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ABSTRACT

Knowledge Distillation is a widely used technique in recent deep learning re-
search to obtain small and simple models whose performance is on a par with
their large and complex counterparts. Standard Knowledge Distillation tends to
be time-consuming because of the training time spent to obtain a teacher model
that would then provide guidance for the student model. It might be possible to
cut short the time by training a teacher model on the fly, but it is not trivial to
have such a high-capacity teacher that gives quality guidance to student models
this way. To improve this, we present a novel framework of Knowledge Distilla-
tion exploiting dark knowledge from the whole training set. In this framework,
we propose a simple and effective implementation named Distillation by Utilizing
Peer Samples (DUPS) in one generation. We verify our algorithm on numerous
experiments. Compared with standard training on modern architectures, DUPS
achieves an average improvement of 1%-2% on various tasks with nearly zero
extra cost. Considering some typical Knowledge Distillation methods which are
much more time-consuming, we also get comparable or even better performance
using DUPS.

1 INTRODUCTION

Recent years have witnessed continuous development of deep neural network models. A general
trend is that improvements in model performance are usually coupled with more complex architec-
ture designs and higher cost of computation. In order to obtain more compact models with higher
quality, the idea of Knowledge Distillation (KD) first emerged in the form of knowledge transfer
between models (Buciluǎ et al., 2006). KD takes advantage of the “dark knowledge” by transfer-
ring it from teacher models to student models so as to facilitate the latter’s training process (Hinton
et al., 2015). Student models, with the availability of softened output vectors from teacher models in
KD, have access to richer information in comparison to directly learning from hard labels provided
by training set. KD significantly improves smaller models’ performance, and thus it further allows
model compression.

Although great progress has been made in this area, much more training cost is incurred due to
involved time-consuming mid-output (e.g. feature maps) alignment when training student models,
on top of extra training of a huge teacher model. It is ad meaningful objective of finding more
efficient KD methods. Recent works by (Furlanello et al., 2018) and (Lan et al., 2018b) show
that a stronger teacher model is not the necessary condition for improving the student model. Their
research shows that it is possible that the student model’s performance can be significantly improved
by an identically structured teacher model. Although the techniques remain inefficient due to the cost
of multi-generation (at least one extra) training of teacher models, these works give important hints
that cheaper teachers with considerable effectiveness may exist. Recently (Yang et al., 2018) extend
these works, trying to obtain continuously improved teachers by introducing the cyclic learning rate
technique in one-generation training. They propose Snapshot Distillation (SD), which uses models
obtained from earlier checkpoints as teachers and skips the process of separately training a teacher
model.

Inspired by recent interesting ideas of dataset distillation (Wang et al., 2019) for objectives on other
research areas, we propose a novel approach for KD in this paper. Instead of relying on the as-
sitance of a separate teacher model or checkpoint, we exploit hidden knowledge in the dataset to
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generate a surrogate teacher. Specifically, we first define a more general framework of knowledge
distillation utilizing the whole dataset to generate extra supervision signals, rather than using a sin-
gle sample alone. Then we propose a very simple yet effective implementation of one-generation
KD, called Distillation by Utilizing Peer Samples (DUPS). In DUPS, each sample borrows contin-
uously boosted secondary information from a random subset of peer samples belonging to the same
category on the fly.

We perform extensive experiments on CIFAR100 dataset, with various modern architectures such as
PreActResNet, WideResNet, and ResNeXt, demonstrating that our proposed DUPS gains significant
improvement compared to standard SGD training with nearly zero extra computation cost. DUPS
also outperforms recent one-generation KD method SnapShot Distillation (Yang et al., 2018) on
most architectures. Moreover, we validate our algorithm on more practical tasks, include ImageNet
classification, transfer learning, and language model. Experiments show that DUPS is generally
effective across different tasks.

In summary, our main contributions include: 1) To the best of our knowledge, we are the first to
propose an extension framework of Knowledge Distillation utilizing the whole training set other
than a single sample. 2) Under this framework we implement a general on-the-fly algorithm DUPS
which achieves significant improvement at almost no extra cost.

The rest of the paper is organized as follows. Section 2 presents prior works related to this paper.
Section 3 introduces our methodology of the general knowledge distillation framework. Section
4 demonstrates our experimental results and provides some discussions. Section 5 concludes the
paper.

