM equipped with time gates to handle interaction with irregular time intervals. Furthermore,
we propose the FUSION and SELECTION methods to enhance the dynamic interactive nodes
representation. Given the dynamic node representations, we define deep interaction processes that
model potential interactions between any two nodes over time and we finally layout the maximum
likelihood estimation method to optimize it. A toy example is shown in Figure 2 to introduce the
corresponding concepts and the whole procedure of computing enhanced dynamic representation is
given in Figure 3.

Figure 2: A toy example of interactions, the corresponding temporal dependency graph and computa-
tion of nodes’ dynamic embedding using DIP unit on its 3-depth temporal dependency subgraph.

3.1 TEMPORAL DEPENDENCY GRAPH

Consider a collection of people-movie interactions at different time points (e.g., David saw the movie
The Skull at t6.) as shown in figure 2(a). The people and movies form a temporal dependency graph
in which each person or movie is a node and interactions happen over time (in figure 2(b)). After one
interaction occurs, we update the neural representation of the two nodes linked to this interaction;
e.g., right after time t6, we update the representations for David and movie The Skull. The new neural
representation of David depends on both his current and previous interactions – as a result, depending
on the representations of the two nodes associated with the previous interaction. This naturally forms
a dependency cascade. Similarly we can obtain a dependency cascade for Lucy’s representations.
Because of the common movies David and Lucy saw, their dependency cascades overlap and form
a cascade mixture. Formally, we denote a dynamic interaction or link at time t by lu,v,t where u
and v are two nodes associated with this interaction. We denote the node u at time t by u(t) and the
two nodes associated with u’s precedent interaction at time t− as u1(t) and u2(t). For later usage,

3

Under review as a conference paper at ICLR 2020

we denote the k−depth temporal dependency subgraph for u(t) as subgraph(u(t), k) as shown in
figure 2(b).

3.2 DIP NEURAL UNIT AND DYNAMIC REPRESENTATION

Now we present a novel neural unit to update dynamic latent representations of nodes over the
temporal dependency graph which is illustrated in figure 2(c) and figure 2(d).

First, let us denote node u’s features or embedding (i.e., a static representation jointly learned from
data) at time t by xu(t) and denote features of interaction l by xl. The interaction feature can be
empty if the interaction contains only the temporal information. The concatenation of xu(t) and xl
is denoted by x̂u(t). Let ∆(u,t) = t− t− be the time interval between two consecutive interactions
involving u at time t and t−. Our neural unit, i.e, DIP unit, generalizes a chain-structured LSTM unit
to depict the temporal dependency on graph data. The DIP unit has an update gate s, an input gate z,
an output gate o and two forget gates f over x̂u(t), dynamic representation of ui(t), i.e, hui(t) and
cell states cui(t) (i = 1, 2) as shown in figure 2(c). Additionally, we introduce time gates g to capture
the impacts of irregular time interval ∆(u,t). Specifically, hu(t) and cu(t) are updated as follows:

zu(t) = σ

(
Wzx̂u(t) +

N∑
i=1

Rzihui(t) + bz

)
ou(t) = σ

(
Wox̂u(t) +

N∑
i=1

Roihui(t) + bo

)

su(t) = tanh

(
Wsx̂u(t) +

N∑
i=1

Rsihui(t) + bs

)
fu(t),ui(t) = σ

(
Wfi x̂u(t) + Rfihui(t) + bfi

)
gu(t),ui(t) = σ

(
Wgi x̂u(t) + Rgihui(t) + Mgi∆(u,t) + bgi

)
cu(t) = zu(t) � su(t) +

∑N

i=1
fu(t),ui(t) � cui(t) � gu(t),ui(t)

hu(t) = ou(t) � tanh
(
cu(t)

)
(1)

where σ, tanh and � represent the sigmoid function, the hyperbolic tangent function, and the
Hadamard product (pointwise multiplication), respectively, and parameters in the unit including the
recurrent weights Rzi , Roi , Rsi , Rfi and Rgi , the projection matrices Wz , Wo, Ws, Wfi and
Wgi , the bias vectors bz , bo, bs, bfi and bgi and the time weight matrix Mgi are learned from
data. For convenience, we use DIP-UNIT (·) to summarize the above equations, then the dynamic
representation of node u(t) is given as follows:

hu(t), cu(t) = DIP-UNIT
(
x̂u(t), cu1(t), cu2(t),hu1(t),hu2(t),∆(u,t),Θ

)
(2)

where Θ represent all the parameters.

Considering the computational cost in practice, when obtaining nodes’ dynamic representation given
an happened interaction, we only utilize history information in the subgraph(u(t), k) as illustrated
in figure 2(d), which is similar to a chain-structured LSTM training unfolded with the max k steps.
The k is a hyper-parameter.

3.3 ENHANCED DYNAMIC REPRESENTATION

3.3.1 STACKING AND FUSION

To model nonlinear dependency relationships at different temporal resolutions, we stack L layers of
DIP-UNIT together. The output of the j-th layer is computed recursively as follows:

(hju(t), c
j
u(t)) = DIP-UNITj

(
hj−1u(t), c

j
u1(t), c

j
u2(t),h

j
u1(t),h

j
u2(t),∆(u,t),Θj

)
(3)

were h0
u(t) = x̂u(t), j = 1, . . . , L. To train deeper dynamic neural networks easily, we employ the

residual connection as the following form: skip(hj−1u(t),h
j
u(t)) = Wskiph

j−1
u(t)+hju(t) where Wskip is

a weight matrix. Motivated by ELMo (Peters et al., 2018), we fuse all internal dynamic representations
from all the layers to achieve rich dynamic representations. The fusion is a weighted summation of
all layers defined as follows: hu(t) = γ

∑L
j=0 αjh

j
u(t), where αj are softmax-normalized weights

and γ is a scaling parameter. They both are learned parameters.

4

Under review as a conference paper at ICLR 2020

Figure 3: An illustrative example. Enhanced dynamic representation with Fusion and Selection.

