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ABSTRACT

When training a neural network for a desired task, one may prefer to adapt a pre-
trained network rather than start with a randomly initialized one – due to lacking
enough training data, performing lifelong learning where the system has to learn a
new task while being previously trained for other tasks, or wishing to encode pri-
ors in the network via preset weights. The most commonly employed approaches
for network adaptation are fine-tuning and using the pre-trained network as a fixed
feature extractor, among others.
In this paper we propose a straightforward alternative: Side-Tuning. Side-tuning
adapts a pre-trained network by training a lightweight “side” network that is fused
with the (unchanged) pre-trained network using a simple additive process. This
simple method works as well as or better than existing solutions while it resolves
some of the basic issues with fine-tuning, fixed features, and several other common
baselines. In particular, side-tuning is less prone to overfitting when little train-
ing data is available, yields better results than using a fixed feature extractor, and
doesn’t suffer from catastrophic forgetting in lifelong learning. We demonstrate
the performance of side-tuning under a diverse set of scenarios, including life-
long learning (iCIFAR, Taskonomy), reinforcement learning, imitation learning
(visual navigation in Habitat), NLP question-answering (SQuAD v2), and single-
task transfer learning (Taskonomy), with consistently promising results.

Fixed Features Fine-Tune Side-Tune

Figure 1: The side-tuning framework vs the common alternatives fine-tuning and fixed features. Given a
pre-trained network that should be adapted to a new task, fine-tuning re-trains the pretrained network’s weights
and fixed feature extraction trains a readout function with no re-training of the pre-trained weights. In contrast,
Side-tuning adapts the pre-trained network by training a lightweight conditioned “side” network that is fused
with the (unchanged) pre-trained network using a simple additive process.

1 INTRODUCTION

The goal of side-tuning is to capitalize on a pretrained model to better learn one or more novel tasks.
By design, side-tuning does so without degrading performance of the base model. The framework
is straightforward: it assumes access to the frozen base model B : X → Y that maps inputs into
some representation space that is shared between the base task and the current (target) task. This
representation space is flexible and could either be a latent space (e.g. in RN ) or actual model
predictions. Side-tuning then learns a side model S : X → Y, so that the representations for the
target task are

R(x) , B(x)⊕ S(x),
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1 Target Task > 1 Target Task
Method Low Training Data High Training Data (Lifelong Learning)

Fixed features (Information Loss) (Information Loss)
Fine-tuning (Overfitting) (Forgetting)
Side-tuning

Fixed features: No learnable parameters. Too rigid. Suffers from information loss.
Fine-tuning: Large number of learnable parameters. Suffers from overfitting.
Side-tuning: Small number of (strategically placed) learnable parameters.

Figure 2: Advantages of side-tuning vs. alternatives. Fixed features cannot adapt to new information, while
fine-tuning adapts too easily and forgets old information. Side-tuning is a simple method to address these
limitations.

for some combining operation ⊕. We use a learned alpha-blending, a⊕ b , αa+ (1− α)b for this
purpose (other options are discussed in Section 3.0.3).

Certain pre-set curricula of α reduce the side-tuning framework to: fine-tuning, feature extration,
and stage-wise training (see Fig. 3, right). Hence those can be viewed as special cases of the general
side-tuning framework. Also, other curricula suggest (e.g.) a maximum a posteriori estimator that
integrates the B(x) prior with the evidence from S(x).

Side-tuning is an example of an additive learning approach as it adds (strategically placed) parame-
ters for each new task. Fixed feature extraction would be a simple example of an additive approach
with zero new parameters. As a result, fixed features are don’t adapt the base network over the
lifetime of the agent. A number of existing approaches address this by learning new parameters (the
number of which scales with the size of the base network) for each new task (e.g. Rusu et al., 2016).
Unlike these approaches, side-tuning places no constraints on the structure of the side network, al-
lowing the parameters to be strategically allocated. In particular, side-tuning can use tiny networks
when the base requires only minor updates. By adding fewer parameters per task, side-tuning can
learn more tasks before the model grows large enough to require parameter consolidation.

These approaches stand in contrast to most existing methods for incremental learning, which do not
increase the number of parameters over time and instead gradually fill up the capacity of a large
base model. For example, fine-tuning updates all the parameters. A large body of constraint-based
methods focus on how to regularize these updates in order to prevent inter-task interference (Cheung
et al., 2019). Side-tuning does not require such regularization since the additive structure means
inter-task interference is not possible.

We compare side-tuning to alternative approaches on both the iCIFAR and Taskonomy datasets.
iCIFAR consists of ten distinct 10-class image classification problems. Taskonomy covers multiple
tasks of varied complexity from across computer vision (surface normal and depth estimation, edge
detection, image 1000-way classification, etc.). On these datasets, side-tuning uses side networks
that are much smaller than the base. Consequently, even without consolidation, side-tuning uses
fewer learnable parameters than the alternative methods.

This remarkably simple approach deals with the key challenges of incremental learning. Namely, it
does not suffer from either:

• Catastrophic forgetting: which is the tendency of a network to abruptly lose previously
learned knowledge upon learning new information. We show this in Section 4.2.1.

• Rigidity: where networks become increasingly unable to adapt to new problems as they
accrue constraints from previous problems. We explore this in Section 4.2.2.

Side-tuning avoids these problems while remaining highly performant, which we demonstrate in
Section 4.2.3.

