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ABSTRACT

In many machine learning problems, loss functions are weighted sums of several
terms. A typical approach to dealing with these is to train multiple separate models
with different selections of weights and then either choose the best one according
to some criterion or keep multiple models if it is desirable to maintain a diverse set
of solutions. This is inefficient both at training and at inference time. We propose
a method that allows replacing multiple models trained on one loss function each
by a single model trained on a distribution of losses. At test time a model trained
this way can be conditioned to generate outputs corresponding to any loss from the
training distribution of losses. We demonstrate this approach on three tasks with
parameterized losses: β-VAE, learned image compression, and fast style transfer.

1 INTRODUCTION

When designing a model for a machine learning problem at hand, a practitioner often thinks of
multiple qualities that the model should have. For example, in addition to requiring a good prediction
performance, it may be desirable to have a classifier that is simple, so that it would better generalize
to unseen data. Similarly, when training a lossy image compression model, one optimizes both the
size of the compressed images and their quality. In such scenarios, multiple loss functions have to
be minimized simultaneously, each of them modelling a different facet of the considered problem.

Typically, it is not possible to simultaneously optimize all these losses — either due to limited model
capacity, or because some of the losses may be fundamentally in conflict (for instance, image quality
and the compression ratio in image compression). One thus has to decide how to balance the losses
during optimization. Such multi-objective problems are most commonly scalarized by linearly com-
bining the losses, with weights defining the trade-off between the loss terms. However, the exact
values of the chosen weights can strongly affect the performance of the model and their tuning can
be cumbersome. It might be also unpredictable how the weights affect the final values of the indi-
vidual losses; moreover, the actual goal may be to optimize a down-stream metric that is not being
explicitly minimized during training (for instance, classification accuracy). Furthermore, in many
tasks there may not be a single optimal model, but it is instead important to make different trade-offs
at test time. For instance, in image compression, to achieve a fine-grained coverage of rate-distortion
trade-offs, one would first have to train at least ten models with different parameter settings, and then
at inference time store them all in memory and select the appropriate one depending on the required
compression level. This is inefficient both at training and at inference time. However, intuitively, the
models trained for different loss variants are related and could share a large fraction of computation.
Is it possible to improve the efficiency by making use of this model redundancy?

In this paper we propose a simple and broadly applicable approach that efficiently deals with multi-
term loss functions and, more generally, arbitrarily parameterized loss functions. Instead of training
one model for each parameter combination of the loss, we train one model that covers the whole
space of different loss weightings. We achieve this by (i) training the model on a distribution of
losses instead of a single loss, and (ii) conditioning the model outputs on the parameters of the

The code will be released at www.github.com/google-research/google-research/yoto.
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loss function. This way, at inference time the conditioning vector can be varied, allowing us to
traverse the space of models corresponding to different loss functions. We dub the method You
Only Train Once (YOTO). The conceptual simplicity of the approach makes it easily applicable to
many problem domains, with only minimal changes to existing codebases.

We experimentally showcase the efficacy of the proposed optimization scheme on image synthesis
problems, where multi-loss problems are especially widespread. We first show that (β-)variational
autoencoders (Kingma & Welling, 2014; Higgins et al., 2017) can be trained for a large range of
β parameters at the cost of training a single fixed-β model. Then, we train a single deep image
compression model (Ballé et al., 2018) that can adjust the rate-distortion trade-off on the fly at test
time. Finally, we apply YOTO to style transfer (Gatys et al., 2016; Ghiasi et al., 2017), where it is
provides a clear benefit given that there is no clear single optimum and that the effect of the various
losses on the stylized image is difficult to characterize.

2 RELATED WORK

Losses with multiple terms are most commonly associated with multi-task learning (Caruana, 1997;
Kokkinos, 2017; Zamir et al., 2018), where the goal is to train a single model that simultaneously
solves several learning tasks. We refer the reader to Ruder (2017) for a recent review. Most related to
our approach are methods that condition the network architecture on the task at hand (Rebuffi et al.,
2017; Mallya et al., 2018), which an be seen as a special case of our method with “one hot” loss
weight vectors. While ideas from our work could also be applied to the multi-task learning scenario,
here we choose to focus on problems where it is desirable to learn a diverse set of models, rather than
a single well-performing model. Recently, Brault et al. (2019) studied simultaneous optimization of
multiple loss functions in the context of multi-task kernel learning. Our work is similar in spirit, but
differs drastically both technically and in the application domains.

