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Abstract

This paper explores many immediate connections
between adaptive control and machine learning,
both through common update laws as well as com-
mon concepts. Adaptive control as a field has fo-
cused on mathematical rigor and guaranteed con-
vergence. The rapid advances in machine learning
on the other hand have brought about a plethora of
new techniques and problems for learning. This
paper elucidates many of the numerous common
connections between both fields such that results
from both may be leveraged together to solve new
problems. In particular, a specific problem related
to higher order learning is solved through insights
obtained from these intersections. This version
is an extended abstract; refer to (Gaudio et al.,
2019b) for the full paper.

1. Introduction
The fields of adaptive control and machine learning have
evolved in parallel over the past few decades, with a sig-
nificant overlap in goals, problem statements, and tools.
Machine learning as a field has focused on computer based
systems that improve through experience (Duda et al., 2001;
Bishop, 2006; Hastie et al., 2009; Efron & Hastie, 2016;
Goodfellow et al., 2016; Jordan & Mitchell, 2015). Often
times the process of learning is encapsulated in the form
of a parameterized model, whose parameters are learned in
order to approximate a function. Optimization methods are
commonly employed to reduce the function approximation
error using any and all available data. The field of adap-
tive control, on the other hand, has focused on the process
of controlling engineering systems in order to accomplish
regulation and tracking of critical variables of interest (e.g.
position and force in robotics, Mach number and altitude in
aerospace systems, frequency and voltage in power systems)
in the presence of uncertainties in the underlying system
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models, changes in the environment, and unforeseen varia-
tions in the overall infrastructure (Narendra & Annaswamy,
1989; Sastry & Bodson, 1989; Åström & Wittenmark, 1995;
Ioannou & Sun, 1996; Narendra & Annaswamy, 2005).
The approach used for accomplishing such regulation and
tracking in adaptive control is the learning of underlying
parameters through an online estimation algorithm. Stabil-
ity theory is employed for enabling guarantees for the safe
evolution of the critical variables, and convergence of the
regulation and tracking errors to zero.

Learning parameters of a model in both machine learning
and adaptive control occurs through the use of input-output
data. In both cases, the main algorithm used for updating
the parameters is often based on a gradient descent-like al-
gorithm. Related tools of analysis, convergence, and robust-
ness in both fields have a tremendous amount of similarity.
As the scope of problems in both fields increases, the associ-
ated complexity and challenges increase as well. Therefore
it is highly attractive to understand these similarities and
connections so that the two communities can develop new
methods for addressing new challenges.

2. Connections: Update Law
Two types of error models are common in machine learning
and adaptive control, where output errors ey may be related
to regressors (features) φ and parameter errors θ̃ as

ey(t) = θ̃T (t)φ(t) (1)

ey(t) = W (s)[θ̃T (t)φ(t)] (2)

whereW (s) denotes a dynamic operator and θ̃ = θ−θ∗ (θ∗

unknown). Our goal with both perspectives will be to adjust
a parameter θ with knowledge of the regressor φ and output
error ey, such that a loss function L(θ; ey) is minimized.
For the adaptive control perspective we present solutions
in terms of gradient flow in continuous time t while the
machine learning updates are presented as gradient descent
in discrete time steps indexed by k, i.e.,

θ̇(t) = −γ∇θL(θ(t)) (3)
θk+1 = θk − γk∇θL(θk) (4)

where γ > 0 is the learning rate in gradient flow and γk is
the step size in gradient descent. For a more detailed dis-
cussion of the problem statements see Appendix A. In this
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section we consider the question: What common modifica-
tions to the update laws in (3) and (4) have been developed?

