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1. Introduction

Variational inference (VI) is critical for learning probabilistic models (Jordan et al., 1999;
Zhang et al., 2018). VI approximates the target distribution by minimizing a divergence ob-
jective. Different divergence metrics essentially define different inference algorithms which
lead to different properties of the approximation. Therefore the selection of this divergence
is one of the crucial factors of making VI successful. The most widely used divergence
measure is KL(q||p) where p is the target distribution and q is the approximated distribu-
tion. However, using this KL divergence for VI has been criticized for under-estimating
the uncertainty (Bishop, 2006; Blei et al., 2017; Wang et al., 2018), which leads to poor
model performance when uncertainty estimation is essential. Many alternative divergence
measures have been proposed for VI to alleviate this issue (Minka et al., 2005; Hernández-
Lobato et al., 2016; Li and Turner, 2016; Csiszár et al., 2004; Bamler et al., 2017; Wang
et al., 2018), which provide better bias and variance trade-offs and lead to better predictive
results with more accurate uncertainty estimation.
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Figure 1: An illustration of approximated dis-
tributions to a Gaussian mixture by minimiz-
ing α-divergence with different α.

However, as illustrated by Figure 1, the
optimal divergence can vary depending on
tasks. Unfortunately, choosing a suitable
divergence objective for a specific task is
challenging as it requires a thorough under-
standing of the shape of the target distri-
bution and the desirable properties of the
approximated distribution, as well as time-
consuming parameter tuning. A crucial
question remains to be addressed is: can we
automatically choose a suitable divergence
which are tailored to specific type of tasks?

∗ Work done as an intern in Microsoft Research Cambridge.

c© R. Zhang, Y. Li, C.D. Sa, S. Devlin & C. Zhang.



Meta-VI

To answer this question, we propose meta-learning for variational inference (meta-VI )
which utilizes the advantages of meta-learning to improve approximate Bayesian inference.
Meta-learning is to design a learner based on several training tasks that can generalize
well to future tasks (Naik and Mammone, 1992; Thrun and Pratt, 2012; Hochreiter et al.,
2001). Our meta-VI learns an inference algorithm that is tailored to the problem of interest.
Additionally, meta-VI can provide a good initialization of the variational parameters which
reduces the training time remarkably.

2. Preliminaries

Bayesian inference requires computing the posterior over θ given the dataset D: p(θ|D) =
p(D|θ)p(θ)
p(D) . The exact posterior p(θ|D) is generally intractable. Using VI, the approximated

posterior q(θ) is obtained by minimizing a divergence, e.g. KL(q(θ)||p(θ|D)). This turns
Bayesian inference into an optimization task (divergence minimization). In practice, VI
alternatively maximizes an equivalent objective called the variational lower bound :

LVI = Eq

[
log

p(θ,D)

q(θ)

]
= log p(D)−KL(q||p) (1)

Renyi’s α-divergence α-divergence is a rich family that includes many common diver-
gences as special cases (Minka, 2001; Hernández-Lobato et al., 2016; Li and Turner, 2016).
Here, we focus on Renyi’s definition (Rényi et al., 1961; Li and Turner, 2016):

Dα(p||q) =
1

α− 1
log

∫
p(θ)αq(θ)1−αdθ, α > 0, α 6= 1, (2)

where Dα(p||q)→ KL(p||q) when α→ 1. Similar to maximizing Eq.(1), one can maximize
the variational Renyi bound (VR bound) derived from Renyi’s α-divergence:

Lα(q;D) =
1

1− α
logEθ∼q

[(
p(θ,D)

q(θ)

)1−α
]

= log p(D)−Dα(q||p) (3)

The reparameterization trick (Salimans et al., 2013; Kingma and Welling, 2013) is commonly
used in practice for gradient ascent based optimization of the VR bound Eq.(3), where
sampling θ ∼ qφ(θ) is conducted by first sampling ε ∼ p(ε) from a simple distribution
independent with the variational parameter φ (e.g. Gaussian) then parameterizing θ =
hφ(ε). Using the reparameterization trick (Kingma and Welling, 2013) and Monte Carlo
(MC) approximation, the gradient of VR bound w.r.t. φ with K particles approximation is