2 RELATED WORK

Broadly speaking, network adaptation methods either overwrite existing knowledge (substitutive
methods) or save it and add new parameters (additive learning). In incremental (lifelong) learning,
substitutive methods like fine-tuning are at risk of forgetting early tasks. To prevent forgetting,
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existing methods add non-interference constraints that eventually slow down learning or they force
tasks to be independent which prevents reusing knowledge. Side-tuning is an additive approach that
performs well and scales well, and, by design, does not suffer from the aforementioned problems.
We show this experimentally on various tasks and datasets, including iCIFAR (Rebuffi et al., 2016b),
Habitat (Savva et al., 2019), SQuAD v2 (Rajpurkar et al., 2018), and Taskonomy (Zamir et al., 2018).
In the remainder of this section we overview sidetuning’s connection to related fields.

Network Adaptation modifies an existing network to solve a single new task. The most common
approach is to update some or all of the network weights (fine-tuning), possibly by adding con-
straints (Kirkpatrick et al., 2016). Other approaches freeze the weights and modulate the output by
learning additional task-specific parameters. An economical approach is to use off-the-shelf-features
with one or more readout layers (Razavian et al., 2014). Other approaches use custom connection
schema (Rusu et al., 2016). Mallya & Lazebnik (2018) instead modulate the output by applying
learned weight masks. These approaches, like side-tuning, are examples of additive learning.

Incremental learning has the objective of learning a sequence of tasks T1, ..., Tm and, at the end
of training, performing well on the entire set. The sequential presentation creates two problems for
neural networks. The first is catastrophic forgetting and the second is learning speed, which should
not slow down as more tasks are added. Because of these issues (and scaling), not every network
adaptation approach lends itself to incremental learning. Standard incremental learning approaches
avoid catastrophic forgetting by imposing constraints how the parameters are updated. Cheung
et al. (2019) relegates each task to approximately orthogonal subspaces. Schwarz et al. (2018);
Kirkpatrick et al. (2016); Li & Hoiem (2016) add a parameter regularization term per task. Imposing
constraints tends to slow down learning on later tasks (intransigence, Chaudhry et al. (2018)) while
making tasks independent ignores the possibility for useful transfer from relevant previous tasks.
Additive methods in general, and side-tuning in particular, have the advantage that they do not suffer
from catastrophic forgetting and are capable of transfer. However, additive methods have not been
much explored because it is assumed that they either have poor performance or scale poorly. We
show that side-tuning has good performance and scaling, and demonstrate the additive advantages
experimentally; using the iCIFAR and Taskonomy datasets.

Meta-learning seeks to create agents that rapidly adapt to new problems by first training on tasks
sampled from a standing distribution of tasks. Side-tuning is fundamentally compatible with this
formulation and with existing approaches (e.g. Finn et al., 2017). Moreover, recent work suggests
that these approaches work primarily by feature adaptation rather than rapid learning (Raghu et al.,
2019), and feature adaptation is also the motivation for our method.

Residual Learning exploits the fact that it is sometimes easier to approximate a difference rather
than the original function. This has been successfully used in ResNets (He et al., 2016) and robotics,
where residual RL (Johannink et al., 2018; Silver et al., 2018) learns a single task by first training a
coarse policy (e.g. behavior cloning) and then training a residual network on top (using RL).

Additive Learning in Other Literature. Concepts similar to additive learning have been studied
in a number of fields. For instance, developing infants are hypothesized to learn separate, discontin-
uous, and context-dependent perception systems during development (Adolph et al., 2011; Kretch
& Adolph, 2013). Adults are able to rapidly learn new affordances, but only when those are minor
updates to familiar, well-practiced systems (Cole et al., 2013). On a more fine-grained scale, there
are areas of functional specificity within the brain (Kanwisher, 2010), including wholly separate
pathways where output is mutually conditioned on one another (Schenk & McIntosh, 2010).

3 THE SIDE-TUNING FRAMEWORK

Side-tuning learns a side model S(X) and combines this with a base model B(x) so that the repre-
sentations for the target task are computed as R(x) , B(x)⊕ S(x).

3.0.1 BASE MODEL B(x)

The base modelB(x) provides some core cognition or perception, and we put no restrictions on how
B(x) is computed. We never update B(x), and in our approach it has zero learnable parameters.
In general B(x) could be nonparametric, and it might not be optimized for any particular task. We
consider several choices forB(x) in Section 4.4, but the simplest choice is just a pretrained network.

3



Under review as a conference paper at ICLR 2020

i. Train base iii. Sidetuning

1

0
Training

iv.    -curriculum

Features

Finetune

Stagewise

MAP 

small if 

problem 

is easy

large if 

problem 

is hard

ii.          scales with problem

Figure 3: Mechanics of side-tuning. (i) Side-tuning takes some core network (B) and adapts it to a new task
by (ii) adapting a side network. (iii) Shows the connectivity structure when using side-tuning along with alpha-
blending. (iv) Existing adaptation methods turn out to be special cases of side-tuning. In particular: fine-tuning,
feature extraction, and other approaches are side-tuning with a fixed curriculum on the blending parameter α.

3.0.2 SIDE MODEL S(x)

Unlike the base model, the side network S(x) is updated during training; learning a residual that
we apply on top of the base encoding. Iteratively learning residuals for a single task is known as
gradient boosting (see Section 4.4 for a comparison). Side-tuning is instead focused on learning
multiple tasks.

One crucial component of the framework is that the complexity of the side network can scale to the
difficulty of the problem at hand. When the base is relevant and requires only a minor update, a very
small network can suffice. Section 4.4 explores the effect of network size, how that changes with
the choice of base and target tasks.

While the side network can be initialized using a variety of methods, we initialize the side network
with a copy of the base network. When the forms of the base and side networks differ, we initialize
the side network with weights distilled from the base network using knowledge distillation (Hinton
et al., 2015). We test alternatives in Section 4.4.

3.0.3 COMBINING BASE AND SIDE REPRESENTATIONS

The final side-tuning representation is a combination, B(x)⊕ S(x). What should ⊕ be?