2.1. σ-Modification, e-Modification, Regularization

While the update laws in (3) and (4) are designed primarily
to reduce the output error ey, there are several secondary
reasons to modify these update laws from robustness consid-
erations due to perturbations stemming from disturbances,
noise, and other unmodeled causes. Historically the adap-
tive update law in (3) has been modified to ensure robustness
to bounded disturbances as

θ̇(t) = −γ [∇θL(θ(t)) + σG(θ(t), ey(t))] (5)

where σ > 0 is a tuneable parameter that scales the extra
term G. Common choices for G include the σ-modification
G = θ (Ioannou & Kokotovic, 1984), and the e-modification
G = ‖ey‖θ (Narendra & Annaswamy, 1987b).

Regularization is often included in a machine learning opti-
mization problem in order to help cope with overfitting by
including constraints on the parameter, thus resulting in an
augmented loss function (Hastie et al., 2009; Bubeck, 2015):
L̄(θ) = L(θ) + σR(θ) where σ > 0 is a tuneable parame-
ter, often referred to as a Lagrange multiplier. The gradient
descent update (4) for this augmented loss function is often
referred to as the “regularized follow the leader” algorithm
in online learning (Hazan, 2016) and may be expressed as

θk+1 = θk − γk [∇θL(θk) + σ∇θR(θk)] . (6)

The common choice of `2 regularization in machine learning
of R = (1/2)‖θ‖22, can be seen to coincide with the σ-
modification (Ioannou & Kokotovic, 1984), as ∇θR = G.

2.2. Dead-Zone Modification and Early Stopping

This subsection details common modifications of the update
laws in both fields adopted to cease updating the parameter
estimate after sufficient tuning. Another method in adaptive
control employed to increase robustness in the presence of
bounded disturbances is to employ a “dead-zone” (Peterson
& Narendra, 1982), for the update in (3):

θ̇(t) =

{
−γ∇θL(θ(t)), D(ey) > d0 + ε
0, D(ey) ≤ d0 + ε

(7)

where d0 > 0 is the dead-zone width that may correspond
to an upper bound on the disturbance, and ε > 0 is a small
constant. The function D is a non-negative metric on the
output error to stop adaptation in desired regions of the
output space. A common choice is D = ‖ey‖ such that
adaptation stops after a small output error is achieved above
a noise level with upper bound d0.

The training processes is often stopped in machine learning
applications as a method to deal with overfitting (Hastie

et al., 2009). This may be done by using multiple data sets
and stopping the parameter update process (4) when the
loss computed for a validation data set starts to increase
(Prechelt, 1998). Early stopping is often seen to be needed
for training neural networks due to their large number of
parameters (Goodfellow et al., 2016) and can act as regular-
ization (Sjöberg & Ljung, 1995).

2.3. Projection

It is often desirable to define a compact region a priori for
the parameters θ, such that during the learning process the
parameters are not allowed to leave that region. In physical
systems there are natural constraints which may aid in the
design of that region, and for non-physical systems, the
constraints are often engineered by the algorithm designer.
The continuous projection algorithm, commonly employed
in adaptive control for increased robustness to unmodeled
dynamics (Kreisselmeier & Narendra, 1982; Lavretsky et al.,
2012; Hussain, 2017), is defined as

Proj(θi, ζi) =

{
θ2i,max−θ

2
i

θ2i,max−θ′2i,max
ζi, θi ∈ Ωi ∧ θiζi > 0

ζi, otherwise
(8)

where Ω, θi,max, θ′i,max define a user-specified boundary
layer region inside of a compact convex set Θ. The update
law in (3) may then be modified as

θ̇(t) = −γProj [θ(t),∇θL(θ(t))] . (9)

The following projection operation commonly used in online
learning (Zinkevich, 2003; Hazan et al., 2007; 2008; Hazan,
2016) finds the closest point in a convex set

ΠΘ(θ̄) , arg min
θ∈Θ

‖θ − θ̄‖ (10)

which may be employed in the update law (4) modified as

θ̄k+1 = θk − γk∇θL(θk), θk+1 = ΠΘ(θ̄k+1). (11)

