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Abstract

Multi-view learning can provide self-supervision when different views are avail-
able of the same data. Distributional hypothesis provides another form of useful
self-supervision from adjacent sentences which are plentiful in large unlabelled
corpora. Motivated by the asymmetry in the two hemispheres of the human brain
as well as the observation that different learning architectures tend to emphasise
different aspects of sentence meaning, we present two multi-view frameworks for
learning sentence representations in an unsupervised fashion. One framework uses
a generative objective and the other a discriminative one. In both frameworks,
the final representation is an ensemble of two views, in which, one view encodes
the input sentence with a Recurrent Neural Network (RNN), and the other view
encodes it with a simple linear model. We show that, after learning, the vectors
produced by our multi-view frameworks provide improved representations over
their single-view learnt counterparts, and the combination of different views gives
representational improvement over each view and demonstrates solid transferability
on standard downstream tasks.

1 Introduction

Multi-view learning methods provide the ability to extract information from different views of the
data and enable self-supervised learning of useful features for future prediction when annotated data
is not available [17]. Minimising the disagreement among multiple views helps the model to learn
rich feature representations of the data and, also after training, the ensemble of the feature vectors
from multiple views can provide an even stronger generalisation ability.

Distributional hypothesis [23] noted that words that occur in similar contexts tend to have similar
meaning [52], and distributional similarity [20] consolidated this idea by stating that the meaning
of a word can be determined by the company it has. The hypothesis has been widely used in
machine learning community to learn vector representations of human languages. Models built upon
distributional similarity don’t explicitly require human-annotated training data; the supervision comes
from the semantic continuity of the language data.

Large quantities of annotated data are usually hard and costly to obtain, thus it is important to study
unsupervised and self-supervised learning. Our goal is to propose learning algorithms built upon the
ideas of multi-view learning and distributional hypothesis to learn from unlabelled data. We draw
inspiration from the lateralisation and asymmetry in information processing of the two hemispheres
of the human brain where, for most adults, sequential processing dominates the left hemisphere, and
the right hemisphere has a focus on parallel processing [10], but both hemispheres have been shown
to have roles in literal and non-literal language comprehension [15, 16].

Our proposed multi-view frameworks aim to leverage the functionality of both RNN-based models,
which have been widely applied in sentiment analysis tasks [58], and the linear/log-linear models,
which have excelled at capturing attributional similarities of words and sentences [6, 7, 25, 52] for
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learning sentence representations. Previous work on unsupervised sentence representation learning
based on distributional hypothesis can be roughly categorised into two types:

Generative objective: These models generally follow the encoder-decoder structure. The encoder
learns to produce a vector representation for the current input, and the decoder learns to generate
sentences in the adjacent context given the produced vector [29, 25, 21, 51]. The idea is straight-
forward, yet its scalability for very large corpora is hindered by the slow decoding process that
dominates training time, and also the decoder in each model is discarded after learning as the quality
of generated sequences is not the main concern, which is a waste of parameters and learning effort.

Our first multi-view framework has a generative objective and uses an RNN as the encoder and an
invertible linear projection as the decoder. The training time is drastically reduced as the decoder
is simple, and the decoder is also utilised after learning. A regularisation is applied on the linear
decoder to enforce invertibility, so that after learning, the inverse of the decoder can be applied as a
linear encoder in addition to the RNN encoder.

Discriminative Objective: In these models, a classifier is learnt on top of the encoders to distinguish
adjacent sentences from those that are not [32, 27, 41, 34]; these models make a prediction using a
predefined differential similarity function on the representations of the input sentence pairs or triplets.

Our second multi-view framework has a discriminative objective and uses an RNN encoder and a
linear encoder; it learns to maximise agreement among adjacent sentences. Compared to earlier
work on multi-view learning [17, 18, 53] that takes data from various sources or splits data into
disjoint populations, our framework processes the exact same data in two distinctive ways. The two
distinctive information processing views tend to encode different aspects of an input sentence; forcing
agreement/alignment between these views encourages each view to be a better representation, and is
beneficial to the future use of the learnt representations.

Our contribution is threefold:

• Two multi-view frameworks for learning sentence representations are proposed, in which one
framework uses a generative objective and the other one adopts a discriminative objective. Two
encoding functions, an RNN and a linear model, are learnt in both frameworks.