Side-tuning admits several options for this combination operator. Choosing max yields the sub-
sumption architecture. Concatenation and summation are other viable choices. We observe that
alpha blending, a ⊕ b , αa + (1 − α)b, works well in practice. Alpha blending preserves the
dimensions of the inputs and is simpler than concatenation. In fact, concatenation followed by a
channel-collapsing operation (e.g. 1x1 convolution) is a strict generalization of alpha-blending.

While simple, alpha blending is expressive enough that it encompasses several common transfer
learning approaches. As shown in Figure 3 and when the side network is the same as the base, side-
tuning is equivalent to feature extraction when α = 1. When α = 0, side-tuning is instead equivalent
to fine-tuning. If we allow α to vary during training (which we generally do), then switching α from
1 to 0 is equivalent to the common (stage-wise) training curriculum in RL where a policy is trained
on top of some fixed features that are unlocked partway through training.

Another notable curriculum is α(N) = k
k+N for k > 0 (hyperbolic decay). In this curriculum, α

controls the weighting of the prior (B(x)) with the learned estimate (S(x)), and the weight of the
evidence scales with the amount of data. This curriculum is suggestive of a maximum a posteriori
estimate and, like the MAP estimate, it converges to the MLE (fine-tuning, α = 0).

Finally, α can treated as a learnable free parameter that determines how heavily to weight the base
model. In practice, the value of α correlates with task relevance (see Section 4.4).

ASYMPTOTIC CONSISTENCY AND BIAS/VARIANCE

When minimizing estimation error there is often a tradeoff between the bias and variance contri-
butions (Geman et al., 1992). Choosing between feature extraction or fine-tuning exemplifies this
dilemma. Feature extraction (α = 0) locks the weights and corresponds to a point-mass prior that,
unless the weights are already optimal, yields a very biased estimator. In fact, the estimator allows

4



Under review as a conference paper at ICLR 2020

no adaptation to new evidence and is asymptotically inconsistent. On the other hand, fine-tuning
(α = 1), is an uninformative prior yielding a low-bias high-variance estimator. With enough data,
fine-tuning can produce better estimates, but this usually takes more data than feature extraction.
Side-tuning addresses both the these problems. It reduces variance by including the fixed features in
the representation, and it is consistent because it allows updating via the residual side network.

3.1 PERCEPTUAL REGULARIZATION AND CATASTROPHIC FORGETTING

While α provides a way to control the importance of the prior, another natural approach for enforc-
ing a prior is to penalize deviations from the original feature representation. Typically, it is easier
to specify meaningful explicit priors on outputs (e.g. L2 for pixels) than on the latent representa-
tions, which can be difficult if not impossible to interpret. As long as the decoder D : Y → A is
differentiable, any distance measure on the outputs can be pulled back through the decoder and into
the latent space. This induced distance dD on the latent representations is called the pullback metric
in differential geometry, and in deep learning it is called the perceptual loss (Johnson et al., 2016).
This may be a useful method for knowledge transfer when (i) the previous task is relevant to the new
task and (ii) there is limited training data. A recent successful application of this approach would be
the auxiliary losses in GPT (Radford et al., 2018), though we did not find it effective.

Perceptual regularization is often used to dampen catastrophic forgetting. For example, Elastic
Weight Consolidation uses a diagonalized second-order Taylor expansion of the expectation of the
pullback metric. Learning Without Forgetting uses a decoder-based approach that can be interpreted
as jointly updating both the base network and the pullback metric. We show that such regularization
does not fully address the problem of catastrophic forgetting (Section 4.2.1). Side-tuning avoids
catastrophic forgetting by design (as the base network is never updated).

3.2 SIDETUNING FOR CONTINUAL LEARNING

Network adaptability is the sole criterion only if we care we solely about raw performance on a
single target task. In reality we often care about the performance on both the current and previous
tasks. This is the case for incremental learning, where we want an agent that can learn a sequence
of tasks T1, ..., Tm and, at the end, is capable of reasonable performance across the entire set. Thus,
catastrophic forgetting becomes a major issue.

Training (Tasks)

L
o
ss

Figure 4: Theoretical side-
tuning learning curve.

In our experiments we dedicate one new side network to each new task
and train it independently of the earlier side networks. In principle,
learning of new tasks can benefit from all the side networks learned
in previous tasks (i.e. the nth task can use all n − 1 previous tasks).
Since we do not make use of this available information, our results
should be considered as a lower bound on side-tuning performance. We
show that this simple approach provides a strong baseline for incremen-
tal learning—outperforming existing approaches in the literature while
using fewer parameters on more tasks (in Section 4.2).

Side-tuning takes an additive learning approach to incremental learning, which means that already-
learned components are never updated and performance across the whole set can only increase as the
agent sees more tasks. This monotonicity is the key property of the additive family of algorithms.
It is worth repeating that there is No Catastrophic Forgetting in Additive Learning and a typical
learning curve for one of the tasks is shown in Figure 4. Furthermore, because our implementation of
side-tuning treats problems independently of their order in the sequence (always using the fixed base
and one side network), side-tuning incurs no rigidity during training. We show this in Section 4.2.2.

Side-tuning naturally handles other continuous learning scenarios besides incremental learning. A
related problem is that of continuous adaptation, where the agent needs to perform well (e.g. mini-
mizing regret) on a stream of tasks with undefined boundaries and where there might very little data
per task and no task repeats. As we show in Section 4.2, inflexibility becomes a serious problem for
constraint-based methods and task-specific performance declines after learning more than a handful
of tasks. Moreover, continuous adaptation requires an online method as task boundaries must be
detected and data cannot be replayed (e.g. to generate constraints for EWC).
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Figure 5: Side-tuning does not forget in incremental learning. Qualitative results for incremental learning
on Taskonomy with additive learning (side-tuning, top 3 rows) and constraint-based learning (EWC, bottom 3
rows). Each row contains results for one task and columns show how predictions change over the course of
training. Predictions from EWC quickly degrade over time, showing that EWC still catastrophically forgets.
Predictions from side-tuning do not degrade, and the initial quality is better in later tasks (e.g. compare the
table in surface normals). We provide additional comparisons (including for PSP) in the supplementary.