∇φLα(qφ;x) =

K∑
k=1

[
wα,k∇φ log

p(hφ(εk), x)

q(hφ(εk))

]
where wα,k =

(
p(hφ(εk),x)
q(hφ(εk))

)1−α
∑K

k=1

[(
p(hφ(εk),x)
q(hφ(εk))

)1−α] (4)

f-divergence f -divergence defines a more general family of divergences (Csiszár et al.,
2004; Minka et al., 2005). It can be defined using a twice differentiable convex function
f : R+ → R (Csiszár et al., 2004):
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Df (p||q) = Eθ∼q

[
f

(
p(θ)

q(θ)

)
− f(1)

]
. (5)

This family includes KL-divergence in both directions which can be seen by taking f(t) =
− log t for KL(q||p) and f(t) = t log t for KL(p||q). It also contains α-divergence which takes
f(t) = tα

α(α−1) for α ∈ R\{0, 1}. Although f -divergence family is very rich due to the usage
of arbitrary twice differentiable convex function, it requires significant expertise to design
a suitable f function for a specific task.

3. Meta-VI

The goal of meta-learning a variational inference algorithm is to learn a divergence objective
based on training tasks, so that the resulting VI algorithm produces an approximated
distribution with desired properties on a certain type of tasks. To achieve this, we first
construct a learnable divergence family, then design a meta-loss function that gives guidance
for updating the divergence.

Assume we have M training tasks T1, ..., TM sampled from an underlying task distri-
bution p(T ). Each task has its own probabilistic model pTi(θi,DTi). Let Dη(·||·) be the
learnable divergence parameterized by η, then for each task the approximated posterior
qφi(θi) is computed by minimizing Dη(pTi(θi|DTi)||qφi(θi)). In the rest of the paper we
write Dη(qφi , Ti) = Dη(pTi(θi|DTi)||qφi(θi)) for brevity. During meta-training, we define a
meta-loss function J (qφi , Ti) which is optimized w.r.t. the divergence parameter η. This
meta-loss function is designed to evaluate the desired properties of the approximated dis-
tribution, e.g. log-likelihood. During meta-testing, a new task is sampled from p(T ), and
the learned divergence Dη is used to optimize the variational distribution. The above meta-
learning settings are practical as demonstrated in many previous work (Finn et al., 2017,
2018; Kim et al., 2018), including meta-learning for Bayesian inference (Gong et al., 2018).
Attaining common knowledge based on the previous tasks has been proved to be useful for
the future tasks.

We first present our method assuming the parameteric form of Dη is given. Then we
will provide the details of parameterization of two divergence families: α-divergence and
f -divergence and how they fit in this framework.

The idea of meta-learning divergences is that we first optimize the approximated poste-
rior by minimizing the current divergence, then update the divergence using the feedback
from the meta-loss. Formally speaking, for each task Ti we perform B gradient descent
steps on the variational parameters φi using the current divergence Dη as in the typical VI
optimization:

φi ← φi − β∇φiDη(qφi , Ti) (6)

where β is the learning rate. By doing so the updated variational parameters are a function
of the divergence parameter η. Then we update the divergence parameter η by one-step
gradient descent using the meta-loss J :

η ← η − γ∇η
1

M

∑
i

J (qφi , Ti) (7)

where γ is the learning rate. We call meta learning divergence objective meta-D and outline
the algorithm in Algorithm 1 in the appendix.
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Meta-learning within α-divergence family The parameterization of Renyi’s α diver-
gence (2) is straightforward: η = α. As the VR bound (3) is an equivalent optimization
objective to Renyi’s α-divegrence, it means ∇φiDη = −∇φiLα.