• The results show that in both frameworks, aligning representations from two views gives improved
performance of each individual view on all evaluation tasks compared to their single-view trained
counterparts, and furthermore ensures that the ensemble of two views provides even better results
than each improved view alone.

•Models trained under our proposed frameworks achieve good performance on the unsupervised
tasks, and overall outperform existing unsupervised learning models, and armed with various pooling
functions, they also show solid results on supervised tasks, which are either comparable to or better
than those of the best unsupervised transfer model.

It is shown [25] that the consistency between supervised and unsupervised evaluation tasks is much
lower than that within either supervised or unsupervised tasks alone and that a model that performs
well on supervised tasks may fail on unsupervised tasks. [14] subsequently showed that, with a
labelled training corpus, such as SNLI [9] and MultiNLI [57], the resulting representations of the
sentences from the trained model excel in both supervised and unsupervised tasks. Multi-task learning
[49] also gives impressive performance on downstream tasks while labelled data is costly. Our model
is able to achieve good results on both groups of tasks without labelled information.

2 Model Architecture

Our goal is to marry RNN-based sentence encoder and the avg-on-word-vectors sentence encoder
into multi-view frameworks with simple training objectives.

The motivation for the idea is that, as mentioned in the prior work, RNN-based encoders process the
sentences sequentially, and are able to capture complex syntactic interactions, while the avg-on-word-
vectors encoder has been shown to be good at capturing the coarse meaning of a sentence which
could be useful for finding paradigmatic parallels [52].
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We present two multi-view frameworks, each of which learns two different sentence encoders; after
learning, the vectors produced from two encoders of the same input sentence are used to compose the
sentence representation. The details of our learning frameworks are described as follows:

2.1 Encoders

In our multi-view frameworks, we first introduce two encoders that, after learning, can be used to
build sentence representations. One encoder is a bi-directional Gated Recurrent Unit [11] f(s;φ),
where s is the input sentence and φ is the parameter vector in the GRU. During learning, only
hidden state at the last time step is sent to the next stage in learning. The other encoder is a linear
avg-on-word-vectors model g(s;W ), which basically transforms word vectors in a sentence by a
learnable weight matrixW and outputs an averaged vector.

2.2 Generative Objective

Given the finding [51] that neither an autoregressive nor an RNN decoder is necessary for learning
sentence representations that excel on downstream tasks, our learning framework only learns to
predict words in the next sentence. The framework has an RNN encoder f , and a linear decoder
h. Given an input sentence si, the encoder produces a vector zfi = f(si;φ), and the decoder h
projects the vector to xi = h(zfi ;U) = Uzfi , which has the same dimension as the word vectors vw.
Negative sampling is applied to calculate the likelihood of generating the j-th word in the (i+ 1)-th
sentence, shown in Eq. 1.

logP (wj |si) = log σ(x>i vwj
) +

∑K
k=1 Ewk∼Pe(w) log σ(−x>i vwk

) (1)

where vwk
are pretrained word vectors for wk, the empirical distribution Pe(w) is the unigram

distribution raised to power 0.75 [39], and K is the number of negative samples. The learning
objective is to maximise the likelihood for words in all sentences in the training corpus.

Ideally, the inverse of h should be easy to compute so that during testing we can set g = h−1. As
h is a linear projection, the simplest situation is when U is an orthogonal matrix and its inverse is
equal to its transpose. Often, as the dimensionality of vector zfi doesn’t necessarily need to match
that of word vectors vw, U is not a square matrix1. To enforce invertibility on U , a row-wise
orthonormal regularisation on U is applied during training, which leads to UU> = I , where I is
the identity matrix, thus the inverse function is simply h−1(x) = U>x, which is easily computed.
The regularisation formula is ||UU> − I||F , where || · ||F is the Frobenius norm. Specifically, the
update rule [12] for the regularisation is:

U := (1 + β)U − β(UU>)U (2)

where β is set to 0.01. After learning, we setW = U>, then the inverse of the decoder h becomes
the encoder g. Compared to prior work with generative objective, our framework reuses the decoding
function rather than ignoring it for building sentence representations after learning, thus information
encoded in the decoder is also utilised.