Side-tuning could be applied to continuous adaptation by keeping a small working memory of cheap
side networks that constantly adapt the base network to the input task. These side networks are small,
easy to train, and when one of the networks begins performing poorly (e.g. signaling a distribution
shift) that network can simply be discarded. This is an online approach, and online adaptation with
small cheap networks has found recent success in (e.g. Mullapudi et al. (2018)).

4 EXPERIMENTS

In the first section we show that side-tuning compares favorably to existing incremental learning
approaches on both iCIFAR and the more challenging Taskonomy dataset. We then extend to mul-
tiple domains (computer vision, RL, imitation learning, NLP) in the simplified (transfer learning)
scenario for N = 2 tasks. Finally, we interpret side-tuning in a series of analysis experiments.

4.1 BASELINES

We provide comparisons of side-tuning against the following methods:

Scratch: The network is given a good random initialization and then trained normally.

Feature extraction (features): The base network is used as-is and is not updated during training.

Fine-tuning: An umbrella term that encompasses a variety of techniques, we consider a more narrow defini-
tion where pretrained weights are used as initialization and then training proceeds as in scratch.

Elastic Weight Consolidation (EWC). A constraint-based incremental learning approach from Kirkpatrick
et al. (2016). We use the formulation from which scales better-, giving an advantage to EWC since otherwise
we could use a larger side-tune network and maintain parameter parity.

Parameter Superposition (PSP): A parameter-masking approach from Cheung et al. (2019).

Progressive Neural Network (PNN): A network adaptation approach from Rusu et al. (2016).

Independent: Each task uses a network trained independently for the target task. This method uses far more
learnable parameters than all the alternatives (e.g. saving a separate ResNet-50 for each task) and achieves
very strong performance. Due to the scaling, it is generally not considered an incremental learning method.
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Figure 6: Incremental Learning on Taskonomy and iCIFAR. The above curves show loss and error on
incremental learning experiments for three tasks on Taskonomy (left) and iCIFAR dataset (right). The fact that
side-tuning losses are flat after training (as we go right) shows that it does not forget previously learned tasks.
Similarly, the performance remains consistent even on later tasks (as we go down), showing that side-tuning
does not become rigid. Alternative methods clearly forget (e.g. PSP) and/or become rigid (e.g. EWC). In
Taskonomy, PNN and Independent are hidden under Sidetune. In iCIFAR, Sidetune (A) merges base and side
information with a multilayer perceptron (adapter).

4.2 INCREMENTAL LEARNING: NO CATASTROPHIC FORGETTING IN ADDITIVE LEARNING

On both the Taskonomy dataset (Zamir et al., 2018) and incremental CIFAR (iCIFAR, Rebuffi et al.,
2016a), side-tuning outperforms existing incremental learning approaches while using fewer param-
eters1. Moreover, the performance gap is larger on more challenging datasets.

Taskonomy includes labels for multiple computer vision tasks including 2D (e.g. edge detection),
3D (e.g. surface normal estimation), and semantic (e.g. object classification) tasks. We first selected
the twelve tasks that make predictions from a single RGB image, and then created an incremental
learning setup by selecting a random order in which to learn these tasks (starting with curvature). As
images are 256x256 we use a ResNet-50 for the base network and a 5-layer convolutional network
for the side-tuning side network. The number of learnable network parameters used across all tasks
is 24.6M for EWC and PSP, and 11.0M for side-tuning2.

iCIFAR. First, we pretrain the base network (ResNet-44) on CIFAR-10. Then the 10 subsequent
tasks are formed by partitioning CIFAR-100 classes into 10 disjoint sets of 10-classes each. We
train on each subtask for 20k steps before moving to the next one. Our state-of-the-art substitutive
baselines (EWC and PSP) update the base network for each task (683K parameters), while side-
tuning updates a four layer convolutional network per task (259K parameters after 10 tasks).

4.2.1 CATASTROPHIC FORGETTING

As expected, there is no catastrophic forgetting in side-tuning. Figure 6 shows that the error for
side-tuning does not increase after training (blue shaded region), while it increases sharply for the
other methods on both Taskonomy and iCIFAR.

The difference is meaningful, and Figure 5 shows sample predictions from side-tuning vs. EWC for
a few tasks during and after training. As is evident from the bottom rows, EWC exhibits catastrophic
forgetting on all tasks (worse image quality as we move right). In contrast, side-tuning (top) shows
no forgetting and the final predictions are significantly closer to the ground-truth (boxed red).

4.2.2 RIGIDITY

Side-tuning learns later tasks as easily as the first, while constraint-based methods such as EWC
stagnate. The predictions for later tasks such as surface normals (in Figure 5) are significantly better
using side-tuning—even immediately after training and before any forgetting can occur.

1Full experimental details, including learning rate and architecture, are provided in the supplementary.
2All numbers not counting readout parameters, which are common between all methods.
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Fine-tune 4.13 4.60
EWC (λ = 100, 105) 4.00 2.80

PSP 3.88 4.10
PNN 1.88 1.20

Side-tune 1.13 2.30

Figure 7: Rigidity and average rank on Taskonomy and iCiFAR. From left: Side-tuning always learns
new tasks easily; EWC becomes increasingly unable to learn new tasks as training progresses. Center: The
same trend holds on iCIFAR, and the average rigidity is zero for side-tuning (and almost zero for PSP). Right:
Side-tuning outperforms alternatives on both datasets, achieving a significantly better average rank on all tasks.