2.4. Adaptive Gains and Stepsizes

The following parameter update law is one example which
alters the gain of the standard update law (3) as a function
of the time varying regressors φ (Narendra & Annaswamy,
1989; Ioannou & Sun, 1996):

θ̇(t) = −γΓ(t)∇θL(θ(t))

Γ̇(t) =

{
ΥΓ(t)− Γ(t)φ(t)φT (t)Γ(t)

N (t) , ‖Γ(t)‖ ≤ Γ0

0, otherwise

(12)

where Υ ≥ 0 is a forgetting factor and N (t) is a normaliz-
ing signal, with common choiceN (t) = (1 + µφT (t)φ(t)).
It can be seen that the update for Γ may be used in the
update for θ to result in a gain adaptive to the regressor φ.
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Adaptive step size methods (Duchi et al., 2011; Zeiler,
2012; Kingma & Ba, 2017; Reddi et al., 2018) have seen
widespread use in machine learning problems due to their
ability to handle sparse and small gradients by adjusting the
step size as a function of features as they are processed on-
line. A common update law for adaptive step size methods
(Reddi et al., 2018) can then be seen to be similar to (11) as

θ̄k+1 = θk − γkmk/V
1/2
k , θk+1 = ΠΘ(θ̄k+1) (13)

where mk and Vk are functions of previous gradients, which
can be compared to normalization by the regressor in (12).

3. Connections: Tools and Concepts
In this section we consider concepts and tools common to
machine learning and adaptive control.

3.1. Lyapunov Functions and Regret

Stability and convergence tools in adaptive control and on-
line machine learning are analyzed in this section. Sup-
pose we consider the error model in (2) where W (s) =
c(sI −A)−1b, and a corresponding state space representa-
tion of the form (Narendra & Annaswamy, 1989)

ė(t) = Ae(t) + bθ̃T (t)φ̂(t) + bθ∗T φ̃(t), ey(t) = ce(t)
(14)

The term φ̃ is due to exponentially decaying terms in the
regressor φ. That is, φ̃ = φ̂− φ and ˙̃

φ = Λφ̃ for a Hurwitz
matrix Λ ∈ RN×N .1 Stability is often proven in adaptive
control by the use of a Lyapunov function V , such as

V = γ−1θ̃T θ̃ + eTPe+ αφ̃T P̄ φ̃. (15)

Note that the last two terms in V are not needed for
the algebraic error model in (1). The time deriva-
tive of the Lyapunov function may then be stated us-
ing the update law in (3) and the KYP lemma as V̇ =
−eTQe − αφ̃T Q̄φ̃ + 2eTPbθ∗T φ̃, where V̇ ≤ 0 for
α > (4‖Pb‖2‖θ∗‖2/(min eig(Q) ·min eig(Q̄)). It can be
shown that δ(t) , 2eTPbθ∗T φ̃ is exponentially decaying
with φ̃, e ∈ L2 ∩ L∞. By integrating V̇ from t0 to T :∫ T

t0

eTQedt−
∫ T

t0

δ(t)dt ≤ −
∫ T

t0

V̇ dt = V (t0)−V (T ).

(16)
Given that V̇ ≤ 0, V (t0)− V (T ) ≤ V (t0) <∞.

1This formulation is common in the design of non-minimal
adaptive observers (Narendra & Annaswamy, 1989). It can be
noted that φ̂ → φ as t → ∞ as Λ is Hurwitz. Also for φ̂ = φ,
(14) is the same as (2). A Hurwitz matrix Λ implies the existence
of a positive definite matrix P̄ = P̄T ∈ RN×N and 0 < Q̄ =
Q̄T ∈ RN×N such that: ΛT P̄ + P̄Λ = −Q̄.