Conditional normalization schemes have recently been used for a range of supervised learning tasks,
including Conditional Batch Normalization (CBN) for visual question answering (de Vries et al.,
2017), Conditional Instance Normalization and Adaptive Instance Normalization (AdaIN) for fast
style transfer (Dumoulin et al., 2017; Huang & Belongie, 2017; Ghiasi et al., 2017), Feature-wise
Linear Modulation (FiLM) for visual reasoning (Perez et al., 2018), and a variety of conditioning
schemes for generative models (Karras et al., 2019; Brock et al., 2019). A comprehensive overview
of conditioning methods is provided by Dumoulin et al. (2018). All these methods condition a
convolutional network on some side information by linearly transforming the activations with co-
efficients computed from the side information. The side information typically informs the model
about the prediction target: for instance, it can be the text of a question in the question answering
setting or the style image in style transfer. The only exception we are aware of is the recent work
of Babaeizadeh & Ghiasi (2018), which conditions a style transfer network on the parameters of the
loss function, same as in our method. The approach is technically very similar, but we formulate it as
a generally applicable technique and evaluate on several tasks both qualitatively and quantitatively.

Conditional models are also often used in sensorimotor control to train a single model capable of
addressing a family of tasks, such as throwing darts at different targets (da Silva et al., 2012), block
stacking and ball hitting (Deisenroth et al., 2014), navigating towards different locations (Schaul
et al., 2015), moving objects with a robotic arm (Andrychowicz et al., 2017), driving in the desired
direction (Codevilla et al., 2018) or trading off the reward components (Dosovitskiy & Koltun,
2017). A single model, conditioned on the task parameters, is trained to simultaneously maximize
the rewards for a distribution of tasks. While technically similar to our setting, the conceptual
difference is that between the tasks the training targets are changing (either rewards or expert actions
used as labels for imitation learning), rather than the loss function itself, as in our case.

Another recent line of related work explores the use hypernetworks — networks that generate the
weights of other networks — for hyperparameter optimization. Lorraine & Duvenaud (2018) pro-
pose to parametrize the weights of a network by a hypernetwork, which is conditioned on the values
of the hyperparameters. The model can then be trained on a distribution of hyperparameters, and
the hyperparameters can be optimized via gradient descent on the validation data. MacKay et al.
(2019) improve the scalability of the method by proposing efficient approximations to hypernet-
works. These methods are technically similar to our approach, but they focus on hyperparameter
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Figure 1: Illustration of the proposed method. At training time (left), for each training data point
loss parameters λ are sampled from a distribution Pλ, and the model is conditioned on these. Then,
at test time (right), the model can be conditioned on any desired loss parameters to achieve behavior
corresponding to the loss function with these parameters.

optimization, while we are more interested in obtaining the full set of solutions corresponding to the
different loss coefficients.

Recently, Shoshan et al. (2019) and Wang et al. (2019) addressed the problem of interpolating be-
tween predictions of two or more image generation models. Both methods start by training several
separate models and then propose different ways of interpolating between them: either by using
specialized adaptor blocks in the networks, or by directly interpolating the network weights. We,
in contrast, train only a single model by directly optimizing the performance over a distribution
of losses. This is conceptually simpler, can be easily integrated in existing models, and requires
training a single model instead of several.

3 METHOD

We consider the following learning scenario: given a training distribution of pairs x,y ∼ Px,y
with x ∈ X ⊂ RdX , y ∈ Y ⊂ RdY , and a loss function L(·, ·) : Y × Y → R, we aim to learn
a model F : X → Y, with parameters θ, such that its predictions ŷ = F (x, θ) minimize the
expected value of the loss L(y, ŷ) over the dataset. This formulation is very broad and covers a
variety of machine learning problems, including (self-)supervised learning learning, and some types
of generative models. We focus on this setting for a more streamlined presentation, although the
proposed method can be applied to models that go beyond this formulation.