Figure 7 quantifies this slowdown. We measure rigidity as the log-ratio of the actual loss or the ith
task over the loss when that task is instead trained first in the sequence. As expected, side-tuning
experiences zero slowdown on both datasets. For EWC, the increasing constraints make learning
new tasks increasingly difficult—and the log-ratio increases with the number of tasks (Taskonomy,
left). It is too rigid (log-ratio > 0) even in iCIFAR, where the later tasks are similar to earlier ones.

4.2.3 FINAL PERFORMANCE

Overall, side-tuning significantly outperforms the other methods while using fewer than half the
number of trainable parameters of the other methods. When the other methods use smaller networks,
their performance decreases further. On both iCIFAR and Taskonomy, side-tuning achieves the best
average rank (1.12 of 4 on Taskonomy, while the next best is 2.33 (PSP)).

This is a direct result of the fact (shown above) that side-tuning does not suffer from catastrophic
forgetting or rigidity. It is not due to the fact that the sidetuning structure is specially designed for
these types of image tasks; it is not (we show in Sec. 4.3 that it performs well on other domains).
In fact, the much larger networks used in EWC and PSP should achieve better performance on any
single task. For example, EWC produces sharper images early on in training, before it has had a
chance to accumulate too many constraints (e.g. reshading in Fig. 5). But this factor was outweighed
by side-tuning’s immunity from the effects of catastrophic forgetting and creeping rigidity.

4.3 UNIVERSALITY OF SIDE-TUNING: ADDITIONAL DOMAINS

In order to address the possibility that side-tuning is somehow domain- or task-specific, we provide
results showing that it is well-behaved in other settings. As the concern with additive learning is
mainly that it is too inflexible to learn new tasks, we compare with fine-tuning (which outperforms
other lifelong learning tasks when forgetting is not an issue). For extremely limited amounts of data,
feature extraction can outperform fine-tuning. We show that side-tuning generally performs as well
as features or fine-tuning–whichever is better.

Method
Fine-tune
Features
Scratch

Side-tune

Transfer Learning in Taskonomy
From Curvature (100/4M ims.)
Normals (MSE ↓) Obj. Cls. (Acc. ↑)

0.200 / 0.094 24.6 / 62.8
0.204 / 0.117 24.4 / 45.4
0.323 / 0.095 19.1 / 62.3
0.199 / 0.095 24.8 / 63.3

(a)

QA on SQuAD
Match (↑)

Exact F1

79.0 82.2
49.4 49.5
0.98 4.65
79.6 82.7

(b)

Navigation (IL)
Nav. Rew. (↑)

Curvature Denoise

10.5 9.2
11.2 8.2
9.4 9.4

11.1 9.5
(c)

Navigation (RL)
Nav. Rew. (↑)

Curvature Denoise

10.7 10.0
11.9 8.3
7.5 7.5

11.8 10.4
(d)

Figure 8: Side-tuning comparisons in other domains. Sidetuning matched the adaptability of fine-
tuning on large datasets, while performing as well or better than the best competing method in each
domain: (a) In Taskonomy, performing either Normal Estimation or Object Classification using a
base trained for Curvatures and either 100 or 4M images for transfer. Results using Obj. Cls. base
are similar and provided in the appendix. (b) In SQuAD v2 question-answering, using BERT instead
of a convolutional architecture. (c) In Habitat, learning to navigate by imitating expert navigation
policies, using inputs based on either Curvature or Denoising. Finetuning does not perform as well
in this domain. (d) Using RL (PPO) and direct interaction instead of supervised learning.
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Transfer learning in Taskonomy: We trained networks to perform one of three target tasks (object
classification, surface normal estimation, and curvature estimation) on the Taskonomy dataset (Za-
mir et al., 2018) and varied the size of the training set N ∈ {100, 4 × 106}. In each scenario,
the base network was trained (from scratch) to predict one of the non-target tasks. The side network
was a copy of the original base network. We experimented with a version of fine-tuning that updated
both the base and side networks; the results were similar to standard fine-tuning 3. In all scenarios,
side-tuning successfully matched the adaptiveness of fine-tuning, and significantly outperformed
learning from scratch, as shown in Figure 4.3. The additional structure of the frozen base did not
constrain performance with large amounts of data (4M images), and side-tuning performed as well
as (and sometimes slightly better than) fine-tuning.

Question-Answering in SQuAD v2: We also evaluated side-tuning on a question-answering task
(SQuAD v2 (Rajpurkar et al., 2018)) using a non-convolutional architecture. We use a pretrained
BERT (Devlin et al., 2018) model for our base, and a second for the side network3. Unlike in the
previous experiments, BERT uses attention and no convolutions. Still, side-tuning adapts to the new
task just as well as fine-tuning, outperforming features and scratch (Figure 4.3).

Imitation Learning for Navigation in Habitat: We trained an agent to navigate to a target co-
ordinate in the Habitat environment. The agent is provided with both RGB input image and also
an occupancy map of previous locations. The map does not contain any information about the
environment—just previous locations. In this section we use Behavior Cloning to train an agent to
imitate experts following the shortest path on 49k trajectories in 72 buildings. The agents are eval-
uated in 14 held-out validation buildings. Depending on the what the base network was trained on,
the source task might be useful (Curvature) or harmful (Denoising) for imitating the expert and this
determines whether features or learning from scratch performs best. Figure 4.3 shows that regardless
of the which approach worked best, side-tuning consistently matched or beat it.

Reinforcement Learning for Navigation in Habitat Using a different learning algorithm (PPO)
and using direct interaction instead of expert trajectories, we observe identical trends. We trained
agents directly in Habitat (74 buildings)3. Figure 4.3 shows performance in 16 held-out buildings af-
ter 10M frames of training. Side-tuning performs comparably to the max of competing approaches.