Meta-learning within f-divergence family We wish to parameterize the f -divergence
(5) by parameterizing the convex function f using a neural network. However, it is less
straight-forward to specify the convexity constraint for neural networks . Fortunately, the
f -divergence and its gradient can be specified through its second order derivative f ′′ without
the original f (Wang et al., 2018). Let θ = hφ(ε) using reparameterization trick (Salimans

et al., 2013; Kingma and Welling, 2013). Assume ∇θ log
(
p(θ)
qφ(θ)

)
exists, then

∇φDf (p||qφ) = −Eε,θ=hφ(ε)
[
gf

(
p(hφ(ε))

qφ(hφ(ε))

)
∇φhφ(ε)∇θ log

(
p(θ)

qφ(θ)

)]
(8)

where gf (t) = f ′′(t)t2. This implies that we can define the gradient of f -divergence through
f ′′. In addition, as shown in Wang et al. (2018), for any non-negative function g on R+,
there exists a function f such that g(t) = f ′′(t)t2. If gf (t) is strictly positive, i.e. gf (1) > 0,
then Df (p||qφ) = 0 implies p = qφ. Given these guarantees, we propose to parameterize
f implicitly by parameterizing gf which can be any non-negative function. We turn the
problem into using a neural network to express a non-negative function which is strictly
positive at t = 1. We further restrict the form of the function to be gf (t) = exp(rη(t))
where rη(t) is a neural network with parameter η. This definition of gf is strictly positive
for all t. Then using Eq. (8), we compute the gradient ∇φiDη = ∇φiDfη .

Besides the above setting, we also consider a few-shot learning set-up which learns a
good initialization of variational parameters, similar to the model-agnostic meta-learning
(MAML) framework (Finn et al., 2017, 2018; Kim et al., 2018). We present this setting in
appendix A.

4. Experiments

We verify the proposed meta-VI approach (Algorithm 1) can learn a good divergence by
considering a 1-d distribution approximation problem. More experimental results can be
found in the appendix. Here, each task includes approximating a mixture of two Gaussians
(see the appendix) by a Gaussian distribution which is attained by minφDη(p||qφ).

We test the meta-VI approach with two types of meta-loss: D0.5(q||p) (α-divergence
with α = 0.5) and total variation (TV). If D0.5 is the metric in use, then a good divergence
will be D0.5 itself. The goal of testing with meta-loss D0.5 is to verify that our method is
able to learn the preferred divergence given a rich enough family of candidate divergences
{Dη}. As in this case the preferred divergence is known, we can directly evaluate the learned
divergence by comparing it with the known preferred divergence. We use TV to evaluate
the performance of our method when meta-loss is beyond the divergence family. BO (Snoek
et al., 2012) is used to optimize α as a baseline. We learn the divergence on M = 10 tasks
and set B = 1.

In Table 1, we report the learned value of α in Eq.(3) from meta-α and BO. When the
meta-loss is D0.5, the learned α from meta-α is very close to 0.5 which demonstrates that
our method can essentially learn a good α. BO is less computationally efficient, as it needs
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Table 1: Learned value of α from meta-α
and BO. BO with 8 iterations has similar
running time as meta-α.

Methods α = 0.5 TV

meta-α 0.52±0.01 0.31±0.01
BO (8 iters) 0.81±0.03 0.69±0.08
BO (16 iters) 0.54±0.07 0.32±0.03

Table 2: Value of meta-loss over 10 test
tasks.

Methods α = 0.5 TV

ground truth 0.0811±0.0277 -
meta-α 0.0811±0.0277 0.0855±0.0149
meta-f 0.0795±0.0301 0.0806±0.0163

BO (8 iters) 0.0833±0.0289 0.0879±0.0143
BO (16 iters) 0.0811±0.0277 0.0855±0.0149
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Figure 2: Visualizing the learned log f ′′.

Table 3: Rank of meta-loss over 10
test tasks.

Methods α = 0.5 TV

meta-α 2.10±0.70 2.10±0.30
meta-f 2.10±1.37 1.00±0.00

BO (8 iters) 3.50±0.67 4.00±0.00
BO (16 iters) 2.30±0.90 2.90±0.30

to train a model from scratch every single time when evaluating a new value of α, while our
method can update α based on the current model. We also consider learning f -divergence
and visualize in Figure 2 the learned log f ′′. When D0.5 is in use as the meta-loss, the
corresponding log f∗

′′
for D0.5 is analytical (see the appendix), and we see from Figure 2

(a) that the learned log f ′′ and log f∗
′′

+ 0.8 are almost identical. This means meta-VI has
learned the optimal divergence D0.5 (f(t) and e0.8 × f(t) define the same divergence).