Instead of a single fixed loss function L(·, ·), assume that we are interested in a family of losses
L(·, ·,λ), parameterized by a vector λ ∈ Λ ⊂ Rdλ . The most common case of such a family
of losses is a weighted sum of several loss terms: L(·, ·,λ) =

∑
i λi Li(·, ·). However, other

parameters, such as, for instance, the power p in `p losses, might also be included in the vector λ.
In practice, one then typically minimizes the loss independently for each choice of the parameter
vector λ:

θ∗λ = arg min
θ

Ex,y∼Px,yL(y, F (x,θ),λ). (1)

Instead of fixing λ, we propose to solve an optimization problem where the parameters λ are sam-
pled from a distribution Pλ. Hence, during training time the model observes many losses, and can
learn to utilize the relationships between them to optimize all of them simultaneously. The distri-
bution Pλ can be seen as a prior over the losses, and we discuss its choice in the next subsection.
At inference time, the joint model can be conditioned on an arbitrary desired parameter value λ,
yielding the corresponding predictions. We thus solve the following optimization problem:

θ∗ = arg min
θ

Eλ∼PλEx,y∼Px,y L(y, Fc(x,θ,λ),λ). (2)

In the limit of infinite model capacity, this new proposed optimization problem is equivalent to the
original independent optimization scheme, in the sense that the minimal values for both problems
coincide. Further discussion, as well as the proof, are provided in the appendix.

Proposition 1. Consider two optimization problems:

(1) min
F∈C(X)

Ex,y∼Px,yL(y, F (x),λ) (2) min
G∈C(X×Λ)

Eλ∼PλEx,y∼Px,yL(y, G(x, λ),λ),
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where C(S) denotes the space of continuous functions on S. Assume there exists a continuous
function F ∗(x,λ) such that for every λ ∈ Λ the function F ∗(·,λ) solves the problem (1). Then, if
G∗ is a solution of the problem (2), G∗(·, λ) also minimizes the problem (1) almost surely w.r.t. Pλ.

This theoretical result shows that the method is fundamentally as powerful as the standard per-
parameter training, while only requiring a single model. However, in practice the infinite capacity
assumption does not hold, so implementation details become important, which we describe next.

3.1 PRACTICAL DETAILS

In this work we focus on training deep networks with methods based on stochastic gradient descent.
We therefore approximate the expectations in equation 2 using Monte Carlo estimates: we estimate
the expectation over the data distribution by averaging over a training set D = {(xi,yi)}Ni=1, and
the expectation over the loss parameters by sampling from the loss parameter distribution:

θ∗ = arg min
θ

n∑
i=1

L(yi, F (xi,θ,λi),λi), λi ∼ Pλ. (3)

In our experiments, we sample a new loss parameter for each training data point every time it is
encountered during training.

The distribution of the loss parameters to be used for training is typically not given and has to be
chosen. Clearly, the support of the training distribution has to include the range of parameter values
we are interested in covering, but this still leaves a lot of freedom in the specific choice of the
distribution. In our experiments we use the log-uniform distribution, which is commonly used for
sampling the parameters of machine learning models (Bergstra & Bengio, 2012).

In our experiments the model F is a convolutional network. To condition the network on the loss
parameters, we use Feature-wise Linear Modulation (FiLM) (Perez et al., 2018). First, we select the
layers of the network to be conditioned (can be all layers or a subset). Next, we condition each of the
layers on the given weight parameters λ. Assume the layer outputs a feature map f of dimensions
W ×H×C, withW andH corresponding to the spatial dimensions and C to the channels. We feed
the parameter vector λ to two multi-layer perceptrons (MLPs) Mσ and Mµ to generate two vectors,
σ and µ, of dimensionality C each. We then multiply the feature map channel-wise by σ and add
µ to get the transformed feature map f̃ :

f̃ijk = σkfijk + µk, σ = Mσ(λ), µ = Mµ(λ). (4)

4 EXPERIMENTS

We evaluate the proposed method both quantitatively and qualitatively on three problems with multi-
term loss functions: β-VAE, learned image compression, and fast style transfer. All details regarding
the architectures and the training, as well as additional results, are provided in the appendix.

4.1 β-VARIATIONAL AUTOENCODERS

Our first problem is the loss of the β-variational autoencoder (Higgins et al., 2017)

Lβ-VAE(x, z, φ, θ, β) = Eqφ(z|x) log pθ(x | z)− βDKL(qφ(z | x)‖p(z)), (5)

where qφ(z | x) is the amortized approximate posterior implemented by an encoder network with
parameters φ, pθ(x | z) is a stochastic decoder network with parameters θ, and p(z) is the prior
distribution, in our case a standard multivariate Gaussian. The loss has a single positive parameter β
trading off between the reconstruction quality and the divergence between the approximate posterior
and the prior.