In online learning, efficiency of an algorithm is often ana-
lyzed using the notion of “regret” as

regretT =

T∑
k=1

Ck(θk)−min
θ∈Θ

T∑
k=1

Ck(θ) (17)

where regret can be seen to correspond to the sum of the
time varying convex costs Ck associated with the choice
of the time varying parameter estimate θk, minus the cost
associated with the best static parameter estimate choice,
over a time horizon of T steps (Zinkevich, 2003; Hazan
et al., 2007; 2008; Hazan, 2016). Suppose we consider a
quadratic cost Ck = eTkQek, Q = QT > 0. A continuous
time limit of (17) leads to an integral of the form

continuous regretT =

∫ T

t0

eTQedt−
∫ T

t0

δ̄(t)dt (18)

where δ̄(t) is an exponentially decaying signal which is due
to nonzero initial conditions in (2) or similarly in (14). A
strong similarity can thus be seen between (16) and (18).

It is desired to have regret grow sub-linearly with time, such
that average regret, (1/T )regretT , goes to zero in the limit
T →∞, to provide for an efficient algorithm (Hazan, 2016).
For adaptive control, convergence of state/output errors is
shown from a similar integral which is akin to constant
regret upper bounded by V (t0) in (16).

3.2. Unmodeled Dynamics and Generalization

Models used to design adaptive controllers, including the
examples of (1) and (2), are approximations with a certain
amount of modeling errors. As such, they may only hold
about an operating point and need to contend with unmod-
eled dynamics. This implies that any stabilizing controller
must be designed to not only adapt to parametric uncertain-
ties, but also be robust to unmodeled dynamics. In addition,
constraints on the state and input may also be present in
adaptive control problems (Karason & Annaswamy, 1994;
Annaswamy & Kárason, 1995). Analysis becomes more
complicated when considering unmodeled dynamics and
constraints, resulting in non-global guarantees. Many of the
update law modifications in adaptive control from Section 2
were initially derived to ensure robustness in such cases.

This same notion of robustness to modeling errors exists
in machine learning in which an estimator is constructed
from a finite training data set. It is then desired that this
estimator produces a low prediction error based on a test
data set consisting of unseen data. Generalization thus refers
to the concept of a designed estimator having low loss when
applied to new problems. In particular it can be seen that
in specific cases, generalization pertains to stability, where
algorithms that are stable and train in a small amount of time
result in a small generalization error (Bousquet & Elisseeff,
2002; Hardt et al., 2016).
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3.3. Persistent Excitation and Stochastic Perturbations

Persistent excitation (PE) of the system regressor in adaptive
control is a condition that has been shown to be necessary
and sufficient for parameter convergence (Jenkins et al.,
2018). It can be shown that if the regressor φ is persistently
exciting, then the parameter estimation error θ̃(t) converges
to zero uniformly in time (Narendra & Annaswamy, 1989).
The PE condition essentially corresponds to certain spectral
conditions being satisfied by the regressor (Boyd & Sastry,
1983; 1986). A detailed exposition of system identifica-
tion and parameter convergence in both deterministic and
stochastic cases can be found in (Goodwin & Sin, 1984;
Anderson & Johnson, 1982; Narendra & Annaswamy, 1986;
1987a; Ljung, 1987). Another way to think of the PE condi-
tion is that it leads to a perfect test error, since it provides
for convergence of the parameter error to zero, and therefore
zero output error once transients decay to zero.

Many machine learning problems consider the case when
stochastic perturbations are present. In this context, sig-
nificant improvements may be possible by leveraging well
known concepts in system identification (Ljung, 1987). For
example (Dean et al., 2018) purposely includes a Gaussian
random input into a dynamical system in order to provide
for PE by construction. Such stochastic perturbations can
guarantee a PE condition only in the limit, when infinite
samples can be obtained. In order to address the realistic
case of finite samples, approaches in machine learning algo-
rithms for system identification and control have attempted
to obtain performance bounds with probability 1− pf for
pf ∈ (0, 1), where the bound usually scales inversely with
pf . The probability of failure given by the choice of pf
allows for error due to the presence of finite samples.