4.4 LEARNING MECHANICS IN SIDE-TUNING

Task relevance predicts alpha α. In our experiments, we treat α as a learnable parameter and
find that the relative values of α are predictive of emprical performance. In imitation learning (Fig.
4.3), curvature (α = 0.557) outperformed denoising (α = 0.252). In Taskonomy, the α values
from training on just 100 images predicted the actual transfer performance to normals in Zamir
et al. (2018), (e.g. curvature (α = 0.56) outperformed object classification (α = 0.50)). For small
datasets, usually α ≈ 0.5 and the relative order, rather than the actual value is important.

Benefits for intermediate amounts of data We showed in the previous section that side-tuning
performs like the best of {features,fine-tuning, scratch} in domains with abundant or scant data. In
order to test whether side-tuning could profitably synthesize the features with intermediate amounts
of data, we evaluated each approach’s ability to learn to navigate using 49, 490, 4900, or 49k expert
trajectories and pretrained denoising features. Side-tuning was always the best-performing approach
and, on intermediate amounts of data (e.g. 4.9k trajectories), outperformed the other techniques
(side-tune 9.3 vs. fine-tune: 7.5, features: 6.7, scratch: 6.6), Figure 9b).

Network size. Does network size matter? We find (i) If the target problem benefits from a large
network (e.g. classification tasks), then performance is sensitive to side network size but not size of
the base. (ii) The base network can usually be distilled to a smaller network and sidetuning will still
offer advantages over alternatives. In the supplementary material we provide supporting experiments
from Taskonomy using both high- and low-data settings (curvature → {obj. class, normals}, obj.
class→ normals), and in Habitat (RL using {curvature, denoise} → navigation).

Not Boosting. Since the side network learns a residual on top of the base network, we ask: what
benefits we could glean by extending side-tuning to do boosting? Although network boosting this

3We defer remaining experimental details (learning rate, full architecture, etc.) to the the appendix. See
provided code for full details.
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Figure 9: Analysis of learning mechanics. (a) Boosting: deeper network > many shallow learners. (b)
Side-tuning outperformed alternatives on intermediate amounts of data. (c) Features/Side-tuning do more than
reduce gradient variance.

does improve performance on iCIFAR (Figure 9a), if catastrophic forgetting is not a concern then
the parameters would’ve been better used in a deeper network rather than many shallow networks.

Initialization. A good side network initialization can yield a minor boost in performance. We
found that initializing from the base network slightly outperforms a low-energy initialization4, which
slightly outperforms Xavier initialization. However, we found that these differences were not statis-
tically significant across tasks (H0 : pretrained = xavier; p = 0.07, Wilcoxon signed-rank test). We
suspect that initialization might be more important on harder problems. We test this by repeating the
analysis without the simple texture-based tasks (2D keypoint + edge detection and autoencoding)
and find the difference in initialization is now significant (p = 0.01).

More than just stable updates. In RL, fine-tuning often fails to improve performance. One com-
mon rationalization is that the early updates in RL are ‘high variance’. The usual solution is to first
train using fixed features and then unfreeze the weights at some point in training (via a hyperparam-
eter to be set). We found that this stage-wise approach performs as well (but no better than) keeping
the features fixed–and side-tuning performed as well as both while being simpler than stage-wise
(Fig. 9c). We tested the ‘high-variance update’ theory by fine-tuning with both gradient clipping and
an optimizer designed to prevent such high-variance updates by adaptively warming up the learning
rate (RAdam, Liu et al., 2019). This provided no benefits over vanilla fine-tuning, suggesting that
the benefits of side-tuning are not solely due to gradient stabilization early in training.

5 CONCLUSION

We have introduced the side-tuning framework, a simple yet effective approach for additive learning.
Since it does not suffer from catastrophic forgetting or rigidity, it is naturally suited to incremental
learning. The theoretical advantages are reflected in empirical results, and side-tuning outperforms
existing approaches in challenging contexts and with state-of-the-art neural networks. We further
demonstrated that the approach is effective in multiple domains and with various network types.

6 FUTURE WORK

The naı̈ve approach to incremental learning used in this paper made a number of design decisions.
These decisions could be analyzed and subsequently relaxed. In particular:

Flexible parameterizations for side networks: Our incremental learning experiments used the same
side network architecture for all subtasks. A method for automatically adapting the networks to
the subtask at hand could make more efficient use of the computation and supervision.
Better forward transfer: Our experiments used only a single base and single side network. Lever-
aging the already previously trained side networks could yield better performance on later tasks.
Learning when to deploy side networks: Like most incremental learning setups, we assume that
the tasks are presented in a sequence and that task identities are known. Using several active side
networks in tandem would provide a natural way to detecting distribution shift.
Using side-tuning to measure task relevance: We noted that α tracked task relevance, but a more
rigorous treatment of the interaction between the base network, side network, α and final perfor-
mance could yield insight into how tasks relate to one another.

4Where the side network is trained so that it does not impact the output. Full details in the supplementary.
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A APPENDIX

A.1 TABLE OF CONTENTS

We provide the following material in the appendices:

A.2... Qualitative results for incremental learning
A.3... Additional experiments
A.4... Experimental details
A.5... Additional Analysis
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A.2 QUALITATIVE RESULTS IN INCREMENTAL LEARNING

We show predictions for some fixed set of randomly selected images throughout training.