We consider two settings: the CIFAR-10 dataset (Krizhevsky, 2009) with Gaussian outputs, and the
Shapes3D dataset (Burgess & Kim, 2018) with Bernoulli outputs. In both cases we use convolu-
tional encoder-decoder networks with Gaussian latents. We condition after each downsampling or
upsampling operation. Both for YOTO and fixed-weight models, we train a set of networks with
varying capacities, by proportionally changing the width of all layers. This is done with the goal
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(a) Frontier on CIFAR-10. (b) Full losses on CIFAR-10.
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(c) Frontier on Shapes3d. (d) Full losses on Shapes3D.

Figure 2: Quantitative β-VAE results on CIFAR-10 (a,b), and Shapes3D (c,d) for models of varying
capacity (width). In most cases, the proposed method performs close to models trained indepen-
dently for each loss weight value. This is especially the case for high capacity models.

of measuring how does the capacity of a YOTO model affect its performance relative to a set of
fixed-weight models. We train each network 3 times and report means and standard deviations over
these three runs.

Quantitative results are shown in Figure 2. For each dataset, we provide two plots: the frontier of
the two loss components plotted against each other ((a), (c)), and the value of the full loss plotted
against the value of the parameter β ((b), (d)). The first plot allows to assess how well the proposed
model fits the two loss terms, while the second one shows the actual optimization objective — the
weighted sum of the losses. To better highlight the differences between the methods, when plotting
the full loss, we normalize it by subtracting the loss of one of the models from all other models.

On both datasets, we observe several common tendencies. First, for small-capacity models the pro-
posed method somewhat underperforms relative to the fixed-weight models, especially on CIFAR-
10. This is not surprising, since it is difficult for a small model to cover all loss variants. Second,
both the YOTO models and the fixed-weight ones improve substantially with increasing model ca-
pacity, so a set of fixed-weight models of a certain width is consistently matched or outperformed
by a twice wider YOTO model (this is additionally highlighted in Figure 4 that plots the average full
loss versus the width of the network). Third, the larger the network capacity, the closer the perfor-
mance of fixed-models and the YOTO model. In particular, on both datasets for the widest networks
the two frontiers become very close. This is quite intuitive and matches the theoretical result that in
the limit of infinite model capacity the proposed method should be as powerful as training separate
fixed-weight models.

Qualitative results are shown in Figure 3. Both for reconstruction and sampling, for each value of
the weight β that we show YOTO produces results closely resembling those of the corresponding
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Figure 3: Qualitative β-VAE results on the Shapes3D dataset. For each loss weight β, the recon-
struction and sampling results of YOTO are very similar to those of the separately trained models.
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Figure 4: Loss averaged over all loss weight values as a function of the model capacity. We compare
the proposed method to a set of fixed-weight models on two datasets: CIFAR-10 (a) and Shapes3D
(b). We vary the capacity of the network by multiplying the width of the network by a factor. The
performance of the proposed method overall matches that of fixed-based models with a roughly
1.5x wider model. Moreover, the performance of the proposed method gets closer to that of the
fixed-weight models when the capacity of the model is increased.

independently trained model. An interesting property of the YOTO model is that sampling with the
same noise vector for different beta values generates similar images at different quality levels.

Additional results, including a comparison to two simple baselines (a single fixed-weight model and
a baseline based on interpolation), an ablation study of the proposed method, and qualitative results
on CIFAR-10, are shown in the appendix.

4.2 LEARNED IMAGE COMPRESSION

We build on the learned compression model of Ballé et al. (2018). The model is similar to a varia-
tional autoencoder, but with a few modifications that allow for the quantization of the latent repre-
sentation and its use as a compressed image encoding. Moreover, it includes a “hyperprior” learned
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(a) PSNR on Tecnick. (b) PSNR on Kodak.

Figure 5: Quantitative compression results on the Tecnick and Kodak datasets. A basic YOTO model
under-performs compared to a set of fixed-weight models, but a wider network nearly matches the
performance of the fixed-weight models, especially in the high-quality regime.

by a second variational autoencoder on top of the latents of the first one. The loss function has a
single parameter — the “rate-distortion weight”, trading off compression rate versus reconstruction
quality. We refer the reader to (Ballé et al., 2018) for details. The architecture of the model includes
four networks: a convolutional encoder and hyper-encoder, as well as a transposed convolutional
decoder and a hyper-decoder. The networks are relatively shallow, with three convolutional layers
each. We apply conditioning to all layers of the model. Same as for VAEs, we train three models for
each setting to estimate the stability of training. Further details are provided in the appendix.