3.3.2 SELECTION

Given an interaction lu,v,t, it is reasonable to assume that not all the historical interactive nodes have
the equal importance for formalizing this interaction. Thus we use a two-phase gating mechanism to
select relevant nodes to learn dynamic representations and cell states of the current node. Specifically,
a co-attention mechanism is first used to measure relevance of historical time-evolving patterns
between subgraph(u(t), k) and subgraph(v(t), k),

Qj = tanh
(
Hj>
u WQH

j
v

)
(4)

where Hj
u =

[
hj1, . . . ,h

j
a, . . . ,h

j
m

]
, a ∈ subgraph(u(t), k), Hj

v =
[
hj1, . . . ,h

j
e, . . . ,h

j
n

]
, e ∈

subgraph(v(t), k), m and n are the numbers of nodes in the two corresponding subgraphs, WQ ∈
Rd×d are the weight parameters. The Qj is a co-attention affinity matrix which captures the relevance
information in subgraph(u(t),k) and subgraph(v(t),k). The co-dependent global embedding pju , pjv
are obtained by the following equations.

pju = Hj
uSoftMax

(
Max

ColWise
Qj

)
pjv = Hj

vSoftMax
(

Max
RowWise

(Qj)>
)

(5)

where Max means max-pooling operation which is used to choose the most relevant information
for the maximum influence (or affinities) on nodes in the corresponding subgraph. In addition, to
adjust the importance of historical nodes, two adaptive gate functions are designed for nodes in
subgraph(u(t),k) and subgraph(v(t),k) respectively,

gu(pju,h
j
a) = σ(wpp

j
u + whh

j
a) gv(p

j
v,h

j
e) = σ(wpp

j
v + whh

j
e) (6)

where the weights wp, and wh are shared by all the stacked layers. Using these gates, we enhance
the dynamic node representations as follows:

(hju(t), c
j
u(t)) = DIP-UNITj

(
hj−1u(t) � gu(pj−1u(t),h

j−1
u(t)), c

j
u1(t), c

j
u2(t),h

j
u1(t),h

j
u2(t),∆(u,t),Θj

)
(7)

Similarly, we can compute (hjv(t), c
j
v(t)) for v(t) based on the selection mechanism.

3.4 CONDITIONAL INTENSITY FUNCTION

We model the dynamic interactions as a multi-dimensional temporal point process. Specifically, we de-
fine the conditional intensity function of the temporal point process at the dimension indexed by (u, v),
given its graph-structured history Hu,v

t where Hu,v
t = subgraph(u1(t), k) ∪ subgraph(u2(t), k) ∪

subgraph(v1(t), k) ∪ subgraph(v2(t), k), as follows:

λu,v (t|Hu,v
t) = SoftPlus

(
hu,vt wλ + w>t τ + bλ

)
(8)

where hu,vt =
[
h>u1(t),h

>
u2(t),h

>
v1(t),h

>
v2(t)

]
, τ =

[
∆(u,t),∆(v,t)

]>
, the scalar bλ can be viewed

as a base intensity level for the occurrence of the next interaction, and the SoftPlus function is
used to ensure the non-negativity of the intensity. A key step for obtaining Hu,v

t is to get the k-
depth subgraphs of u and v’s direct dependants. Please see Appendix.A for more details about fast
obtaining k-depth subgraphs.

5

Under review as a conference paper at ICLR 2020

3.5 MAXIMUM LIKELIHOOD PARAMETER ESTIMATION

3.5.1 INTERACTION PREDICTION

Given a set of interactions as I = {(ui, vi, ti)}i=Ni=1 observed in a time window [0, T], we
can learn the model by minimizing the negative joint log-likelihood of I as follows: L1 =
−
∑
i logPui,vi

(
ti|Hui,vi

ti

)
where Pui,vi(ti|Hui,vi

ti) represents the probability of formalizing an
interaction between ui and vi at time ti given the dependant history of non-chain structures Hui,vi

ti .
Based on the intensity definition, we have L1 = −

∑
i log λui,vi

(
ti|Hui,vi

ti

)
+
∫ T
0

Λ(t)dt, where
Λ(t) =

∑
u,v λ

u,v(t). Since the survival part does not have an analytic solution, we apply Monte
Carlo to do numerical integrations. We follow the negative sampling approaches used by Dai et al.
(2016) and Trivedi et al. (2019) to accelerate the survival term calculation.

3.5.2 INTERACTION CLASSIFICATION

An interaction sequence with markers is denoted as I ′ = {(ui, vi, ti, yi)}i=Ni=1 , where yi is a marker
at time ti and usually is a discrete variable. In practice, the markers have different meanings in
distinct scenes. A marker can be treated as a magnitude in modeling earthquakes and aftershocks.
For financial transactions, a marker can be used to label whether a transaction is a fraudulent
trading or not. The joint conditional density of an interaction(ui, vi, ti) with marker yi is given as
Pui,vi

(
ti, yi|Ĥui,vi

ti

)
. By applying the Bayesian rule , the joint conditional density can be written as:

Pui,vi
(
ti, yi|Ĥui,vi

ti

)
= Pui,vi(ti|Ĥui,vi

ti)P
(
yi|ti, Ĥui,vi

ti

)
,where Pui,vi(ti|Ĥui,vi

ti) has the same

meaning as given in subsection 3.5.1, while P (yi|ti, Ĥui,vi
ti) means the distribution of yi given the

interaction happened at ti with interaction history Ĥui,vi
ti . It should be noted that the history Ĥui,vi

ti
contains the information of history markers and one can design a marker-specific intensity function
like Mei & Eisner (2017b). For simplicity, in our marked temporal point processes, we assume that
Pui,vi

(
ti, yi|Ĥui,vi

ti

)
is independent of historical markers. We model P

(
yi|ti, Ĥui,vi

ti

)
as

P (yi|hui,vi,ti) =
exp (Vyihui,vi,ti)∑
yi

exp (Vyihui,vi,ti)
(9)

where hui,vi,ti is the concatenation of hu(ti) and hv(ti) which can be regarded as a dynamic repre-
sentation for an interaction between u and v at ti, Vyi is the weight parameters for the yith class.
Then the overall cost function is L2 = L1 +Lcross−entropy , where Lcross−entropy is a cross-entropy
loss over marks:

Lcross−entropy = −
N∑
i=1

∑
yi

yi · logP (yi|hui,vi,ti) (10)

4 RELATED WORK

Inspired by the Skip-gram (Mikolov et al., 2013) for word embedding, a series of node embedding
methods based on the random walks on graphs have been proposed(Perozzi et al., 2014; Tang et al.,
2015; Grover & Leskovec, 2016; Wang et al., 2016; 2017). GCN and its variants (Bruna et al.,
2013; Hamilton et al., 2017a; Kipf & Welling, 2017) are a recent class of algorithms which extend
convolutions from spatial domains to graph-structured domains. Meanwhile they can efficiently
generate node embeddings for previously unseen data. All models above are designed for static
graphs. The intuitive and popular approaches for modeling dynamic graphs are based on a sequence
for graph snapshots(Goyal et al., 2018; Zhou et al., 2018; Seo et al., 2018; Yu et al., 2018), but it can
be difficult to specify the appropriate aggregation granularity. Nguyen et al. (2018) adds a temporal
constraint on random walk sampling, but it can’t model the rich temporal information explicitly.
Temporal point processes (TPPs) are an another alternative to model dynamics(Daley & Vere-Jones,
2007). Several dynamic graph modeling methods based on the TPPs (Dai et al., 2016; Trivedi et al.,
2019) have been proposed. Our method DIP differs from these TPP-based methods by the extension
of the LSTM model over temporal dependency graphs, the multiple time resolution modeling via
stacking, fusing and the selection mechanism. A recently proposed method Kumar et al. (2019)

6

Under review as a conference paper at ICLR 2020

models interactions directly by predicting the next interaction embedding. More detailed related work
are included in Appendix.C.

5 EXPERIMENTS

We evaluate the proposed DIP model for interaction prediction and interaction classification on
several real-world datasets.

5.1 BASELINES AND EVALUATION METRICS

GraphSage(Hamilton et al., 2017a) is an inductive graph neural network framework consisting of
three different aggregators which are GCN, Mean and LSTM aggregators respectively. We report
the best results among these three aggregators noted as Graphsage*. What’s more, for comparing with
GAT(Veličković et al., 2017) we also implement a graph attention aggregator based on GraphSage.
CTDNE(Nguyen et al., 2018) is a newly-proposed temporal network embedding method and also a
tranductive method like DeepWalk(Perozzi et al., 2014). It incorporates temporal order constraint
when sampling walks from time-continuous graphs. DynGEM(Goyal et al., 2018) takes a sequence
of static graph snapshots as inputs to learn node embeddings by a deep auto-encoder network.
DeepCoevolve (Dai et al., 2016) models dynamic interaction sequences with two co-evolution
recurrent neural networks. Hidden embeddings are learned for interactive nodes after each interaction.
DyREP (Trivedi et al., 2019) uses a two-time scale deep temporal point process model to capture
dynamics of graphs. JODIE (Kumar et al., 2019) models interaction processes in a novel way
by predicting the next interaction embedding directly instead of modeling the intensity function.
For interaction prediction, we report Mean Rank results. To evaluate the effectiveness of top-n,
we also report performances on hit@1 and hit@5. As for interaction classification, we employ
KS (Kolmogorov, 1933) score as well as AUC(Area under the ROC Curve) score.

5.2 EXPERIMENTAL SETTING

We conduct all the experiments with a hyper-parameter grid search strategy. For all methods, we
search the dimension of embedding from {16, 32, 64, 128} and the learning rate from {0.01, 0.001,
0.0005, 0.0001, 0.00001}. For our DIP model, we go through {1, 2, 3, 4} for k and {1, 2, 3} for
L. For Graphsage, the maximum number of 1-hop and 2-hop neighbor nodes are set to 25 and
20 respectively. All the models are trained for at most 50 epochs with an early-stop operation if
the performance does not improve for 5 epochs. For Graphsage, DynGEM ,DeepCoevolve and
JODIE, we use the open source codes provided by the authors. We implement the CTNDE and GAT
based on the Graphsage framework, and implement DyREP based on the pytorch implementation
of DeepCoevolve. After the best configuration is found, we repeat the full experiments 5 times and
report the mean results and standard deviation.

5.3 INTERACTION PREDICTION

5.3.1 DATASETS

CollegeMsg(Leskovec & Krevl, 2014) consists of sending message interactions on an online social
network at the University of California, Irvine during 193 days. Ubuntu(Leskovec & Krevl, 2014) is
a temporal interaction dataset extracted from the stack exchange website. An interaction between two
users means one answered another’s questions or replied to his/her posts. Amazon(McAuley et al.,
2015) is composed of commodity rating data from amazon users. We use the Clothing subset of
this dataset. MathOverflow(Leskovec & Krevl, 2014) is comprised of interactions of commenting
an existing answer on the Math Overflow website. Table 1 shows the detailed dataset statistics. In
this table, Repetition is the rate of repeated interaction in datasets. For each dataset,we first sort
these interactions by occurrence time and split them to be training/validation/test sets. The cold-start
participants which only exist in validation set or test set are removed.