2 RELATED WORK

2.1 KNOWLEDGE DISTILLATION

Methodologies and Applications In a traditional KD approach, a separate and typically time-
consuming phase is unavoidable to first obtain a complex teacher model. The softened outputs of
the teacher model are then utilized to train a student model that has a much simpler network struc-
ture (Hinton et al., 2015). Other works further develop this idea, such as aligning feature maps,
grammian matrix or activation boundaries (Romero et al., 2014; Zagoruyko & Komodakis, 2016;
Yim et al., 2017; Heo et al., 2018). KD is typically used to get compact models with high perfor-
mance or for purely purpose of model quality improvement (Furlanello et al., 2018; Lan et al., 2018b;
Yang et al., 2018). In addition to these general works, KD is widely demonstrated to be effective on
various modern practical tasks, including transfer learning (Li et al., 2019), object detection (Chen
et al., 2017), visual relationship detection (Yu et al., 2017) and so on. Despite its effectiveness, one
common limitation is the improved performance of student networks in traditional KD is achieved
at the cost of extra training time to obtain the teacher model in the first place.

Efficiency of Knowledge Distillation Recently researchers have begun paying more attention to
the inefficiency problem of KD. In the scenario of large scale training, (Anil et al., 2018) proposed
online distillation which trains multiple copies of a model in a distributed system, at the expense of
involving more activated devices simultaneously. It becomes challenging to distill knowledge in one
generation because the model currently being trained lacks the capacity to be a good teacher model
for itself. SnapShot Distillation ameliorates this problem by utilizing cyclic learning rate (Yang et al.,
2018). They divide the whole training process into a few mini-generations, using cosine annealing
learning rate policy (Loshchilov & Hutter, 2016) in each mini-generation so as to ensure the teacher
models’ quality. Other works tackle the problem by implementing architecture-specific knowledge
transfer techniques, e.g. adding new branches or connections to the original model structure (Lan
et al., 2018a; Zhang et al., 2019; Hahn & Choi, 2019).

In this paper, we mainly focus on architecture-agnostic KD that aims to use inter-class information
to improve general supervision.
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2.2 LABEL PROPAGATION

Although rarely mentioned, KD is closely related to the area of label propagation. Some early works
exploit language knowledge related to image classification objects to help improve the performance
of the latter. For example, (Deng et al., 2010; Verma et al., 2012; Akata et al., 2015) draw on
external knowledge such as well-constructed language database WordNet, annotated attributes of
each instance, or other dataset with hierarchical semantic labels. Recently (Bagherinezhad et al.,
2018) utilize the idea of KD to obtain a refined label of a specific crop by a pre-trained teacher
model, offering more accurate targets for cropped input images. Another popular idea is to construct
propagated labels for effective regularization. (Szegedy et al., 2016) introduce Label Smoothing
(LS) which softens the labels in the dataset: instead of being a one-hot encoding vector, the label
after LS becomes smoother in distribution over all entries in the vector. It’s a very useful technique in
practice till today. Some recent works further analyze the effectiveness of LS or other label-disturb
methods (Pereyra et al., 2017; Muller et al., 2019). In this paper We will show that, albeit being
similar in appearance, the continuously boosted softened target generated by the whole dataset is
more than a data-agnostic regularizer like Label Smoothing.

3 METHODOLOGY

3.1 TYPICAL FORM OF KD

Without loss of generality, we first define a typical formulation of KD based on past works (Hinton
et al., 2015; Furlanello et al., 2018; Yang et al., 2018) in the classical classification setting. Let
D ∈ X×Y be the training set which contains n labelled training samples andC classes. Each sample
is denoted by (xi, yi) ∈ D, where yi ∈ {1, 2, . . . , C}. We define our objective network fSfSfS(x, θθθ) :
X 7→ Y parameterized with θθθ as the mapping function. Commonly in practice, we use the cross
entropy function to metric the distance between ground-truth one-hot labels and outputs generated
by fSfSfS . For traditional KD, we need to introduce another optimized solution θ′θ′θ′ of a particular function
fTfTfT into the final loss function. We omit normal regularization terms such as L2 normalization of
parameters for the sake of simplicity. Upon some input sample Di = (xi, yi), we get

L(Di;θθθ) = λCE · LCE [yi, fffS(xi;θθθ)] + λKD · LKD[fffS(xi;θθθ), fffT (xi;θ
′θ′θ′)] (1)