In the case of using TV as the meta-loss, the optimal divergence is not analytic. There-
fore, we instead report in Table 2 the meta-losses on 10 test tasks, which are obtained
by executing the learned divergence minimization algorithm for 2000 iterations. The error
bar is large due to the large variance among different tasks, so we also report the rank-
ing in Table 3. It clearly shows that meta-α and meta-f are superior over BO. Moreover,
meta-f outperforms meta-α when the meta-loss is TV. From Figure 2 (b), we can see that
the learned f -divergence is not inside α-divergence, showing the benefit of using a larger
divergence family.
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Appendix A. Meta-Learning Divergence Objective and Variational
Parameters

Algorithm 1 Meta-D

Input: M : number of training tasks.
β, γ: learning rate hyperparameters.
Initialize η, φi, i = 1, . . . ,M (φi can
have different structures).
loop
for Ti, i = 1, . . . ,M do
for B times do

Update the variational parame-
ters with the current divergence:
φi ← φi − β∇φiDη(qφi , Ti).

end for
end for
Update η ← η − γ∇η 1

M

∑
i J (qφi , Ti)

end loop
Output: η

Algorithm 2 Meta-D&φ

Input: p(T ): distribution over tasks. β,
γ, τ : learning rate hyperparameters.
Initialize φ, η
loop

Sample M tasks Ti ∼ p(T ).
for all Ti do

Update the variational parameters
with the current divergence: φi ←
φ− β∇φDη(qφ, Ti).

end for
Update φ← φ− τ∇φ 1

M

∑
i J (qφi , Ti);

η ← η − γ∇η 1
M

∑
i J (qφi , Ti)

end loop
Output: η, φ

In addition to learning the divergence objective, we also consider the setting where fast
adaptation of the variational parameters to new tasks is desirable. Similar to MAML, the
probabilistic models {pTi(θi,DTi)} share the same architecture, and the goal is to learn an
initialization of variational parameters φi ← φ. On a specific task, φ is adapted to be φi
according to the learnable divergence Dη:

φi ← φ− β∇φDη(qφ, Ti). (9)

Again the updated φi is a function of both η and φ. Here we simply assume the number of
gradient steps to be B = 1, and it is straightforward to extend the method to B > 1. For
meta-update, besides updating divergence parameters η with Eq.(7), we also use the same
meta-loss to update φ:

φ← φ− τ∇φ
1

M

∑
i

J (qφi , Ti). (10)

We call meta-VI with learning both the divergence objective and variational parameters’ ini-
tialization meta-D&φ and summarize the algorithm in Algorithm 2. Similar to the previous
section, the divergence families in consideration are α-divergence and f -divergence.

Appendix B. Computing Equation (8) in Practice

With dataset D, the density ratio in f-divergence becomes p(θ|D)
qφ(θ)

= p(D|θ)p(θ)
qφ(θ)p(D) . We estimate

p(D) through importance sampling and MC approximation: p(D) = Eθ∼p(θ)[p(D|θ)] =

Eθ∼qφ(θ)[
p(D|θ)p(θ)
qφ(θ)

] ≈ 1
K

∑K
k

p(D|θk)p(θk)
qφ(θk)

where θk ∼ qφ(θ). After doing this, the density
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ratio becomes p(θk|D)
qφ(θk)

= p(D|θk)p(θk)
qφ(θk)

/
1
K

∑K
k

p(D|θk)p(θk)
qφ(θk)

which can be regarded as a self-

normalized estimator, similar to the normalization importance weight in Li and Turner
(2016). A self-normalized estimator generally helps stabilize the training especially at the
beginning. We use this estimator for regression tasks and recommender system.

Appendix C. Additional Experimental Results and Setting Details

C.1. Model Architecture for f-divergence

On all experiments, we parameterize g(t) in f -divergence by a neural network with 2 hidden
layers with 100 hidden units and RELU nonlinearilities.

C.2. Approximate Mixture of Gaussians

The mixture of Gaussian distribution p(θ) = 0.5N (θ;µ1, σ
2
1) + 0.5N (θ;µ2, σ

2
2) is generated

by

µ1 ∼ Unif[0, 3] σ1 ∼ Unif[0.5, 1.0]; µ2 = µ1 + 3 σ2 = σ1 ∗ 2.