2.3 Discriminative Objective

Our multi-view framework with discriminative objective learns to maximise the agreement between
the representations of a sentence pair across two views if one sentence in the pair is in the neighbour-
hood of the other one. An RNN encoder f(s;φ) and a linear avg-on-word-vectors g(s;W ) produce
a vector representation zfi and zgi for i-th sentence respectively. The agreement between two views of
a sentence pair (si, sj) is defined as aij = aji = cos(zfi , z

g
j ) + cos(zgi , z

f
j ). The training objective

is to minimise the loss function:

L(φ,W ) = −
∑
|i−j|≤c

log pij , where pij =
eaij/τ∑i+N/2−1

n=i−N/2 e
ain/τ

(3)

1As often the dimension of sentence vectors are equal to or large than that of word vectors, U has more
columns than rows. If it is not the case, then regulariser becomes ||U>U − I||F .
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where τ is the trainable temperature term, which is essential for exaggerating the difference between
adjacent sentences and those that are not. The neighbourhood/context window c, and the batch size
N are hyperparameters.

The choice of cosine similarity based loss is based on the observations [52] that, of word vectors
derived from distributional similarity, vector length tends to correlate with frequency of words, thus
angular distance captures more important meaning-related information. Also, since our model is
unsupervised/self-supervised, whatever similarity there is between neighbouring sentences is what is
learnt as important for meaning.

2.4 Postprocessing

The postprocessing step [7], which removes the top principal component of a batch of representations,
is applied on produced representations from f and g respectively after learning with a final l2
normalisation.

In addition, in our multi-view framework with discriminative objective, in order to reduce the
discrepancy between training and testing, the top principal component is estimated by the power
iteration method [40] and removed during learning.

3 Experimental Design

Three unlabelled corpora from different genres are used in our experiments, including BookCorpus
[60], UMBC News [22] and Amazon Book Review2[36]; six models are trained separately on each of
three corpora with each of two objectives. The summary statistics of the three corpora can be found
in Table 1. Adam optimiser [28] and gradient clipping [44] are applied for stable training. Pretrained
word vectors, fastText [8], are used in our frameworks and fixed during learning.

Table 1: Summary statistics of the three corpora used in our experiments. For simplicity, the three
corpora will be referred to as 1, 2 and 3 in the following tables respectively.

Name # of sentences mean # of words per sentence
BookCorpus (1) 74M 13
UMBC News (2) 134.5M 25

Amazon Book Review (3) 150.8M 19

Table 2: Representation pooling in testing phase. “max(·)”, “mean(·)”, and “min(·)” refer to global
max-, mean-, and min-pooling over time, which result in a single vector. The table also presents the
diversity of the way that a single sentence representation can be calculated. Xi refers to word vectors
in i-th sentence, andHi refers to hidden states at all time steps produced by f .

Phase
Testing

Supervised Unsupervised

Bi-GRU f : zf
i [max(Hi);mean(Hi);min(Hi);h

Mi
i ] mean(Hi)

Linear g: zg
i [max(WXi);mean(WXi);min(WXi)] mean(WXi)

Ensemble Concatenation Averaging

All of our experiments including training and testing are done in PyTorch [45]. The modified SentEval
[13] package with the step that removes the first principal component is used to evaluate our models
on the downstream tasks. Hyperparameters, including negative samples K in the framework with
generative objective, context window c in the one with discriminative objective, are tuned only
on the averaged performance on STS14 of the model trained on the BookCorpus; STS14/G1 and
STS14/D1 results are thus marked with a ? in Table 3 and Table 4 to indicate possible overfitting on
that dataset/model only. Batch size N and dimension d in both frameworks are set to be the same for
fair comparison. Hyperparameters are summarised in supplementary material.

2Largest subset of Amazon Review.
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Table 3: Results on unsupervised evaluation tasks (Pearson’s r× 100) . Bold numbers are the best
results among unsupervised transfer models, and underlined numbers are the best ones among all
models. ‘G’ and ‘D’ refer to generative and discriminative objective respectively. ‘WR’ refers to the
post-processing step that removes the top principal component.

Task
Un. Training Semi. Su. [14, 56]

Multi-view fastText [38, 7] PSL [55, 7] Infer ParaNMT
G1 G2 G3 D1 D2 D3 avg WR avg WR Sent (concat.)