7

Under review as a conference paper at ICLR 2020

Table 1: Dataset Statistics for interaction prediction

CollegeMsg Ubuntu Amazon-Clothing Math Overflow

Train/ # Valid/ # Test 35902/7814/5055 204846/39913/35271 50209/9195/7598 58596/24045/32705

Repetition in Valid(%) 72.55 56.60 0.00 67.42

Repetition in Test(%) 75.67 67.57 0.00 79.92

Duration(days) 193.63 2587.96 3657.00 2350.12

5.3.2 RESULTS AND ANALYSIS

Figure 4 summarizes the Mean Rank performances of all methods. On the whole, our DIP method
consistently beats all baselines by 65.84%, 41.64%, 10.69% and 43.99% over the four diverse datasets.
The CTDNE method performs worst across all the datasets since the generated embedding is static
and can’t be updated and evolved across validation and test datasets. Meanwhile we can see that
there is no consistent winner among baselines and all the methods perform relatively better on the
CollegeMsg, Ubuntu and MathOverflow datasets than do on the Amazon-Clothing dataset. It is
also noteworthy that the static methods GAT and GraphSage* perform competitive with dynamic
baselines on these three datasets. These phenomenons above could be explained that the CollegeMsg,
Ubuntu and MathOverflow have lots of repetitive interactions (at least 75% for CollegeMsg and
MathOverflow on test data, 68% for ubuntu on test data as shown in Table 1) and repetitive
information makes recurring interaction predicted easily. The two static methods perform worse than
the other dynamic methods(but JODIE) on the Amazon-Clothing because no repetitive information
can be reused and nodes representation can’t be updated across validation and test like CTDNE. As
for comparison with dynamic methods, our work performs better than the Dyrep, DeepCoevolve
and JODIE which use the similar mutually-recursive RNNs to capture and update co-evolution states
sequentially. We argue that the vallina RNNs can’t capture long-term dependency history well and
have optimization problems which may lead to worse performances than ours. Moreover they treat
past history information equally while our selection mechanism can select more relevant information
for updating dynamic representation. The performances of all methods on hit@1 and hit@5 are given
in Appendix.B. The effects of k and L are also investigated in Appendix.B.

5.4 INTERACTION CLASSIFICATION

5.4.1 DATASETS

We conduct this task on an industrial dataset: Huabei Trade Data. This dataset consists of about
150,000 transaction records processed by Huabei during August 2018. Each transaction is initiated
with three parties: the buyer, the seller and transaction details such as merchant category and
transaction amount. Around 15% of the transaction are fraudulent and is labeled by a complicated
Ex-Post method. For each interaction event, there are 11 context features including information about
buyer types, seller types, purchased items’ categories and trading platform. We use the first 10 days
data as training set, the following 10 days data as validation set, the rest as test set. Note that, in
this scenario, there are users who only appear in validation/testing dataset. Thus, the transductive
method CTDNE is not applicable on this task. Meanwhile, since the dynamic baseline methods are
all unsupervised, we only report GCN and our marked DIP methods Alternatively, we employ the
XGBoost (Chen & Guestrin, 2016) as an additional baseline which is a popular baseline method in
the cash-out detection task(Hu et al., 2019). The detailed data statistics are given in Appendix.B.1.

5.4.2 RESULTS AND ANALYSIS

Table 2 compares the results. Obviously, our model outperforms all the baseline methods with
large margins. The Xgboost method which only utilize interaction context feature can’t model any
co-evolution information in time-evolving interactions, thus it performs worst. The GCN-related
methods perform worse than our DIP since the static construction of interaction graph can blur
temporal structural information and miss time-interval information. A toy example in figure.1 can
explain why static graph methods fail in this task.

8

Under review as a conference paper at ICLR 2020

CollegeMsg
100

200

300

400

500

600

M
ea
n
Ra

nk

101.81

345.56
313.28

356.58
314.42 311.57

550.71

361.23

DIP
DyREP
DeepCoevolve
DynGEM

GAT
GraphSage*
CTDNE
JODIE

Ubuntu

1000

1500

2000

2500

3000

3500

M
ea
n
Ra

nk

796.09

1713.48
2055.05

2202.06

1529.8 1512.92

3406.14

1762.33

DIP
DyREP
DeepCoevolve
DynGEM

GAT
GraphSage*
CTDNE
JODIE

Clothing
4000

5000

6000

7000

8000

9000

M
ea

n
Ra

nk

5552.41

6862.01 6742.4
6216.84

7164.38 7173.11

8641.16
8330.39

DIP
DyREP
DeepCoevolve
DynGEM

GAT
GraphSage*
CTDNE
JODIE

MathOverflow
100

200

300

400

500

600

700

M
ea

n
Ra

nk
92.87

188.72

312.61 294.9 301.6 272.12

723.23

302.3

DIP
DyREP
DeepCoevolve
DynGEM

GAT
GraphSage*
CTDNE
JODIE

Figure 4: Mean rank results. As low mean rank indicates that the ground-truth item is ranked
accurately, we can observe that DIP always outperforms baselines.

Table 2: Interaction classification results

Xgboost GraphSage* GAT DIP

AUC 0.6818 ±0.0023 0.8603 ±0.0005 0.8597 ±0.0004 0.9017 ±0.0004

KS 0.2536 ±0.0015 0.5934 ±0.0012 0.6018 ±0.0005 0.6703 ±0.0060

5.5 ABLATION STUDY

As we described in Section 3, the DIP model consists of three important components: First, it uses a
Time Gate in the DIP neural unit to explicitly model the temporal information. Second, the selection
mechanism enables our model to select more important historical information for interactions. Third,
the Fusion of multi-layer DIP-UNIT’s hidden state vector helps to extract high level feature. We
investigate the contribution of each component by disabling each of them one by one, and compare
the corresponding result to the full model. figure 5 and figure 6 give the detailed ablation results.
FullModel in the two figures means all the three components are enabled.
• No Time Gate: In this configuration, the time gate in DIP-UNIT is disabled. This leads to a

significant drop of the Mean Rank performance. It provides a strong evidence for the effectiveness
of the time gate.

• No Selection: In this configuration the selection mechanism is disabled. Accordingly, all the
historical node representations contribute equally, thus again leading to a performance drop.

• No Fusion: In this variant, we directly use the hidden state vector of the last layer. Again, the per-
formance degrades significantly. This demonstrates that a fusion of different layers’ representations
gives richer information than the last layer only.