We evaluate the compression models on two datasets: Kodak (Kodak, 1993) and Tecnick (Asuni &
Giachetti, 2014). The quantitative results on Tecnick are shown in Figure 5, while the results on
Kodak are deferred to the appendix. We show rate-distortion plots with standard PSNR on pixel
values as a measure of compression quality and bits per pixel as a measure of compression rate.
We plot three models per method, but since the training is stable, there difference between them
is almost not visible. The gap between separate fixed-weight models (“Fixed weight”) and a single
joint model of the same size (“YOTO”) is fairly small, but consistent across all compression rates and
is especially pronounced in the higher quality regime. However, making the model larger (“YOTO
width x1.33”) recovers a large fraction of the performance, in particular the wider model matches
the performance of a smaller fixed-weight model in the high quality regime. However, in the high-
compression regime there is still a small gap from the fixed-weight models.

We hypothesize that the reason for relatively worse performance of YOTO on the compression task
compared to β-VAEs is that the networks used by Ballé et al. (2018) are relatively shallow. They
therefore lack the representational power to efficiently make use of the conditioning input. We expect
that one could devise combinations of architectures and conditioning methods for the compression
task which would lead to a smaller gap between the fixed-weight and YOTO models; however, this
additional tuning is beyond the scope of this paper.

4.3 STYLE TRANSFER

The final problem we consider is style transfer (Gatys et al., 2016) — given a content image xc and
a style image xs, the goal is to synthesize a stylized image y that contains the same content as xc,
but in a style that resembles that of xs. This is typically cast as an optimization problem — we want
to find an image y, that when passed through a pre-trained neural network has activations similar to
those of xc, but whose aggregate feature statistics resemble those of xs. There is a lot of freedom in
deciding which layers of the network to use and how to weigh them. These parameters are not easy
to tune, since we are optimizing for visual appearance, which cannot be easily quantified. Hence, a
single model capable of representing all loss variants would be of great benefit. These experiments
are similar to those presented by Babaeizadeh & Ghiasi (2018), but with more focus on a quantitative
evaluation, same as in other applications reported above.
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Figure 7: Qualitative comparison of image stylization models on an image from the validation set of
ImageNet. The first row shows the results of YOTO trained on all parameters, and the second row
shows the results of fixed-weight models trained independently for each loss parameters. In both
cases the parameter values increase from left to right. YOTO generates results very similar to the
separate models, while training just a single model.

We build on the work of Ghiasi et al. (2017), who propose training a single deep network that can
stylize images in arbitrary styles. To this end, the content image is fed to the stylization network
itself, while the style image is fed to a different “style prediction” network that extracts a feature em-
bedding. This embedding is then used to modulate the stylization network via conditional instance
normalization. We refer the reader to (Ghiasi et al., 2017) for a detailed explanation.

Following Ghiasi et al. (2017), we extract the activations from the VGG network (Simonyan &
Zisserman, 2015), and define a total of six losses: four style losses Ls,1(y,xs), . . . ,Ls,4(y,xs),
one content loss Lc(y,xc), and a total variation loss Ltv(y) encouraging smoothness between the
neighbouring pixels of y. The final loss is then a linear weighting of these, which we will denote
as L(y) =

∑n
i=1 λs,iLs,i(y,xs) + λcLc(x, c) + λtvLtv(y). We train a single YOTO model over

five of these parameters (while keeping the TV loss fixed to 104), with log-uniform distributions.
To this end, in addition to the style embeddings we condition the stylization network on the vector
of loss parameters λ. We sample the content images form ImageNet (Deng et al., 2009) and use 14
pointillism paintings as the style images. Further details are provided in the appendix.

We start by reporting quantitative results. As the problem has 5 loss parameters, it is not possible to
visualize the frontier with respect to all losses. Instead, we take two visualization approaches. First,
we show the full loss achieved by different methods on a set of loss parameter values selected as
follows: we start with the default parameter settings of Ghiasi et al. (2017) λs,1 = λs,2 = λs,3 =
10−3, λs,4 = 10−2, λc = 2, and then either increase or decrease one of these parameter by a factor
of 10 while keeping the rest fixed. This adds up to a total of 10 parameter values: 2 variants per
each of the 5 parameters. To better understand the variability of the learned models due to the noisy
training process we further trained each model four times. We provide the results in Figure 6a. As a
baseline, for each parameter configuration we report the full loss value for the model trained with the
default parameters (“Single model baseline”). The YOTO model trained on all parameters closely
matches the performance of fixed-weight models trained for each of the parameter configurations.