STS12 [4] 60.0 61.3 60.1 60.9 64.0 60.7 58.3 58.8 52.8 59.5 58.2 67.7
STS13 [5] 60.5 61.8 60.2 60.1 61.7 59.9 51.0 59.9 46.4 61.8 48.5 62.8
STS14 [2] 71.1? 72.1 71.5 71.5? 73.7 70.7 65.2 69.4 59.5 73.5 67.1 76.9
STS15 [1] 75.7 76.9 75.5 76.4 77.2 76.5 67.7 74.2 60.0 76.3 71.1 79.8
STS16 [3] 75.4 76.1 75.1 75.8 76.7 74.8 64.3 72.4 - - 71.2 76.8

SICK14 [35] 73.8 73.6 72.7 74.7 74.9 72.8 69.8 72.3 66.4 72.9 73.4 -
Average 69.4 70.3 69.2 69.9 71.4 69.2 62.7 67.8 - - 64.9 -

Table 4: Comparison with FastSent and QT on STS14 (Pearson’s r × 100).

FastSent [25] QT [34] Multi-view
+AE RNN BOW G1 G2 G3 D1 D2 D3

61.2 59.5 49.0 65.0 71.1? 72.1 71.5 71.5? 73.7 70.7

3.1 Unsupervised Evaluation - Textual Similarity Tasks

Representation: For a given sentence input swithM words, suggested by [46, 31], the representation
is calculated as z =

(
ẑf + ẑg

)
/2, where ẑ refers to the post-processed and normalised vector, and

is mentioned in Table 2.

Tasks: The unsupervised tasks include five tasks from SemEval Semantic Textual Similarity (STS)
in 2012-2016 [1, 2, 3, 4, 5] and the SemEval2014 Semantic Relatedness task (SICK-R) [35].

Comparison: We compare our models with: • Unsupervised learning: We selected models with
strong results from related work, including fastText, fastText+WR. • Semisupervised learning: The
word vectors are pretrained on each task [55] without label information, and word vectors are averaged
to serve as the vector representation for a given sentence [7]. • Supervised learning: ParaNMT [56] is
included as a supervised learning method as the data collection requires a neural machine translation
system trained in supervised way. InferSent3 [14] trained on SNLI and MultiNLI is included as well.

The results are presented in Table 3. Since the performance of FastSent [25] and QT [34] were only
evaluated on STS14, we compare to their results in Table 4.

All six models trained with our learning frameworks outperform other unsupervised and semi
supervised learning methods, and the model trained on the UMBC News Corpus with discriminative
objective gives the best performance likely because the STS tasks contain multiple news- and
headlines-related datasets which is well matched by the domain of the UMBC News Corpus.

3.2 Supervised Evaluation

The evaluation on these tasks involves learning a linear model on top of the learnt sentence repre-
sentations produced by the model. Since a linear model is capable of selecting the most relevant
dimensions in the feature vectors to make predictions, it is preferred to concatenate various types of
representations to form a richer, and possibly more redundant feature vector, which allows the linear
model to explore the combination of different aspects of encoder functions to provide better results.

Representation: Inspired by prior work [37, 47], the representation zf is calculated by concatenating
the outputs from the global mean-, max- and min-pooling on top of the hidden statesH , and the last
hidden state, and zg is calculated with three pooling functions as well. The post-processing and the

3The released InferSent [14] model is evaluated with the postprocessing step.
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Table 5: Supervised evaluation tasks. Bold numbers are the best results among unsupervised
transfer models, and underlined numbers are the best ones among all models. “†” refers to an
ensemble of two models. “‡” indicates that additional labelled discourse information is required. Our
models perform similarly or better than existing methods, but with higher training efficiency.