Therefore each task has a different target distribution but with similar properties (i.e. the
distance between two modes is the same and the standard deviation of the second mode is 2
times larger than that of the first mode). The choice of the divergence affects the properties
of the approximated Gaussian distribution as shown in Figure 1.

Here we test meta-learning both the divergence objective and the variational parameters
(Algorithm 2). We use Algorithm 2 without updating divergence as a baseline, denoting
by VB&φ. During training, we sample 10 tasks each time and perform B = 20 inner loop
gradient updates. The learned α is different from Table 1 (see Table 4). We conjecture
that this is related to the learned φ and the horizon length. During meta-testing, we use
the learned φ for variational parameter initialization, and train the variational parameters
with the learned divergence for 20 and 100 iterations respectively to evaluate the effect of
the learned divergence in short and long horizon. We summarize the meta-loss in Table
5 and the ranking in Table 6. Our methods are not only better than VB&φ after 20
updates but also better after 100 updates. This demonstrates the benefit of learning a
divergence for the tasks instead of the conventional VB. To further explore the reason of
getting lower meta-loss of meta-D&φ, we visualize the approximated distribution of all
methods after 20 steps in Figure 3. The approximated distributions obtained by meta-
D&φ tend to fit the mixture of Gaussians more globally (mass-covering) than VB&φ. This
mass-covering behaviour results in better meta-loss. Compared to learning divergence only,
learning variational parameter initialization helps shorten the training time on new tasks
(100 iterations v.s. 2000 iterations). Notably, meta-VI is able to provide this initialization
along with divergence learning without extra cost.

Table 4: Meta-D&φ on MoG: learned value of α.

Methods α = 0.5 TV

meta-α&φ 0.88 0.77

9
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Table 5: Meta-D&φ on MoG: value of meta-loss over 10 test tasks.
Methods\Meta-loss α = 0.5 (20 iters) TV (20 iters) α = 0.5 (100 iters) TV (100 iters)

meta-α&φ 0.1207±0.0500 0.0982±0.0166 0.0879±0.0305 0.0903±0.0149
meta-f&φ 0.0793±0.0237 0.0935±0.0152 0.0784±0.0332 0.0918±0.0151

VB&φ 0.1237±0.0539 0.1026±0.0181 0.0905±0.0332 0.0926±0.0153

Table 6: Meta-D&φ on MoG: rank of meta-loss over 10 test tasks.
Methods\Meta-loss α = 0.5 (20 iters) TV (20 iters) α = 0.5 (100 iters) TV (100 iters)

meta-α&φ 2.10±0.54 1.80±0.60 2.20±0.75 1.40±0.66
meta-f&φ 1.20±0.60 1.50±0.81 1.40±0.80 2.10±0.83
VB-MAML 2.70±0.46 2.70±0.46 2.40±0.49 2.50±0.50
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(a) Meta-loss: α = 0.5 (b) Meta-loss: TV

Figure 3: Meta-D&φ on MoG: visualization of approximated distribution after 20 updates.

C.2.1. Setting Details

TV is defined as

TV (p, q) = sup
x
|p(x)− q(x)| = 1

2

∫
|p(x)− q(x)|dx.

For α ∈ (0, 1], TV is related to α-divergence by α
2TV

2 ≤ Dα(p||q) (Gilardoni, 2010).
We set the search region for BO to be α ∈ [0, 3] which includes many common divergence

such as KL, Helinger distance (α = 0.5) and χ2-divergence (α = 2). We note that BO is
not applicable when the divergence set is f -divergence which is parameterized by a neural
network.

The expectation in Eq.(3) and (8) is computed by MC approximation with 1000 particles.
Note that p(θ) is computable, since we know the parameters of p.

Bayesian optimization is implemented through a public package.1 The acquisition func-
tion is the upper confidence bound with kappa 0.1. We used the same data of the training
tasks for BO. Specifically, the objective function that BO wants to minimize is the meta-loss
(D0.5 or TV). Every time BO selects an α, we train 10 models with that α-divergence on
the support sets of 10 training tasks respectively and get the mean of log-likelihood on the
query sets of the 10 training tasks. Each time the model is trained for 2000 iterations.