3.4. Neural Networks

Gradient based methods to solve for estimates of unknown
parameters via back propagation, in what would develop
into the foundations of neural networks have been used for
decades in control, with early examples consisting of find-
ing optimal trajectories (Pontryagin, 1961) in flight control
(Kelley, 1960), and resource allocation problems (Bryson,
1961) (see (Dreyfus, 1990) for a brief history). Since then,
the use of neural networks in control systems has expanded
to include stabilizing nonlinear dynamical systems (Miller
et al., 1995). Design and analysis of stable controllers based
on neural networks was taken up by the adaptive control
community due to the the similarities of gradient-like up-
date laws used in neural networks and adaptive control. The
adaptive control community developed a well established
literature for the use of neural networks in nonlinear dynam-
ical systems in the 1990s (Miller et al., 1995; Narendra &
Parthasarathy, 1990; 1991; Yu & Annaswamy, 1996; 1998).

The use of neural networks in the machine learning com-

munity greatly expanded as of recent due to the increase in
computing power available and an increase in applications
(Krizhevsky et al., 2012; Sutskever et al., 2013; Goodfellow
et al., 2016). Recurrent neural networks (Hopfield, 1982;
Hinton & Sejnowski, 1983; Hochreiter & Schmidhuber,
1997), while often similar in structure to nonlinear dynam-
ical systems, have historically been trained in a manner
similar to feed-forward neural networks (Rumelhart et al.,
1986) using back propagation through time (Werbos, 1990).
While a theoretical understanding of why deep neural net-
works work as well as they do for given problems has been
lacking, the machine learning community has worked to
rigorously analyze sub-classes of deep neural network ar-
chitectures such as deep linear networks (Arora et al., 2018;
2019). The update laws employed in training deep neural
networks often include selections of modifications of the
update laws as discussed in Section 2 (Schmidhuber, 2015).

4. Advantageous Combinations of Tools:
Higher Order Learning

Given the many similarities in problem statements, tools,
concepts, and algorithms, we now demonstrate how methods
from the field of adaptive control can be used to solve a
new problem related to higher-order learning. Many of the
update laws addressed thus far were first-order in nature,
and made use of gradient-like quantities for learning. A
question of increasing interest is when accelerated learning
can occur for higher-order learning methods. In particular,
Nesterov’s accelerated method (Nesterov, 1983) was able to
certify a convergence rate of O(1/k2) as compared to the
standard gradient descent (4) rate of O(1/k) for a class of
convex functions. A parameterization of Nesterov’s higher
order method may be stated as

θk+1 = ϑk−γ∇θL(ϑk), ϑk = θk+β(θk−θk−1) (19)

where β > 0 is a design parameter that weighs the ef-
fect of past parameters. Continuous time problem formu-
lations have been explored in (Su et al., 2016; Wibisono
et al., 2016), with rate-matching discretizations established
in (Wilson et al., 2016; Wilson, 2018; Betancourt et al.,
2018). Many of these methods however become inadequate
for time varying inputs and features.

Adaptive update laws which include additional levels of
integration appeared in the “higher order tuners” in (Morse,
1992; Evesque et al., 2003), and take the form

ϑ̇(t) = −γ∇θL(θ(t)), θ̇(t) = −β(θ(t)−ϑ(t))Nt (20)

where Nt , (1 + µφT (t)φ(t)) for a µ > 0. In contrast to
(19), the update law in (20) can be shown to be stable in the
presence of time varying regressors as in (1) and as well as
in adaptive control applications with error model as in (2)
(Gaudio et al., 2019a). This solution was only possible by
leveraging techniques from the field of adaptive control.
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Supplementary Material: Appendix

A. Problem Statements
In this section, we state typical problems that are addressed
in the areas of adaptive control and machine learning. In
both cases, we illustrate the role of learning, the input-output
data used, and the overall problem that is desired to be
solved.