Model Hrs SICK-R SICK-E MRPC TREC MR CR SUBJ MPQA SST

Supervised task-dependent training - No transfer learning
AdaSent [59] - - - - 92.4 83.1 86.3 95.5 93.3 -
TF-KLD [50] - - - 80.4/85.9 - - - - - -
SWEM-concat [47] - - - 71.5/81.3 91.8 78.2 - 93.0 - 84.3

Supervised training - Transfer learning
InferSent [14] <24 88.4 86.3 76.2/83.1 88.2 81.1 86.3 92.4 90.2 84.6

Unsupervised training with unordered sentences
ParagraphVec [30] 4 - - 72.9/81.1 59.4 60.2 66.9 76.3 70.7 -
GloVe+WR [7] - 86.0 84.6 - / - - - - - - 82.2
fastText+bow [38] - - - 73.4/81.6 84.0 78.2 81.1 92.5 87.8 82.0
3SDAE 72 - - 73.7/80.7 78.4 74.6 78.0 90.8 86.9 -

Unsupervised training with ordered sentences
FastSent [25] 2 - - 72.2/80.3 76.8 70.8 78.4 88.7 80.6 -
Skip-thought [29] 336 85.8 82.3 73.0/82.0 92.2 76.5 80.1 93.6 87.1 82.0
CNN-LSTM [21] † - 86.2 - 76.5/83.8 92.6 77.8 82.1 93.6 89.4 -
DiscSent [27] ‡ 8 - - 75.0/ - 87.2 - - 93.0 - -
DisSent [41] ‡ - 79.1 80.3 - / - 84.6 82.5 80.2 92.4 89.6 82.9
MC-QT [34] 11 86.8 - 76.9/84.0 92.8 80.4 85.2 93.9 89.4 -

Multi-view G1 3.5 88.1 85.2 76.5/83.7 90.0 81.3 83.5 94.6 89.5 85.9
Multi-view G2 9 87.8 85.9 77.5/83.8 92.2 81.3 83.4 94.7 89.5 85.9
Multi-view G3 9 87.7 84.4 76.0/83.7 90.6 84.0 85.6 95.3 89.7 88.7
Multi-view D1 3 87.9 84.8 77.1/83.4 91.8 81.6 83.9 94.5 89.1 85.8
Multi-view D2 8.5 87.8 85.2 76.8/83.9 91.6 81.5 82.9 94.7 89.3 84.9
Multi-view D3 8 87.7 85.2 75.7/82.5 89.8 85.0 85.7 95.7 90.0 89.6

normalisation step is applied individually. These two representations are concatenated to form a final
sentence representation. Table 2 presents the details.

Tasks: Semantic relatedness (SICK) [35], paraphrase detection (MRPC) [19], question-type clas-
sification (TREC) [33], movie review sentiment (MR) [43], Stanford Sentiment Treebank (SST)
[48], customer product reviews (CR) [26], subjectivity/objectivity classification (SUBJ) [42], opinion
polarity (MPQA) [54]. The results are presented in Table 5.

Comparison: Our results as well as related results of supervised task-dependent training models,
supervised learning models, and unsupervised learning models are presented in Table 5. Note that, for
fair comparison, we collect the results of the best single model (MC-QT, [34]) trained on BookCorpus.

Six models trained with our learning frameworks either outperform other existing methods, or achieve
similar results on some tasks. The model trained on the Amazon Book Review gives the best
performance on sentiment analysis tasks, since the corpus conveys strong sentiment information.

4 Discussion

In both frameworks, RNN encoder and linear encoder perform well on all tasks, and generative
objective and discriminative objective give similar performance.

4.1 Generative Objective: Regularisation on Invertibility

The orthonormal regularisation applied on the linear decoder to enforce invertibility in our multi-view
framework encourages the vector representations produced by f and those by h−1, which is g in
testing, to agree/align with each other. A direct comparison is to train our multi-view framework
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Table 6: Ablation study on our multi-view frameworks. Variants of our frameworks are tested
to illustrate the advantage of our multi-view learning frameworks. In general, under the proposed
frameworks, learning to align representations from both views helps each view to perform better and
an ensemble of both views provides stronger results than each of them. The arrow and value pair
indicate how a result differs from our multi-view learning framework. Better view in colour.