Next, we focus on just one aspect of the loss surface: the trade-off between the content loss and the
sum of style losses. In Figure 6b we plot the frontier of these two values corresponding to different
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methods. Here we add a YOTO “specialist” model to the comparison, which has been trained
with only 1 parameter, the content loss λc. Moreover, we report a baseline method that simply
interpolates the images produced by two models trained with the extreme values of the content
weight. Both YOTO models are close to the fixed-wight models, with the frontier of the “specialist”
model closely tracing the fixed models. The interpolation baseline performs very poorly.

Finally, we show select qualitative results in Figure 7, where we compare fixed weight models to
a YOTO model trained on all five parameters. We vary the content weight λc and the third style
weight λs,3, which contribute most to the full loss. We can see that YOTO captures the effect of
changing each of these weights and obtains results similar to those of the separately trained models.

5 CONCLUSION

We have presented an approach to training a single deep model to fit a parametric family of loss
functions. This way, instead of training multiple models corresponding to different loss variants, we
can train a single model that provides solutions for all loss variants. We demonstrated the success-
ful application of the method on three applications: β-VAE, learned image compression, and fast
style transfer. These initial results are promising, but several challenges remain. First, it would be
interesting to devise provably effective strategies of selecting the loss parameter distribution, espe-
cially for losses with multiple parameters. Second, further experiments with various architectures
and conditioning methods can lead to an even smaller discrepancy between the separate models
and our YOTO model. Third, the method could be used for many other applications, within or be-
yond the domain of image generation. Fourth, one might use YOTO-trained models to initialize
usual fixed-loss training or, vice-versa, use a pre-trained fixed-loss model to initialize the training
of YOTO. Finally, we believe that this work can also open a new family of theoretical questions
centered around the analysis of problems that have to optimize a continuum of loss functions. We
see all these directions as exciting avenues for future research.
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task learning in rkhss. In AISTATS, 2019.

9



Published as a conference paper at ICLR 2020

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale GAN training for high fidelity
natural image synthesis. In ICLR, 2019.

Chris Burgess and Hyunjik Kim. 3d shapes dataset. https://github.com/deepmind/3dshapes-dataset/,
2018.

Rich Caruana. Multitask learning. Mach. Learn., 28(1), 1997.
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APPENDIX

A ARCHITECTURE AND TRAINING DETAILS

A.1 BETA-VAE

We use convolutional encoder-decoder networks on both datasets. We use leaky rectified linear layer
(ReLU) non-linearity in all networks, except for units predicting stangard deviation of Gaussians
where we use softmax non-linearity. On CIFAR-10 the network inputs have size 32 × 32 pixels,
on Shapes3D – 64 × 64 pixels. We now describe the base network architectures, corresponding to
”width x1.0”.

On CIFAR-10 both the encoder and the decoder consist of 3 blocks of 2 convolutional layers each,
with the first layer in each block having stride 2. All kernels have spatial size 3×3, and the number of
channels is, respectively, 8, 8, 16, 16, 32, 32 (and increased proportionally for the ”wider” models).
The convolutional encoder is followed by fully connected layers with 256 and 512 units respectively,
where the output of the latter layer is split in two 256-dimensional vectors encoding the mean and
the variance of the approximate posterior. The decoder starts two fully connected layers with 256
and 512 units, the output of the latter layer is reshaped to a 4 × 4 × 32 feature map and further
processed by a decoder that is symmetric to the encoder.

On Shapes3D both the encoder and the decoder consist of 4 convolutional layers each, all with stride
2. All kernels have spatial size 3× 3, and the number of channels is, respectively, 8, 16, 32, 64 (and
increased proportionally for the ”wider” models). The convolutional encoder is followed by fully
connected layers with 256 and 20 units respectively, where the output of the latter layer is split in
two 10-dimensional vectors encoding the mean and the variance of the approximate posterior. The
decoder starts two fully connected layers with 256 and 1024 units, the output of the latter layer is
reshaped to a 4 × 4 × 64 feature map and further processed by a decoder that is symmetric to the
encoder.