Side-Tuning

Figure 10: More qualitative results for side-tuning. These images were randomly selected from the val-
idation set. Left-hand column is input, rightmost-column is ground truth. Images from left to right show
predictions as training progresses. Each block of 4 rows shows predictions on a different task (Reshading, 2D
Edges. Surface Normals.)
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Elastic Weight Consolidation (EWC)

Figure 11: More qualitative results for EWC. These images were randomly selected from the validation set.
Left-hand column is input, rightmost-column is ground truth. Images from left to right show predictions as
training progresses. Each block of 4 rows shows predictions on a different task (Reshading, 2D Edges. Surface
Normals.)
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Parameter Superposition (PSP)

Figure 12: More qualitative results for PSP. These images were randomly selected from the validation set.
Left-hand column is input, rightmost-column is ground truth. Images from left to right show predictions as
training progresses. Each block of 4 rows shows predictions on a different task (Reshading, 2D Edges. Surface
Normals.)
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Independent Fine-Tuned ResNet-50

Figure 13: More qualitative results for independent These images were randomly selected from the val-
idation set. Left-hand column is input, rightmost-column is ground truth. Images from left to right show
predictions as training progresses. Each block of 4 rows shows predictions on a different task (Reshading, 2D
Edges. Surface Normals.)
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A.3 ADDITIONAL EXPERIMENTS

A.3.1 NETWORK SIZE

Method
Standard

Small Base
Large Side

Transfer Learning in
Taskonomy

From Curvature (100/4M ims.)
Normals (MSE ↓) Obj. Cls. (Acc. ↑)

0.20/0.010 24.8/63.3
0.20/0.09 25.3/63.2
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(a)
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Navigation (IL)
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4.3/9.5 2.2/8.4

X X
(c)

Figure 14: Effect of network size. Modifying the network size from standard (large basae/small
side). Small bases generally have a small impact on performance. For hard tasks (e.g. classification),
using a deeper side network can have a large positive effect.
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We test the effect of base model architecture on performance and find that the small five layer
convolutional network does comparable to the ResNet-50 when using features.

A.3.2 VARIANCE IN GRADIENTS: RECTIFIED ADAM

Rectified Adam is a method introduced to deal with destructive high variance updates at the begin-
ning of training. We tried using this for RL but found no improvements (shown in Figure 15).
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Figure 15: Reinforcement Learning) Side-tuning matches the performance of the best method when using
denoising features as well.
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A.3.3 IMITATION LEARNING
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Figure 16: Imitation Learning
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Figure 17: Imitation Learning
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Figure 19: Additional Imitation Learning Data Study. We ablate over different quantities of expert
trajectories. We observe that when data is scarce, features is a powerful choice whereas when data
is plentiful, fine-tuning performs well. In both scenarios, side-tuning is able to perform as well as
the stronger approach.

A.3.4 EXTREMELY FEW-SHOT LEARNING

In domains with very few examples, we found that side-tuning is unable to match the performance
of other methods. We evaluated our setup in vision transfer for 5 images from the same building,
imitation learning given 5 expert trajectories.
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A.4 EXPERIMENTAL SETUP

For full details on our configs, please refer to ./configs in provided code.

A.4.1 EXPERIMENTAL SETUP FOR INCREMENTAL LEARNING

Taskonomy Our data is 4M images on 12 single image tasks. The tasks that we use are the following:
curvature, semantic segmentation, reshading, keypoints3d, keypoints2d, texture edges, occlusion
edges, distance, depth, surface normals, object classification and autoencoding. The tasks were
chosen in no particular special order. Our base model and side model are ResNet-50s. We pretrain
on curvatures. Then, we train each task for three epochs before moving on to the next task. We use
cross entropy loss for classification tasks (semantic segmentation and object classification), L2 loss
for curvature and L1 loss for the other tasks. We use Adam optimizer with an initial learning rate of
1e-4, weight decay coefficient of 2e-6, gradient clipping to 1.0, and batch size of 32. We evaluate
our performance on a held out set of images, both immediately after training a specific task, and
after training of all the tasks are complete.

iCIFAR We start by pretraining a model on CIFAR 10 (from https://github.com/
akamaster/pytorch_resnet_cifar10). Then we partition CIFAR100 into 10 distinct sets
of 10 classes. Then, we train for 4 epochs on these tasks using Adam optimizer, learning rate of
1e-3, batch size of 128.

A.4.2 NLP

We train and test on the the question answering dataset SQuAD2.0, a reading comprehension dataset
consisting of 100,000 questions with 50,000 unanswerable questions. Both our base encoding and
side network is a BERT transformer pretrained on a larger corpus. Finetuning trains a single
BERT transfer. We use the training setup found at https://github.com/huggingface/
pytorch-transformers (train for 2 epochs at a learning rate of 3e-5) wth one caveat - we use
an effective batch size of 3 (vs. their 24) due to the

A.4.3 EXPERIMENTAL SETUP FOR HABITAT EXPERIMENTS

We borrow the experimental setup from work to be published in October 2019:

We use the Habitat environment with the Gibson dataset. The dataset virtualizes
572 actual buildings, reproducing the intrinsic visual and semantic complexity of
real-world scenes.
We train and test our agents in two disjoint sets of buildings (Fig. ??). During
testing we use buildings that are different and completely unseen during training.
We use up to 72 building for training and 14 test buildings for testing. The train
and test spaces comprise 15678.4m2 (square meters) and 1752.4m2, respectively.
The agent must direct itself to a given nonvisual target destination (specified using
coordinates), avoiding obstacles and walls as it navigates to the target. The max-
imum episode length is 500 timesteps, and the target distance is between 1.4 and
15 meters from the start.

This setup is shared between imitation learning and RL, which differ in the data, architecture and
optimization process.

Imitation Learning We collect 49,325 shortest path expert trajectories in Habitat, 2,813,750 state
action pairs. We learn a neural network mapping from states to actions. Our base encoding is a
ResNet-50 and the side network is a five layer convolutional network. The representation output is
then fed into a neural network policy. We train the model for 10 epochs using cross entropy loss and
Adam at an initial learning rate of 2e-4 and weight decay coefficient of 3.8e-7. We initialize alpha
to 0.5. Finetuning uses the same model architecture but updates all the weights. Feature extraction
only uses the ResNet-50 to collect features.