When D0.5 is in use as the meta-loss, ideally the learned f-divergence should be close
to D0.5. When the f-divergence is D0.5, the f function is f(t) = t0.5

−0.52 , and the analytical

1. https://github.com/fmfn/BayesianOptimization

10

https://github.com/fmfn/BayesianOptimization


Meta-VI

Table 7: Meta-D on regression: results are
over 10 test tasks (1000 epochs).

Test LL RMSE

VB -0.6377±0.0433 0.4522±0.0196
meta-α -0.4596±0.0857 0.4500±0.0236
meta-f -0.4390±0.1084 0.4599±0.0200

Table 8: Meta-D&φ on regression: results
are over 10 test tasks (500 epochs).

Test LL RMSE

VB&φ -0.6354±0.0599 0.4556±0.0247
meta-α&φ -0.4967±0.0647 0.4562±0.0207
meta-f&φ -0.4852±0.0853 0.4552±0.0217

expression of log f ′′(t) is −1.5 log t+C with C reflecting the scaling constant in f . In Figure
2, we compare the learned log f ′′(t) and the ground truth −1.5 log t+C. We found that the
learned log f ′′(t) is very close to −1.5 log t+ 0.8. This means that our method has learned
the optimal divergence D0.5 (because the definition of f -divergence is invariant to constant
scaling of the function f , i.e. f and e0.8 × f define the same divergence).

C.3. Regression Tasks with Bayesian Neural Networks

The second test considers Bayesian neural network regression. The distribution of ground
truth regression function is defined by a (which is a function of x, see Figure 4 (a)): y =
A sin(x + b) + A/2| cos((x + b)/2)|ε, where the amplitude A ∈ [5, 10], the phase b ∈ [0, 1]
and ε ∼ N (0, 1). The heteroskedastic noise makes the uncertainty estimate crucial when
compared with the sinusoid function fitting task in Finn et al. (2017); Kim et al. (2018).
The model is a two-layer neural network with hidden layer size 20 and RELU nonlinearities.
We use marginal log-likelihood as the meta-loss.

For meta-learning divergence only, the training set size is 1000 and is obtained by sam-
pling x ∈ [−4, 4] uniformly. We use M = 20, B = 1, K = 50 and batch size 40 of which
20 data points (the support set) are for updating φi and 20 points (the query set) are for
updating η. We train meta-D for 1500 epochs. To evaluate the performance, we train the
model with the learned divergence and VB respectively on new tasks for 1000 epochs. The
quantitative results are summarized in Table 7. We can see that the test log-likelihood of
both meta-α and meta-f are significantly better than VB and the root mean square error
(RMSE) are similar for all methods. We visualize the predictive distribution on an example
sinusoid function in Figure 4. All methods fit the mean well which is consistent with the
RMSE results. However, VB fails to capture the heteroskedastic uncertainty and instead
uses homoskedastic noise to fit the data. On the other hand, meta-α and meta-f can reason
about the heteroskedastic noise. This explains the results of better test log-likelihood.

For learning both divergence and variational parameters initialization, we sample 20
tasks where each task has 40 data points. We use 20 points for φi and the other 20 points
for updating divergence η and the shared initialization φ. We set B = 1. To evaluate, we
start with the learned initialization and train the variational parameters with the learned
divergence for 500 epochs. Similar to the results of learning only the divergence objective,
meta-α&φ and meta-f&φ are able to model heteroskedastic predictive distribution while
VB&φ cannot. The quantitative evaluation are given in Table 8 and an example of predictive
distribution is given in Figure 5. Meta-D&φ converges faster than meta-D, indicating that
learning model initialization can shorten the training time on new tasks. We report the
learned value of α in Eq.(3) from meta-α and meta-α&φ in Table 9.
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(a) Ground Truth (b) VB (c) meta-α (d) meta-f

Figure 4: Meta-D on regression: the predictive distribution on a sinusoid wave.

(a) Ground Truth (b) VB&φ (c) meta-α&φ (d) meta-f&φ

Figure 5: Meta-D&φ on regression: Predictive distribution on a sinusoid wave.