On Shapes3D we train all models for a total of 600, 000 mini-batch iterations, and we multiply the
learning rate by 0.5 after 300, 000, 390, 000, 480, 000, and 570, 000 iterations. On CIFAR-10 we
use a proportionally twice longer schedule. We tuned the learning rates by sweeping over the values
{5 · 10−5, 1 · 10−4, 2 · 10−4, 4 · 10−4, 8 · 10−4} and ended up using the learning rates 1 · 10−4

on CIFAR-10 and 2 · 10−4 on Shapes3D. We use mini-batches of 128 samples on CIFAR-10 and 64
samples on Shapes3D. We use weight decay of 10−5 in all models.

For YOTO models, we condition the last layer of each convolutional block. The conditioning MLP
has one hidden layer with 256 units on Shapes3D and 512 units on CIFAR-10. At training time we
sample the β parameter from log-normal distribution on the interval [0.125, 1024.] for Shapes3D
and on the interval [0.125, 512.] for CIFAR-10.

A.2 IMAGE COMPRESSION

We train the model as proposed by Ballé et al. (2018), and we refer the reader to that paper for
architecture details. We train the models with the standard MSE reconstruction loss. All models
have 192 channels in all layers, except for the ”width x1.33” ones that have 256 channels. We use
mini-batches of 8 samples. We train for 2 million mini-batch iterations with the learning rate of
10−4. We condition all convolutional layers in all networks using MLPs with 1 hidden layer of
128 units. During training we sample the rate-distortion weight log-uniformly from the interval
[1.2 · 10−3, 2.6 · 10−1].

A.3 FAST STYLE TRANSFER

We build on the work of Ghiasi et al. (2017), and use the exact same network architecture and
training protocol. We optimize for 2 million steps with a learning rate of 10−5. The ranges that we
used were [0.1, 100] for the content parameters, [10−4, 10−1] for the first three style parameters and
[10−3, 1] for the fourth one — we always sampled from a log-uniform distribution.

We condition the models by 1) sending the logarithms of the weights to an MLP with a single
hidden layer of size 512 with ReLu activations and an output dimension of size, 2) concatenating
these inputs to the inception features of the style image, 3) for each layer modulation we use an MLP
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Figure 8: Qualitative VAE results on the CIFAR-10 dataset. Both for reconstruction and sampling,
the YOTO results are qualitatively very similar to those of separate models trained for each value of
the loss weight.

with a single layer of dimension 256 and ReLU activations, on which two affine maps are applied to
compute the scale and shift.

B ADDITIONAL RESULTS

B.1 BETA-VAE

Figure 8 shows qualitative results for β-VAE on CIFAR-10. Same as for Shapes3D, both recon-
structions and samples from the YOTO model are qualitatively very similar to those generated with
models trained separately for each weight.

We compare the proposed method to two baselines. The first one is a naive baseline — training a
VAE with a fixed β, and computing the loss value of this fixed model for all other β values (“Single
model baseline”). We select the fixed β so that it minimizes the average validation loss over all β
values. The second baseline interpolates between two models trained with fixed weights. Namely,
we train two beta-VAEs for the extreme values of beta, and interpolate both the latents and the
reconstructions produced by these models. We then measure the KL and reconstruction losses for
these interpolated values. Note that this interpolation baseline is not a VAE any more: the latents
and the reconstrutcions are averaged independently, so the interpolated reconstruction cannot be
generated from the interpolated latent. Therefore, it is not clear how would one sample from such a
model, and we do not report these results in the main paper to avoid confusion.

The results are shown in Figure 9. Surprisingly, on Shapes3D the baseline performs very close to the
fixed-model and YOTO frontiers, and sometimes even outperforms them. In contrast, on CIFAR-10
the baseline is much worse than the other methods. We believe the reason is that while averaging
the logits for Bernoulli outputs on Shapes3D is quite meaningful, averaging the standard deviations
of Gaussian outputs on CIFAR-10 strongly affects Gaussian log-likelihood.

Timing. We timed the training of a fixed-weight β-VAE and a YOTO model. To this end, we
trained both models on a single CPU core over 200 mini-batch iterations. We found the YOTO
model to be only 8% slower than its fixed-weight counterpart: 4.64 vs 5.04 training steps per second
with the ”width x2” network architecture.
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Figure 9: Quantitative comparison of the proposed method with baselines for beta-VAE on CIFAR-
10 (a,b), and Shapes3D (c,d). The proposed method outperforms the ”single model” baseline by a
large model. The ”interpolation” baseline is reported for completeness, but it is not a fair baseline,
since it does not correspond to a VAE.