6 CONCLUSIONS

In this paper, we have proposed a deep multidimensional point process approach, DIP, to learn
dynamic graph representations. We generalize LSTM over temporal dependency graphs and model

9

Under review as a conference paper at ICLR 2020

CollegeMsg

60

80

100

120

140
M
ea
n
Ra

nk

101.81

129.36
120.48

130.92

FullModel
No-TimeGate

No-Selection
No-Fusion

Ubuntu

700

725

750

775

800

825

850

875

M
ea

n
Ra

nk

796.09
814.62 816.3 806.09

FullModel
No-TimeGate

No-Selection
No-Fusion

Clothing
3000

4000

5000

6000

7000

8000

M
ea

n
Ra

nk

5552.41

6602.65 6602.68
7127.69

FullModel
No-TimeGate

No-Selection
No-Fusion

MathOverflow

60

80

100

120

M
ea

n
Ra

nk

92.87

115.67
106.71

115.9

FullModel
No-TimeGate

No-Selection
No-Fusion

Figure 5: Ablation study results of the interaction prediction task. Disabling any one of the three
component leads to a performance drop.

AUC

0.80

0.85

0.90

0.95

AU
C

0.9017

0.8381 0.8509 0.8459

FullModel
No-TimeGate

No-Selection
No-Fusion

KS

0.55

0.60

0.65

0.70

KS

0.6703

0.5703
0.5948

0.5654

FullModel
No-TimeGate

No-Selection
No-Fusion

Figure 6: Ablation study results of the interaction classification task. All of the three component
contributes a lot to improve the final classification precision.

multiple time resolutions via stacking, selection and fusion. Experimental results show the effective-
ness of the components of our neural unit and the superior performance on several datasets.

REFERENCES

Odd Aalen, Ornulf Borgan, and Hakon Gjessing. Survival and event history analysis: a process point
of view. Springer Science & Business Media, 2008.

Amr Ahmed, Nino Shervashidze, Shravan Narayanamurthy, Vanja Josifovski, and Alexander J Smola.
Distributed large-scale natural graph factorization. In Proceedings of the 22nd international
conference on World Wide Web, pp. 37–48. ACM, 2013.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral techniques for embedding and
clustering. In Advances in neural information processing systems, pp. 585–591, 2002.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

10

Under review as a conference paper at ICLR 2020

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794.
ACM, 2016.

Hanjun Dai, Yichen Wang, Rakshit Trivedi, and Le Song. Deep coevolutionary network: Embedding
user and item features for recommendation. arXiv preprint arXiv:1609.03675, 2016.

Daryl J Daley and David Vere-Jones. An introduction to the theory of point processes: volume II:
general theory and structure. Springer Science & Business Media, 2007.

Michael Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. neural information processing systems, pp. 3844–3852,
2016.

Rianne Van Den Berg, Thomas N Kipf, and Max Welling. Graph convolutional matrix completion.
arXiv: Machine Learning, 2017.

Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-Rodriguez, and Le Song.
Recurrent marked temporal point processes: Embedding event history to vector. In Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
1555–1564. ACM, 2016.

Palash Goyal, Nitin Kamra, Xinran He, and Yan Liu. Dyngem: Deep embedding method for dynamic
graphs. arXiv preprint arXiv:1805.11273, 2018.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. knowledge
discovery and data mining, pp. 855–864, 2016.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Advances in Neural Information Processing Systems, pp. 1024–1034, 2017a.

William L Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs: Methods and
applications. IEEE Data(base) Engineering Bulletin, 40:52–74, 2017b.

Alan G Hawkes. Spectra of some self-exciting and mutually exciting point processes. Biometrika, 58
(1):83–90, 1971.

Binbin Hu, Zhiqiang Zhang, Chuan Shi, Jun Zhou, Xiaolong Li, and Yuan Qi. Cash-out user detection
based on attributed heterogeneous information network with a hierarchical attention mechanism.
2019.

John Frank Charles Kingman. P oisson processes. Encyclopedia of biostatistics, 6, 2005.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
international conference on learning representations, 2017.

Andrey Kolmogorov. Sulla determinazione empirica di una lgge di distribuzione. Inst. Ital. Attuari,
Giorn., 4:83–91, 1933.

Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory in temporal
interaction networks. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 1269–1278. ACM, 2019.

Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection. http:
//snap.stanford.edu/data, June 2014.

Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution: Densification and shrinking
diameters. ACM Transactions on Knowledge Discovery from Data (TKDD), 1(1):2, 2007.

Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel. Image-based
recommendations on styles and substitutes. In Proceedings of the 38th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 43–52. ACM, 2015.

11

http://snap.stanford.edu/data
http://snap.stanford.edu/data

Under review as a conference paper at ICLR 2020

Hongyuan Mei and Jason M Eisner. The neural hawkes process: A neurally self-modulating
multivariate point process. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems 30,
pp. 6754–6764. Curran Associates, Inc., 2017a.

Hongyuan Mei and Jason M Eisner. The neural hawkes process: A neurally self-modulating
multivariate point process. In Advances in Neural Information Processing Systems, pp. 6754–6764,
2017b.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations
of words and phrases and their compositionality. In Advances in neural information processing
systems, pp. 3111–3119, 2013.

Federico Monti, Michael M Bronstein, and Xavier Bresson. Geometric matrix completion with
recurrent multi-graph neural networks. neural information processing systems, pp. 3697–3707,
2017.

Giang Hoang Nguyen, John Boaz Lee, Ryan A. Rossi, Nesreen K. Ahmed, Eunyee Koh, and Sungchul
Kim. Continuous-time dynamic network embeddings. In Companion of the The Web Conference
2018 on The Web Conference 2018, WWW 2018, Lyon , France, April 23-27, 2018, pp. 969–976,
2018.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representa-
tions. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery
and data mining, pp. 701–710. ACM, 2014.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and
Luke Zettlemoyer. Deep contextualized word representations. In Proc. of NAACL, 2018.

Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally linear embedding.
science, 290(5500):2323–2326, 2000.

Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. Dynamic graph representation
learning via self-attention networks. In 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, 2019.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009.

Youngjoo Seo, Michaël Defferrard, Pierre Vandergheynst, and Xavier Bresson. Structured sequence
modeling with graph convolutional recurrent networks. In International Conference on Neural
Information Processing, pp. 362–373. Springer, 2018.