Unsupervised tasks Supervised tasks
UMBC

Hrs
Avg of STS tasks Avg of Avg of Binary-CLS tasks

MRPC
News (STS12-16, SICK14) SICK-R, STS-B (MR, CR, SUBJ, MPQA, SST)

Our Multi-view with Generative Objective + Invertible Constraint

zf

9
66.6 82.0 86.1 74.7/83.1

zg 67.8 82.3 85.3 74.8/82.2
en(zf ,zg) 70.3 82.7 87.0 77.5/83.8

Generative Objective without Invertible Constraint

zf

9
55.7 (↓10.9) 79.9 (↓2.1) 86.0 (↓0.1) 73.2/81.7

zg 70.1 (↑2.3) 82.8 (↑0.5) 85.0 (↓0.3) 74.3/82.0
en(zf ,zg) 67.8 (↓2.5) 82.9 (↑0.2) 86.4 (↓0.7) 74.8/83.2

Our Multi-view with Discriminative Objective: aij = cos(zf
i ,z

g
j ) + cos(zg

i ,z
f
j )

zf

8
67.4 83.0 86.6 75.5/82.7

zg 69.2 82.6 85.2 74.3/82.7
en(zf ,zg) 71.4 83.0 86.6 76.8/83.9

Multi-view with f1 and f2: aij = cos(zf1
i ,zf2

j ) + cos(zf2
i ,zf1

j )

Multi-view with g1 and g2: aij = cos(zg1
i ,zg2

j ) + cos(zg2
i ,zg1

j )

zf1
17

49.7 (↓17.7) 82.2 (↓0.8) 86.3 (↓0.3) 75.9/83.0
en(zf1 ,zf2 ) 57.3 (↓14.1) 81.9 (↓1.1) 87.1 (↑0.5) 77.2/83.7

zg1
2

68.5 (↓0.7) 80.8 (↓1.8) 84.2 (↓1.0) 72.5/82.0
en(zg1 ,zg2 ) 69.1 (↓2.3) 77.0 (↓6.0) 84.5 (↓2.1) 73.5/82.3
en(zf1 ,zg1 ) 19 67.5 (↓3.9) 82.3 (↓0.7) 86.9 (↑0.3) 76.6/83.8

Single-view with f only: aij = cos(zf
i ,z

f
j ), Single-view with g only: aij = cos(zg

i ,z
g
j )

zf 9 57.8 (↓9.6) 81.6 (↓1.4) 85.8 (↓0.8) 74.8/82.3
zg 1.5 68.7 (↓0.5) 81.1 (↓1.5) 83.3 (↓1.9) 72.9/81.0

en(zf ,zg) 10.5 68.6 (↓2.8) 82.3 (↓0.7) 86.3 (↓0.3) 75.4/82.5

without the invertible constraint, and still directly use U> as an additional encoder in testing. The
results of our framework with and without the invertible constraint are presented in Table 6.

The ensemble method of two views, f and g, on unsupervised evaluation tasks (STS12-16 and
SICK14) is averaging, which benefits from aligning representations from f and g by applying
invertible constraint, and the RNN encoder f gets improved on unsupervised tasks by learning
to align with g. On supervised evaluation tasks, as the ensemble method is concatenation and a
linear model is applied on top of the concatenated representations, as long as the encoders in two
views process sentences distinctively, the linear classifier is capable of picking relevant feature
dimensions from both views to make good predictions, thus there is no significant difference between
our multi-view framework with and without invertible constraint.

4.2 Discriminative Objective: Multi-view vs. Single-view

In order to determine if the multi-view framework with two different views/encoding functions is
helping the learning, we compare our framework with discriminative objective to other reasonable
variants, including the multi-view model with two functions of the same type but parametrised
independently, either two f -s or two g-s, and the single-view model with only one f or g. Table 6
presents the results of the models trained on UMBC News Corpus.

As specifically emphasised in previous work [25], linear/log-linear models, which include g in our
model, produce better representations for unsupervised evaluation tasks than RNN-based models
do. This can also be observed in Table 6 as well, where g consistently provides better results on
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unsupervised tasks than f . In addition, as expected, multi-view learning with f and g, improves
the resulting performance of f on unsupervised tasks, also improves the resulting g on supervised
evaluation tasks.

Provided the results of models with generative and discriminative objective in Table 6, we confidently
show that, in our multi-view frameworks with f and g, the two encoding functions improve
each other’s view.