(a) MS-SSIM on Tecnick. (b) MS-SSIM on Kodak.

Figure 10: Quantitative results of compression with the MS-SSIM metric on Tecnick (a) and Kodak
(b).

14



Published as a conference paper at ICLR 2020

5000 4000 3000 2000 1000 0 1000 2000

Reconstruction loss

100

0

100

200

300

400

500

600

700

K
L

 l
o
ss

Model

Full

Weight per batch

Uniform sampling

No log inputs

Input conditioning

Concat conditioning

2 0 2 4 6 8 10

Log2 of beta

300

200

100

0

100

200

300

400

500

F
u

ll
 l

o
ss

 d
if

fe
re

n
ce

(a) Frontier. (b) Full losses.

Figure 11: Ablation study of the CIFAR-10 β-VAE. The distribution of the loss weight used at train-
ing time has the largest impact on the performance. Moreover, conditioning the model by providing
the loss weights as inputs to the model underperforms compared to more advanced conditioning
methods. Other variants all perform close to the full method.

B.2 ABLATION STUDY

We now ablate different design choices made in our implementation of YOTO to check their im-
portance. We perform this analysis on the CIFAR-10 dataset, with the ”width x4” architecture. The
design decisions we study are: the weight distribution used during training (log-uniform or uniform),
the method of sampling the loss weights (per sample or per mini-batch), the method of conditioning
the network on the weights (FiLM, concatenating the conditioning vectors with the feature maps,
or feeding the conditioning vectors to the network as an additional input), pre-processing of the
conditioning inputs (taking their logarithm or not).

The results are presented in Figure 11. Clearly, the choice of the parameter distribution during train-
ing is the most important choice, and log-uniform distribution performs much better than uniform.
Other choices are of less importance, but more advanced conditioning schemes have an advantage
over simply feeding the loss parameters as one of the network inputs.

B.3 STYLE TRANSFER

Figure 12 shows additional qualitative results on style transfer for different content and style images.

C THEORY

We start by proving Proposition 1 from the main paper and then comment on the cases when the
conditions of the proposition are satisfied.

Proof of Proposition 1. Denote the values minimized in optimization problems (1) and (2) by V1(·)
and V2(·) respectively. From the definition of F ∗ it follows that V1(G(·, λ)) > V1(F ∗(·, λ)) for any
λ ∈ Λ and G ∈ C(X × Λ). Therefore, V2(G) > V2(F ∗), so F ∗ minimizes (2). Thus, for any G∗
that minimizes (2):

0 = V2(G∗)− V2(F ∗) = Eλ∼Pλ [V1(G∗(·, λ))− V1(F ∗(·, λ))] . (6)

Moreover, V1(G∗(·, λ)) − V1(F ∗(·, λ)) > 0 for all λ ∈ Λ. Expectation of a non-negative function
is 0 only if it equals 0 almost surely, which means that V1(G∗(·, λ)) = V1(F ∗(·, λ)) a.s., q.e.d.

The most restrictive condition of the proposition is the continuity of the function F ∗(·, ·) as a func-
tion of λ. Indeed, generally arg max is a multi-valued mapping that can be shown to be hemi-
continuious using Berge’s Maximum theorem (Berge, 1963) under weak technical conditions. How-
ever, there does not necessarily exist a continuous selection of this multi-valued mapping. Its ex-
istence can be proven under very restrictive conditions, such as the uniqueness of the minimizer,
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Figure 12: Additional qualitative comparison of image stylization models on images from the val-
idation set of ImageNet. The first row shows the results of YOTO trained on all parameters, the
second row – of models trained independently per configuration. In both cases parameter value
increases from left ot right. YOTO results are very similar to those of independently trained models.
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which clearly do not hold for optimization problems encountered in deep learning. While empiri-
cally the existence of a continuous F ∗ seems natural, it remains to be seen if theoretical guarantees
can be provided for realistically complex scenarios.

Another direction for extending Proposition 1 is explicitly incorporating function approximation.
With function approximation, it would likely not be possible to prove that minimizers of the two
problems coincide almost surely, but rather that they can be made arbitrarily close with a probability
arbitrarily close to 1. Overall, we believe our work raises a range of interesting theoretical questions
to be addressed in future research.
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