Sucheta Soundarajan, Acar Tamersoy, Elias B Khalil, Tina Eliassi-Rad, Duen Horng Chau, Brian Gal-
lagher, and Kevin Roundy. Generating graph snapshots from streaming edge data. In Proceedings
of the 25th International Conference Companion on World Wide Web, pp. 109–110. International
World Wide Web Conferences Steering Committee, 2016.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-scale
information network embedding. In Proceedings of the 24th International Conference on World
Wide Web, pp. 1067–1077. International World Wide Web Conferences Steering Committee, 2015.

Joshua B Tenenbaum, Vin De Silva, and John C Langford. A global geometric framework for
nonlinear dimensionality reduction. science, 290(5500):2319–2323, 2000.

Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. Dyrep: Learning
representations over dynamic graphs. In 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, 2019. URL https://openreview.net/
forum?id=HyePrhR5KX.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network embedding. pp. 1225–1234, 2016.

12

https://openreview.net/forum?id=HyePrhR5KX
https://openreview.net/forum?id=HyePrhR5KX

Under review as a conference paper at ICLR 2020

Xiao Wang, Peng Cui, Jing Wang, Jian Pei, Wenwu Zhu, and Shiqiang Yang. Community preserving
network embedding. In Thirty-First AAAI Conference on Artificial Intelligence, 2017.

Shuai Xiao, Mehrdad Farajtabar, Xiaojing Ye, Junchi Yan, Le Song, and Hongyuan Zha. Wasserstein
learning of deep generative point process models. In Advances in Neural Information Processing
Systems, pp. 3247–3257, 2017.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. knowledge discovery
and data mining, pp. 974–983, 2018.

Wenchao Yu, Wei Cheng, Charu C Aggarwal, Kai Zhang, Haifeng Chen, and Wei Wang. Netwalk: A
flexible deep embedding approach for anomaly detection in dynamic networks. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
2672–2681. ACM, 2018.

Lekui Zhou, Yang Yang, Xiang Ren, Fei Wu, and Yueting Zhuang. Dynamic network embedding
by modeling triadic closure process. In Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

Linhong Zhu, Dong Guo, Junming Yin, Greg Ver Steeg, and Aram Galstyan. Scalable temporal latent
space inference for link prediction in dynamic social networks. IEEE Transactions on Knowledge
and Data Engineering, 28(10):2765–2777, 2016.

13

Under review as a conference paper at ICLR 2020

A TEMPORAL DEPENDENCY GRAPH

The key step for efficient training or inference is to fast obtain subgraph(u(t), k) or subgraph(v(t), k)
for an interaction (u, v, t). Obviously, our definition of temporal dependency graph(TDG) in Subsec-
tion.3 provides a recursive and incremental way for its construction. As illustrated in figure 2, we
can easily find that subgraph(u(t), k) is the union of subgraph(u(t), k), subgraph(w(t−, k)) and the
newly added dependency edges. Based on this feature, to fast obtain k−depth subgraph, we design
two algorithms, TDG-COLORING and CONSTRUCTION OF K-DEPTH TDG orderly.

A.1 TDG-COLORING

The TDG-COLORING algorithm is shown in Algorithm 1, which is the pre-step of Algorithm 2. This
algorithm takes I = {(ui, vi, ti)}i=Ni=1 as input and generate a new sorted sequence of interactions
ordered by color numbers in an ascending way. The TDG-COLORING algorithm ensures that,
interactions in the same color group are independent and interactions from groups with smaller color
numbers are precedents of the larger ones.

Algorithm 1 TDG-COLORING

Require: I: A sequence of interaction with a chronological order.
Ensure: ColorGpSeq: A sequence of sorted interactions by color no.

1: Initialize ColorGroupArray[x]← −1 . x represents nodes in I and assign an initial color no
-1 for all nodes

2: Initialize LastNodeT ime[x]← −1 . Record the latest time when node x was involved in an
interaction and initialize with -1

3: for event in I do
4: cur_u, cur_v, cur_time = event.u, event.v, event.t
5: if cur_time > LastNodeT ime[cur_u] then
6: ColorGroupArray[cur_u] + +
7: LastNodeT ime[cur_u] = cur_time
8: end if
9: if cur_time > LastNodeT ime[cur_v] then

10: ColorGroupArray[cur_v] + +
11: LastNodeT ime[cur_v] = cur_time
12: end if
13: event.gn = max(ColorGroupArray[cur_u], ColorGroupArray[cur_v]) . gn is short

for group no
14: end for
15: ColorGpSeq = Sort(I) . sort I by an ascending order with assigned group color no.
16: return ColorGpSeq

A.2 CONSTRUCTION OF K-HOP TDG

The details of CONSTRUCTION OF K-DEPTH TDG are given in Algorithm 2. In Algorithm 2,
based on the definition of TDG and ColorGpSeq output by Algorithm 1, we can incrementally
construct the k-depth subgraphs for any two nodes in a new interaction. Specifically, we first call
PREVIOUS function to get each node’s adjacent interaction in which it was involved before current
interaction. Then incrementally construct a graph(ugraph) rooted at cur_u(lines 6 to 10). Here
Hk_subgraph[u_preInteraction] stores the subgraph of ugraph which was obtained before ugraph
because u_preInteraction ranks ahead of current event in ColorGpSeq. Likely, we can get
vgraph incrementally. At last, we call the Breadth-First-Search algorithm with the traverse depth =
K to obtain the k-depth subgraphs for cur_event and then store it into Hk_subgraph[cur_event].

A.3 OBTAINING AND UPDATING K-DEPTH TDG

As for efficiency, fast obtaining k-depth subgraph of TDG for an interaction is both important
for offline training and online inference. Based on Algorithm 2, for an interaction l from the

14

Under review as a conference paper at ICLR 2020

Algorithm 2 CONSTRUCTION OF K-DEPTH TDG

Require: ColorGpSeq: A seq of sorted interaction by group color no.
Ensure: HashTable Hk_subgraph: Map an interaction to its corresponding k_subgraph.