A.1. Adaptive Control

The main goal in adaptive control is to carry out problems
such as estimation or tracking in the presence of paramet-
ric uncertainties. The underlying model that relates inputs,
outputs, and the unknown parameters is assumed to stem
from either the underlying physics or from data-driven ap-
proaches. Often these models take the form

y(t) = f1(φ(t), θ∗) (21)

or

ẋ(t) = f2(x(t), u(t), θ∗), y(t) = f3(x(t), u(t), θ∗) (22)

where u ∈ Rm is an exogenous input, x ∈ Rn denotes the
state, y ∈ Rp corresponds to output measurements, φ ∈
RN corresponds to measured and computed variables, and
θ∗ ∈ RN denotes the uncertain parameter. In an estimation
problem, the goal is to estimate the state x in (22) and output
y in both (21), (22), alongside the unknown parameter θ∗

simultaneously, using all available variables. In a control
problem, the goal is to determine a control input u so that
the output y in (22) follows a desired output ŷ.

A typical approach taken in order to solve the estimation
problem in (21) is to choose an estimator structure of the
form

ŷ(t) = f(φ(t), θ(t)) (23)

where θ ∈ RN denotes the estimate of θ∗ and adjust θ so
that the estimation error ey = ŷ − y is minimized, i.e.,
choose a function g1(ey, φ) with

θ̇(t) = g1(ey(t), φ(t)) (24)

so that the estimator has bounded signals, ey(t) converges
to zero and θ(t) converges to θ∗. Similarly, the control
problem consists of constructing an output tracking error
ey = ŷ − y, where ŷ denotes the desired output that y
is required to track. The goal is to then choose functions
g2(ey, φ, θ) and g3(ey, φ, θ) so that the control input u and
parameter estimate θ can be chosen as

u(t) = g2(ey(t), φ(t), θ(t))

θ̇(t) = g3(ey(t), φ(t), θ(t))
(25)

φ ey
θ̃ W (s)

φ ey
θ̃

Figure 1. Error Models. Left: Regression (26), Right: Adaptive
Control (27).

leading to closed-loop signals remaining bounded, ey(t)
converging to zero and θ(t) converging to its true value θ∗.
Denote the corresponding parameter errors as θ̃ = θ − θ∗.

In order to derive the function g1 for the estimation problem
in (21) and the functions g2 and g3 for the control prob-
lem in (22) so as to realize the underlying goals, a stability
framework together with an error model approach is often
employed in adaptive control. The error model approach
consists of identifying the basic relationship between the
two errors that are commonly present in these adaptive sys-
tems, which are the estimation (or tracking) error ey and the
parameter error θ̃. While the estimation error is measurable
and correlated with the parameter error, the parameter error
is unknown but adjustable through the parameter estimate.
In order to determine the update laws gi, the relationship
(error model) that relates these two errors is used as a cue.

Two types of error models frequently occur in adaptive
systems, and are presented below (see Figure 1). The first
corresponds to the case when the relation in (21) is linear,
and the underlying error model is simply of the form (cf.
(Narendra & Annaswamy, 2005))

ey(t) = θ̃T (t)φ(t) (26)

and as a result, the function g1 in (24) can be determined
simply using the gradient rule that minimizes ‖ey‖2. The
second is of the form (cf. (Narendra & Annaswamy, 2005))

ey(t) = W (s)[θ̃T (t)φ(t)] (27)

where W (s)[ζ] denotes a dynamic operator operating on
ζ(t). It has been shown in the adaptive control literature
(Narendra & Annaswamy, 1989; Sastry & Bodson, 1989;
Åström & Wittenmark, 1995; Ioannou & Sun, 1996; Naren-
dra & Annaswamy, 2005) that for specific classes of dy-
namic operators W (s), a stable, gradient-like rule can be
determined for adjusting θ̃. Most of these results apply uni-
formly to the case when u and y are scalars or vectors, with
the latter introducing additional technicalities. In this paper
we consider the case where inputs and outputs are scalars
for notational simplicity, and to focus on the core of the
learning problem with multi-dimensional regressors φ and
parameter estimates θ. Often the unknown parameter θ∗ is
assumed to reside in a compact convex set, which we will
denote as Θ.
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A.2. Machine Learning