4.3 Ensemble in Multi-view Frameworks

In general, aligning the representations generated from two distinct encoding functions en-
sures that the ensemble of them performs better. The two encoding functions f and g encode the
input sentence with emphasis on different aspects, and the subsequently trained linear model for
each of the supervised downstream tasks benefits from this diversity leading to better predictions.
However, on unsupervised evaluation tasks, simply averaging representations from two views without
aligning them during learning leads to poor performance and it is worse than g (linear) encoding
function solely. Our multi-view frameworks ensure that the ensemble of two views provides better
performance on both supervised and unsupervised evaluation tasks.

Compared with the ensemble of two multi-view models, each with two encoding functions of the
same type, our multi-view framework with f and g provides slightly better results on unsupervised
tasks, and similar results on supervised evaluation tasks, while our model has much higher training
efficiency. Compared with the ensemble of two single-view models, each with only one encoding
function, the matching between f and g in our multi-view model produces better results.

5 Conclusion

We proposed multi-view sentence representation learning frameworks with generative and discrimi-
native objectives; each framework combines an RNN-based encoder and an average-on-word-vectors
linear encoder and can be efficiently trained within a few hours on a large unlabelled corpus. The
experiments were conducted on three large unlabelled corpora, and meaningful comparisons were
made to demonstrate the generalisation ability and transferability of our learning frameworks and
consolidate our claim. The produced sentence representations outperform existing unsupervised trans-
fer methods on unsupervised evaluation tasks, and match the performance of the best unsupervised
model on supervised evaluation tasks.

Our experimental results support the finding [25] that linear/log-linear models (g in our frameworks)
tend to work better on the unsupervised tasks, while RNN-based models (f in our frameworks)
generally perform better on the supervised tasks. As presented in our experiments, multi-view
learning helps align f and g to produce better individual representations than when they are learned
separately. In addition, the ensemble of both views leveraged the advantages of both, and provides
rich semantic information of the input sentence. Future work should explore the impact of having
various encoding architectures and learning under the multi-view framework.

Our multi-view learning frameworks were inspired by the asymmetric information processing in
the two hemispheres of the human brain, in which the left hemisphere is thought to emphasise
sequential processing and the right one more parallel processing [10]. Our experimental results raise
an intriguing hypothesis about how these two types of information processing may complementarily
help learning.
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Appendix

1 Evaluation tasks

The details, including size of each dataset and number of classes, about the evaluation tasks are presented below1.

Table 1: Details about the evaluation tasks used in our experiments.
Task name |Train| |Test| Task Classes

Relatively Small-scale
MR 11k 11k sentiment (movies) 2
CR 4k 4k product reviews 2

SUBJ 10k 10k subjectivity/objectivity 2
MPQA 11k 11k opinion polarity 2

TREC 6k 0.5k question-type 6

SICK-R 4.5k 4.9k semantic textual similarity 6
STS-B 5.7k 1.4k semantic textual similarity 6

MRPC 4k 1.7k paraphrase 2

SICK-E 4.5k 4.9k NLI 3
Relatively Large-scale

SST-2 67k 1.8k sentiment (movies) 2

2 Power Iteration

The Power Iteration was proposed in [40], and it is an efficient algorithm for estimating the top eigenvector of
a given covariance matrix. Here, it is used to estimate the top principal component from the representations
produced from f and g separately. We omit the superscription here, since the same step is applied to both f and
g.

Suppose there is a batch of representations Z = [z1, z2 ..., zN ] ∈ R2d×N from either f or g, the Power Iteration
method is applied here to estimate the top eigenvector of the covariance matrix2: C = ZZ>, and it is described
in Algorithm 1:

Algorithm 1 Estimating the First Principal Component [40]

Input: Covariance matrix C ∈ R2d×2d, number of iterations T
Output: First principal component u ∈ R2d

1: Initialise a unit length vector u ∈ R2d

2: for t← 1, T do
3: u← Cu,
4: u← u

||u||

In our experiments, T is set to be 5.

3 Training & Model Details

The hyperparameters we need to tune include the batch size N , the dimension of the GRU encoder d, and the
context window c, and the number of negative samples K. The results we presented in this paper is based on the
model trained with N = 512, d = 1024. Specifically, in discriminative objective, the context window is set

1Provided by https://github.com/facebookresearch/SentEval
2In practice, often N is less than 2d, thus we estimate the top eigenvector of Z>Z ∈ RN×N .
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c = 3, and in generative objective, the number of negative samples is set K = 5. It takes up to 8GB on a GTX
1080Ti GPU.