1: Initialize an empty HashTable Hk_subgraph
2: for cur_event in ColorGpSeq do
3: cur_u, cur_v = cur_event.u, cur_event.v
4: u_preInteraction = Previous[cur_u] . Previous Function returns last interaction in which
cur_u was involved

5: v_preInteraction = Previous[cur_v]
6: if u_preInteraction exits then
7: edge1 = (u_preInteraction.u, cur_u) . The edge is defined according to the

definition of dependency graph
8: edge2 = (u_preInteraction.v, cur_u)
9: ugraph = edge1 ∪ edge2

10: ugraph = Hk_subgraph[u_preInteraction] ∪ ugraph . Incremental Update
11: else
12: ugraph = cur_u
13: end if
14: if v_preInteraction exits then
15: edge3 = (v_preInteraction.u, cur_v)
16: edge4 = (v_preInteraction.v, cur_v)
17: vgraph = edge3 ∪ edge4
18: vgraph = Hk_subgraph[v_preInteraction] ∪ vgraph . Incremental Update
19: else
20: vgraph = cur_v
21: end if
22: GK−depth = BFS(ugraph ∪ vgraph, depth = K) . Call Breadth-First-Search with max

depth = K
23: Hk_subgraph[cur_event] = GK−depth
24: end for
25: return Hk_subgraph

collected training interaction data, we can obtain its corresponding k-depth subgraphs directly using
Hk_subgraph[l] with time complexity O(1). For a new incoming interaction l with two nodes cur_u
and cur_v , we can easily reuse Algorithm 2’s code from line 3 to 22 to find ugraph and vgraph,
respectively. Then we merge them to get k-depth subgraph for doing inference online. At the same
time, we can incrementally update TDG by Hk_subgraph[l]. The time complexity here for updating
TDG mainly depends on union between ugraph and vgraph in line 22 of Algorithm 2 and isO(n+e)
where n and e are the total number of nodes and edges for ugraph and vgraph.

B ADDITIONAL DATA STATISTICS AND EXPERIMENT RESULTS

B.1 HUABEI TRADE DATASET

Table 3: Huabei Dataset Statistics

Interaction # Seller # Buyer Repetition(%)
Train 60705 19453 22916 -
Valid 53609 16669 23517 25.21
Test 34471 9929 17549 23.55

15

Under review as a conference paper at ICLR 2020

CollegeMsg
0

2

4

6

8

10

12

14

HI
T@

5

9.59

7.05

4.98

1.58

6.57
5.01

1.49

7.73

DIP
DyREP
DeepCoevolve
DynGEM

GAT
GraphSage*
CTDNE
JODIE

Ubuntu
0

5

10

15

20

25

30

35

40

45

HI
T@

5

29.95

12.5 12.18

4.46

23.15

28.49

1.35

18.1

DIP
DyREP
DeepCoevolve
DynGEM

GAT
GraphSage*
CTDNE
JODIE

Clothing
0.0

0.1

0.2

0.3

0.4

0.5

HI
T@

5

0.23
0.27

0.21

0.36

0.08 0.06
0.03

0.12

DIP
DyREP
DeepCoevolve
DynGEM

GAT
GraphSage*
CTDNE
JODIE

MathOverflow
0

10

20

30

40

50

60

HI
T@

5

41.07

27.9
24.74

9.06
14.14

32.51

14.4

27.34

DIP
DyREP
DeepCoevolve
DynGEM

GAT
GraphSage*
CTDNE
JODIE

Figure 7: Hit@5 Results

CollegeMsg
0

1

2

3

4

5

HI
T@

1

2.34
1.91

1.3

0.32

1.94 1.76

0.36

3.45

DIP
DyREP
DeepCoevolve
DynGEM

GAT
GraphSage*
CTDNE
JODIE

Ubuntu
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

HI
T@

1

13.75

5.73 6.5

1.81

10.83

14.32

0.77

8.49

DIP
DyREP
DeepCoevolve
DynGEM

GAT
GraphSage*
CTDNE
JODIE

Clothing
0.00

0.05

0.10

0.15

0.20

0.25

0.30

HI
T@

1

0.22

0.12

0.06 0.07

0.02 0.02 0.01 0.02

DIP
DyREP
DeepCoevolve
DynGEM

GAT
GraphSage*
CTDNE
JODIE

MathOverflow
0

5

10

15

20

25

30

HI
T@

1

20.33

13.25
10.57

1.86
4.89

12.74

8.06

17.13

DIP
DyREP
DeepCoevolve
DynGEM

GAT
GraphSage*
CTDNE
JODIE

Figure 8: HIT@1 Results

B.2 HIT PERFORMANCE

Figure 7 and Figure 8 provide HIT@5 and Hit@1 results in addition to the Mean Rank results in
Section 5.3.2 of the main paper. HIT@n is defined as HIT@n =

∑
δi

#of Test Interaction , where δi = 1

if ranki <= n else 0, which measures the ability of top rank prediction.

16

Under review as a conference paper at ICLR 2020

1 2 3 4
k

115

120

125

130

135

140

145

150

M
ea
n
Ra

nk
L=1 L=2 L=3

(a) CollegeMsg

1 2 3 4
k

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

KS

L=1 L=2 L=3

(b) Huabei Trade data

Figure 9: Sensitivity to k and L.

16 32 64 128
Dimension

100

200

300

400

500

600

700

800

M
ea
n
Ra

nk

DIP
DyREP
DeepCoevolve

GraphSage
GAT

CTDNE
JODIE

(a) CollegeMsg

16 32 64 128
Dimension

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

KS

DIP GAT GraphSage

(b) Huabei Trade data

Figure 10: Sensitivity to dynamic representation dimension.