Machine learning is a broad field encompassing a wide
variety of learning techniques and problems such as classifi-
cation and regression. A large portion of machine learning
considers supervised learning problems, where regressors
φ and outputs y are related to one another in an unknown
algebraic manner (Duda et al., 2001; Bishop, 2006; Hastie
et al., 2009; Efron & Hastie, 2016; Goodfellow et al., 2016;
Jordan & Mitchell, 2015). A typical approach taken in order
to perform classification or regression is to choose an output
estimator ŷk parameterized with adjustable weights θk as

ŷk = f(φk, θk). (28)

A common form of the estimator as in (28) is that of neural
networks, where the parameters θk represent the adjustable
weights in the network (Duda et al., 2001; Bishop, 2006;
Hastie et al., 2009; Efron & Hastie, 2016; Goodfellow et al.,
2016).

Similar to adaptive control, θk is often adjusted using the
output error ey,k = ŷk − yk. A loss function L : Θ → R
of ey,k is minimized through the adjustable weights. An
example loss function for regression is `p loss (with p ∈ N,
p > 0 and even) L(θk) = (1/p)‖ey,k‖pp. For binary clas-
sification (yk ∈ {−1, 1}) common loss functions include
hinge loss L(θk) = max(0, 1 − ykŷk), and logistic loss
L(θk) = ln(1 + exp(−ykŷk)). Additionally, as in empiri-
cal risk minimization (ERM) (Vapnik, 1992), the total loss
function considered for the purpose of a parameter update
may be an average of loss functions over m samples as:
(1/m)

∑m
i=1 Li(θk). The above descriptions make it clear

that the structure of the estimation problem in both adaptive
control and machine learning are strikingly similar. In the
next section, we examine the nature of the adjustment of θk.

A.3. Common Update Laws

As previously stated, the goal in adaptive control is to de-
sign a rule to adjust θ in an online continuous manner us-
ing knowledge of φ and ey such that ey tends toward zero.
Given that the output errors may be corrupted by noise, an
iterative, gradient-like update is usually employed. To do so
for the algebraic error model (26), consider the squared loss
cost function: L(θ(t)) = (1/2)e2

y(t). The gradient of this
function with respect to the parameters can be expressed as:
∇θL(θ(t)) = φ(t)ey(t). The standard gradient flow update
law (Narendra & Annaswamy, 1989) may be expressed as
follows with user-designed gain parameter γ > 0 as

θ̇(t) = −γ∇θL(θ(t)) = −γφ(t)ey(t). (29)

For dynamical error models such as (27), a stability ap-
proach rather than a gradient based one is taken using Lya-
punov methods, which leads to an adaptive law identical to

(29) for a class of dynamic systems W (s) that are strictly
positive real (Narendra & Annaswamy, 1989; Parks, 1966).

The common update law for supervised machine learning
problems, gradient descent2, is akin to the time varying
regression law (29) in discrete time, and of the form

θk+1 = θk − γk∇θL(θk) (30)

where the “stepsize” γk is usually chosen as a decreas-
ing function of time (Hazan et al., 2007; 2008; Hazan,
2016; Bubeck, 2015; Zinkevich, 2003), a standard feature
of stochastic gradient algorithms.

2While this is not true of all machine learning as the field is
broad, (for example Bayesian methods often use sampling based
techniques such as Markov Chain Monte Carlo), even in the world
of probabilistic inference, gradient based methods can also be used,
cf. variational inference (Blei et al., 2017).