RL Similarly, we borrow the RL setup from the same work.
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In all experiments we use the common Proximal Policy Optimization (PPO) algo-
rithm with Generalized Advan- tage Estimation. Due to the computational load
of ren- dering perceptually realistic images in Gibson we are only able to use a
single rollout worker and we therefore decorre- late our batches using experience
replay and off-policy vari- ant of PPO. The formulation is similar to Actor-Critic
with Experience Replay (ACER) in that full trajectories are sampled from the
replay buffer and reweighted using the first-order approximation for importance
sampling.

During training, the agent receives a large one-time reward for reaching the goal, a positive reward
proportional to Euclidean distance toward the goal and a small negative reward each timestep. The
maximum episode length is 500 timesteps, and the target distance is between 1.4 and 15 meters from
the start.

Due to this paradigms’ compute and memory constraints, it would be difficult for us to use large
architectures for this setting. Thus, our base encoding is a five layer convolutional network distilled
from the trained ResNet-50. Our side network is also a five layer convoultional network. Finetuning
is handled the same way - update all the weights in this setup. Feature extraction uses the five layer
network to collect features.

A.4.4 EXPERIMENTAL SETUP FOR LEARNING MECHANICS (SEC. 4.4)

Low energy initialization In classical teacher student distillation, the student is trained to minimize
the distance between its output and the teacher’s output. In this setting, we minimize the distance
between the teacher’s output and the summation of the student’s output and the teacher’s output).
The output space may have a different geometry than that of the input space and this would allow us
to work with

A.5 ADDITIONAL ANALYSIS

A.5.1 ADDITIONAL EVALUATIONS ON LIFELONG LEARNING

We provide alternative perspectives and additional insights for our lifelong learning tasks.

iCIFAR In Fig. 7 (right), we see that the average rank of side-tuning higher than that of PNN. We
find that side-tuning can bridge this gap with a multilayer perceptron (adapter) to merge the base
and side networks. This is a common practice in PNN. In Fig. 20, we see with the adapter network,
the two methods are very similar when measuring classification error.

Indep.
PNN

Sidetune (A)

Sidetune
EWC PSP

Fin
etune

0

20

40

60

80
iCifar - Average Classification Error

Figure 20: Average Accuracy in iCIFAR for All Methods. Note that the performance of Side-tune (A) is
comparable to that of PNN. Side-tuning (A) using multilayer perceptron (adapter) similar to what PNN uses.
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Figure 21: Normalized Losses for all tasks in Taskonomy. We show the normalized loss values for all
methods for all tasks. PNN and Sidetune have comparable loss values.

Taskonomy In Fig. 7 (right), we found that the ranking of our method is better than all other
methods, including PNN. By altering the connections in the PNN, we found an alternate (PNN3)
that has comparable performance to side-tuning. In 21, we show all the losses normalized by single
task loss (independent) as presented in Maninis et al. (2019). The quantitative performance of our
method outperforms all other methods and matches closely with that of PNN. We qualitatively show
in Figures 22, 23, 24, that these methods are comparable in performance.
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RGB GT Indep PNN2 ST PNN

Figure 22: Qualitative results for Reshading. Both PNN methods and Sidetune have similar qualitative
results.
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RGB GT Indep PNN2 ST PNN

Figure 23: Qualitative results for 2D Edges. Both PNN methods and Sidetune have similar qualitative
results.
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RGB GT Indep PNN2 ST PNN

Figure 24: Qualitative results for Surface Normals. Both PNN methods and Sidetune have similar qualita-
tive results.

25



Under review as a conference paper at ICLR 2020
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Figure 25: Average Accuracy for various Fusion methods in iCIFAR. Late fusion (the setting side-tuning
uses) is better than or comparable to other fusion methods.

A.5.2 FUSION TECHNIQUES

An alternative perspective views these methods as various fusions between some base information
and new side information. In this framework, side-tuning is a late-fusion approach whereas PNN is
a distributed-fusion approach. In Fig. 25, we compare various fusion methods in iCIFAR and find
that late fusion performs better than early fusion and comparable to if not better than distributed
fusion. We run this analysis in Taskonomy as well - while the loss values differ somewhat, we find
that the qualitative results seen in Figures 26, 27, 28 are rather similar. Thus, we conclude that the
methods do not vary much.

Distributed and early fusion require knowledge about the structure of how the information is com-
puted. This is something late fusion is agnostic to and it can consider each information column a
black box - this is useful in the case that your base information is NOT a neural network, perhaps
non-parametric. In Fig. A.5.2, we show that side-tuning can effectively use ground truth curvature
as a base for lifelong learning whereas all the methods we compare against cannot use this infor-
mation. Specifically, we downsample the curvature image and stack it into the same dimensions as
the side output. Side-tuning with ground truth curvature achieves a better rank on the Taskonomy
dataset than all other methods and comparable performance.
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RGB GT Late Dist Early

Figure 26: Qualitative results for Reshading for various Fusion methods. Various fusion methods have
comparable results.
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RGB GT Late Dist Early

Figure 27: Qualitative results for 2D Edges for various Fusion methods. Various fusion methods have
comparable results.
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RGB GT Late Dist Early

Figure 28: Qualitative results for Surface Normals for various Fusion methods. Late and distributed
fusion perform similarly; better than early fusion.
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Figure 29: Sidetuning can be used successfully even with black-box side information. When the base
information comes from a black-box process for which we have no other information, sidetuning can still be
used (and performance improves vis-a-vis not using the inputs, and vs using inputs generated from a neural
network). Existing lifelong learning approaches have no standard way to make use of this type of information.
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