B.3 EFFECT OF THE DEPTH K AND THE NUMBER OF LAYERS L

For a given node u(t), only the history information in k-depth temporal subgraph, i.e,
subgraph(u(t), k), is considered to calculate the dynamic representation, so the number of depth
k could affect the final representation. Meanwhile, our proposed fusion mechanism is based on
deep model which can capture different information at different layers. So, in this subsection, we
investigate the effects of k and L for CollegeMsg dataset on the Interaction Prediction task and
Huabei Trade dataset on the Interaction Recognition, which is shown in Figure 9. As we can see,
stacking multiple layers does help improve the interaction prediction and interaction classification
performances, but it doesn’t mean the larger L will always give the better results. And with the k
increases which means we could utilize more history information, the trend of the performances go
better for both tasks.

B.4 EFFECT OF EMBEDDING SIZES

To investigate the effect of the dynamic embedding size on the interaction prediction and interaction
classification tasks, we vary the dynamic embedding dimension in {16, 32, 64, 128} and report
the corresponding Mean Rank results for interaction prediction on the CollegeMsg dataset and KS
results(AUC is similar) for interaction classification on Huabei Trade Data in figure 10. In figure 10
(a), we see that the dynamic embedding size has little impact on DIP model, and it consistently
outperforms all baselines. The performances of several baselines drop more or less when the
embedding size is set to 128. The baseline model could overfit at this embedding size. In figure 10 (b)
we find that when all the baselines are set with the same dynamic embedding sizes, our DIP model
always outperforms the competitors.

17

Under review as a conference paper at ICLR 2020

C DETAILED RELATED WORK

Graph representation learning, which is also known as graph embedding or network embedding, is a
task aiming to learn low-dimensional dense vectors for vertex and edges that preserve the original
graph structural information and network properties. Before the era of deep learning, conventional
graph representation learning methods usually adopts dimension reduction (Belkin & Niyogi, 2002;
Tenenbaum et al., 2000; Roweis & Saul, 2000) or matrix factorization(Ahmed et al., 2013) techniques.
While these methods usually suffer a heavy computational cost. After the great success of deep
learning methods in the field of computer vision and natural language processing, especially Skip-
gram(Mikolov et al., 2013) in word representation learning, this problem has been widely investigated
by neural network methods. We review the development of this research direction from the following
perspectives.

Static Graph Representation Learning: Perozzi et al. (2014) proposed the DeepWalk model
utilizing random walks on graph to generate sequences of nodes, and feed them into the Skip-gram
model to learn nodes’ low dimensional representation vector. Then, Tang et al. (2015) proposed the
definition of first-order proximity and second-order proximity in the model named LINE, that jointly
models this two different level structure information. Grover & Leskovec (2016) designed a biased
random-walk sampling method to capture more flexible neighborhood information which is helpful
to learn richer representations. And Wang et al. (2016; 2017) extended these models by considering
high-order proximity and community structure. But these mentioned methods are somehow shallow.
Another type of method is the Graph Convolution Network (Bruna et al., 2013; Kipf & Welling,
2017). They extended the convolution neural network to the graph spectral space, thus applied DEEP
model on graph data. While these methods are still transductive, and can not jointly models the
network structure information and the attributed on nodes or edges of graph. To overcome this
problem, Hamilton et al. (2017a) proposed an inductive graph embedding framework, which divided
the representation learning into two phrase: sampling and aggregation, such that it could incorporates
node feature information and thus generate embedding from these features using the well-trained
graph neural network for unseen nodes. Veličković et al. (2017) used self-attention to learn weights
for neighborhood, then aggregated them by the self-adapted weight. While, most of these approaches
can only model static graph data.

Dynamic Graph Representation Learning: A popular approach for modeling dynamic graph data
is considering the dynamics as a sequence of graph snapshot(Soundarajan et al., 2016). Zhu et al.
(2016) uses an non-negative matrix factorization technique to embed social network in a temporal
latent space. Zhou et al. (2018) models the specific triadics closure formation procedure over the
snapshots. Goyal et al. (2018) adapts an graph autoencoder and learns a stable embedding over time.
Seo et al. (2018) combines a CNN module and a RNN module to capture spatial characteristics and
temporal characteristics. NetWalk(Yu et al., 2018) also learns vertex representations from sequences
of snapshots, and it is designed specially for anomaly detection. In contrast, Nguyen et al. (2018)
adds temporal order constraint on random walk sampling to capture evolving neighborhood. But, it
can’t explicitly models the rich temporal information.

Temporal Point Process: Temporal Point Process is a powerful statistical tool for modeling se-
quences of events with unequal interval. It has been wildly used in recent research with different
intensity function: from parametric(Du et al., 2016) to recurrent neural networks(Dai et al., 2016; Mei
& Eisner, 2017b), event reinforcement learning based(Xiao et al., 2017). DeepCoevolve(Dai et al.,
2016) designs a recurrent neural network to capture the co-evolution dynamics of interaction data.
But it just takes the interaction counterpart into the co-evolution module, which may loss temporal
structural information. DyREP(Trivedi et al., 2019) divides the interactions between nodes into two
different types as communication and association and models them separately. Although it uses the
neighborhood of interaction counterpart to update node representation, the relevance between the
different neighbors of counterpart and the node itself has not been modeled.

18

	Introduction
	TEMPORAL POINT PROCESSES
	Deep Interaction processes
	Temporal dependency graph
	DIP neural unit and Dynamic Representation
	Enhanced Dynamic Representation
	Stacking and Fusion
	SELECTION

	conditional intensity function
	Maximum likelihood parameter estimation
	interaction prediction
	interaction classification

	Related Work
	Experiments
	Baselines and Evaluation Metrics
	Experimental Setting
	Interaction Prediction
	Datasets
	Results and Analysis

	Interaction classification
	Datasets
	Results and Analysis

	Ablation Study

	Conclusions
	Appendix TEMPORAL DEPENDENCY GRAPH
	TDG-coloring
	Construction of k-hop TDG
	Obtaining and Updating k-depth TDG

	Appendix Additional Data statistics And Experiment results
	Huabei Trade Dataset
	Hit Performance
	Effect of the depth k and the number of layers l
	Effect of embedding sizes

	Appendix Detailed Related Work