Table 9: Learned value of α of meta-α and
meta-α&φ on regression.

meta-α meta-α&φ

α 0.1666 0.1020

Table 10: Learned value of α of meta-α and
meta-α&φ on MovieLens.

meta-α meta-α&φ

α 0.9029 1.0602

C.4. Recommender System with Partial Variational Auto-encoders

We test our method on recommender systems with Partial Variational Auto-encoders (p-
VAEs). P-VAE is a recently proposed model to deal with partially observed data and
has been used to do user rating prediction in recommender system (Ma et al., 2018b,a).
Similar to vanilla VAE (Kingma and Welling, 2013), p-VAE uses the KL-divergence as the
variational objective. We apply our proposed method to the divergence objective in p-VAE.

We consider MovieLens 1M dataset (Harper and Konstan, 2016) which contains 1,000,206
ratings of 3,952 movies from 6,040 users. We split the users into seven age groups: under
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(a) Meta-D (b) Meta-D&φ

Figure 6: Test log-likelihood of meta-VI on MovieLens. (b) The final results of meta-α&φ,
meta-f&φ and MAML+p-VAE are -1.3855, -1.3985 and -1.4140 respectively.

12



Meta-VI

50 100 150 200 250 300
Epoch

0.925
0.950
0.975
1.000
1.025
1.050
1.075
1.100
1.125

Te
st

 R
M

SE

meta- +p-VAE
meta-f+p-VAE
p-VAE

50 100 150 200 250 300
Epoch

0.725
0.750
0.775
0.800
0.825
0.850
0.875
0.900

Te
st

 M
AE

meta- +p-VAE
meta-f+p-VAE
p-VAE

Figure 7: Meta-D on MovieLens: Comparison of meta-D and p-VAE in terms of test RMSE
and test MAE.

18, 18-24, 25-34, 35-44, 45-49, 50-55 and above 56, and regard predicting the ratings of
users within the same age group as a task since the users with similar age may have similar
preferences. We select four as training tasks (under 18, 25-34, 45-49, above 56) and use the
remaining as test tasks. We use marginal log-likelihood as the meta-loss.

For the setting of learning divergence only, during meta-training, we sample 100 users
per task (400 users in total) and use half of the observed ratings to compute Eq.(6) and
the other half for computing the meta-loss. The number of training epoch is 400. During
meta-testing, we use 90%/10% training-test split for the three test tasks and train p-VAE
with the learned divergence. The baseline p-VAE is directly trained on test tasks with
KL-divergence. From Figure 6 (a), we can see that the combination of meta-D and p-VAE
outperforms vanilla p-VAE in terms of test log-likelihood, showing that meta-D has learn
a suitable divergence that leads to better test performance.

For learning both divergence and variational parameters, the setup of training is the
same as learning divergence only except that now we also perform updates in Eq.(10). We
compare our method with getting a p-VAE model initialization only (obtained by Algorithm
2 without updating η). This can be regarded as a combination of MAML and p-VAE.
During evaluation, we apply 60%/40% training-test split for the test tasks and train the
learned p-VAE model with the learned divergence. Figure 6 (b) implies that all methods
can converge quickly on the new task with only 100 iterations. Both meta-α&φ and meta-
f&φ are better than p-VAE at the beginning, indicating that the learned divergence can
help fast adaptation. Besides, meta-α&φ and meta-f&φ also converge better than p-VAE
in the end. This shows the learned divergence helps in both short and long horizon.

Again we provide the value of learned α in Eq.(3) from meta-α and meta-α&φ in Table
10. Besides the test log-likelihood, there are other popular evaluation metrics being used
in recommender system and sometimes they are not consistent with each other. Therefore,
we also evaluate the performance of our method in terms of other common metrics: test
root mean square error (RMSE) and test mean absolute error (MAE). For both metrics,
our methods converge better than the baseline in the setting of learning inference algorithm
and the setting of learning inference algorithm and model parameters (see Figures 7 and 8).
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Figure 8: Meta-D&φ on MovieLens: Comparison of meta-D&φ and MAML+p-VAE in
terms of test RMSE and test MAE.
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