The initial learning rate is 5× 10−4, and we didn’t anneal the learning rate through the training. All weights in
the model are initialised using the method proposed in [24], and all gates in the bi-GRU are initialised to 1, and
all biases in the single-layer neural network are zeroed before training. The word vectors are fixed to be those
in the FastText [8], and we don’t finetune them. Words that are not in the FastText’s vocabulary are fixed to 0
vectors through training. The temperature term is initialised as 1, and is tuned by the gradient descent during
training.

The temperature term is used to convert the agreement aij to a probability distribution pij in Eq. 1 in the main
paper. In our experiments, τ is a trainable parameter initialised to 1 that decreased consistently through training.
Another model trained with fixed τ set to the final value performed similarly.

4 Effect of Post-processing Step

Table 2: Effect of the Post-processing Step. ‘WR’ refers to the post-processing step [7] which
removes the principal component of a set of learnt vectors. The postprocessing step overall improves
the performance of our models on unsupervised evaluation tasks, and also improves the models with
generative objective on supervised sentence similarity tasks. However, it doesn’t have a significant
impact on single sentence classification tasks.

Unsupervised tasks Supervised tasks

Model WR
Avg of STS tasks Avg of Avg of Binary-CLS tasks

MRPC
(STS12-16, SICK14) SICK-R, STS-B (MR, CR, SUBJ, MPQA, SST)

Our Multi-view with Generative Objective + Invertible Constraint

G1 w/ 69.4 83.1 87.0 76.5/83.7
G1 w/o 66.5 80.0 86.6 76.7/83.5
G2 w/ 70.3 82.7 87.0 77.5/83.8
G2 w/o 67.7 79.5 86.3 78.3/84.6
G3 w/ 69.2 83.2 88.6 76.0/83.7
G3 w/o 65.0 80.0 88.6 76.1/83.7

Our Multi-view with Discriminative Objective: aij = cos(zf
i ,z

g
j ) + cos(zg

i ,z
f
j )

D1 w/ 69.9 82.6 87.0 77.1/83.4
D1 w/o 59.3 81.8 84.2 75.0/82.5
D2 w/ 71.4 83.0 86.6 76.8/83.9
D2 w/o 68.5 83.5 86.5 76.5/84.3
D3 w/ 69.2 83.2 89.1 75.7/82.5
D3 w/o 64.0 83.4 89.2 75.1/82.8
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5 Combining both generative and discriminative objective in our multi-view
framework

Models with both generative and discriminative objectives are trained to see if further improvement can be
provided by combining an RNN encoder, an inverse of a linear decoder in the generative objective and a linear
encoder in the discriminative objective. The results of models trained on BookCorpus and UMBC News are
presented in Table 3.

As presented in the table, no further improvement against models with only one objective is shown. In our
understanding, the inverse of the linear decoder in generative objective behaves similarly to the linear encoder
in the discriminative objective, which is presented in Table 6 in the main paper. Therefore, combining two
objectives doesn’t perform better than only one of them.

Table 3: Our multi-view framework with both generative and discriminative objective. ‘GD1’
refers to a model with both generative and discriminative objectives trained on BookCorpus. The
results here don’t show significant difference against the model trained with only one objective.

Unsupervised tasks Supervised tasks

Model Hrs
Avg of STS tasks Avg of Avg of Binary-CLS tasks

MRPC
(STS12-16, SICK14) SICK-R, STS-B (MR, CR, SUBJ, MPQA, SST)

G1 3.5 69.4 83.1 87.0 76.5/83.7
D1 3 69.9 82.6 87.0 77.1/83.4

GD1 4 68.0 82.6 87.1 76.4/83.8
G2 9 70.3 82.7 87.0 77.5/83.8
D2 8.5 71.4 83.0 86.6 76.8/83.9

GD2 10 70.5 83.1 87.1 76.5/84.0

6 Number of Parameters

The number of parameters of each of the selected models is:

1. Ours: ≈ 8.8M

2. Quick-thought [34]: ≈ 19.8M

3. Skip-thought [29]: ≈ 57.7M
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