, where λCE and λKD are hyperparameters to balance the relative contribution of the cross entropy
term and knowledge distillation term. LKD is typically computed by cross entropy (Furlanello
et al., 2018; Hahn & Choi, 2019) or Kullback Leibler divergence (Lan et al., 2018a; Yang et al.,
2018) between the logits produced by the teacher model and the student model. Note that fTfTfT can
be identical in structure as fSfSfS , as demonstrated by the successful implementations of Born-Again
Network (Furlanello et al., 2018), Self-Referenced Network (Lan et al., 2018a) and Snapshot Dis-
tillation (Yang et al., 2018). For one generation distillation, since there isn’t an external training
process of a teacher model, the teacher signal fffT (xi;θ

′θ′θ′) for sampleDi is generated from the internal
of training procedure or dataset. For example, Snapshot Distillation uses a sequence of checkpoints
at the end of each training cycle θ′θ′θ′ ∈ {θc1θc1θc1 , θc2θc2θc2 , . . . } as teacher solutions.

3.2 EXTENDED FORM OF KD

We will extend the formulation of KD, making it more compatible with commonly used neural
network architectures and algorithms. In the above typical framework, KD loss term is with respect
to some sample Di = (xi, yi). In contrast, our proposed KD framework has its KD term as a
function of the whole dataset D. Thus with the help of dataset D and some internal or external
obtained supplementary teacher solution(s) θ′θ′θ′, we have

L(Di;θθθ) = λCE · LCE [yi, fffS(xi;θθθ)] + λKD · LKD[fffS(xi;θθθ), fffT (Di;θ
′θ′θ′,D)] (2)

. The notation for teacher signal changes from fffT (xi;θ
′θ′θ′) to fffT (Di;θ

′θ′θ′,D) because the teacher
model requires the label yi and at least part of the dataset to effectively utilize dataset information
in our KD. We note that implementations of traditional KD by (Hinton et al., 2015), Born-Again
Network (Furlanello et al., 2018) and Snapshot Distillation (Yang et al., 2018) can be seen as special
cases of the above general formulation whose distilled information only depends on the input sample
while ignoring others.
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3.3 TEACHER SIGNAL UTILIZING PEER SAMPLES

The most straightforward idea of leveraging other samples to help is to utilize similar samples. Given
a training sample Di = (xi, yi), we random select n peer samples in the same category of training
set, noted by

Yyi = {(xk1 , yi), (xk2 , yi), . . . , (xkn , yi)} ⊂ D

. With the help of these peer samples, we get teaching signal with respect to Di as below

fffT (Di;θ
′θ′θ′,D) = fffT (Di;θ

′θ′θ′, Yyi
) (3)

. As shown above, we do not focus on how one single instance could provide the student model with
secondary information that is not directly available from the dataset labels (Hinton et al., 2015; Yang
et al., 2019); rather, we aim to find a general trend that reveals the extent of some statistical char-
acteristics, e.g. inter-class similarity, by utilizing peer samples. There are two benefits. First, since
such information is relatively static or stable for a period of training procedure and can be shared
among samples of the same category, it is cheap to obtain and store in memory. Second, teaching
signals voted by a cluster of samples may offer more reliable secondary information comparing with
that produced by a sub-optimized checkpoint found before training completes.

3.4 DUPS IMPLEMENTATION

Similar to SnapShot Distillation proposed by (Yang et al., 2018), our method achieves on-the-fly
distillation within one generation of training by dividing the training process into m stages, with
each stage consisting of t epochs. However, an important difference is that our method do not
strongly depend on cyclic learning rate for obtaining reliable teaching signal. Let M be the set of
such stages and T be the set of epochs. Then M = {M1,M2, . . . ,Mm}, and for each i such that
1 ≤ i ≤ m, Mi = {T(i−1)×t+1, T(i−1)×t+2, . . . , T(i−1)×t+(t−1), Ti×t}. We follow the algorithm
in Alg. 1 to implement DUPS. For a sample Di = (xi, yi), its peer samples, denoted by Yyi

, are a
random subset of the all samples found in the same category. Hence,

Yyi
⊂ {(x, y) ∈ D | y = yi}

. For specific implementation, we share teacher signal among samples of the same category. Thus,
Eq. 3 is further simplified to

∀Dj ∈ {(x, y) ∈ D | y = yi}, fffT (Dj ;θ
′θ′θ′,D) = fffT (Yyi

;θ′θ′θ′) (4)

, which means the teacher signal fffT for sample Dj = (xj, yj) only depends on the sample’s label
yj but not its data input xj. D is omitted in fffT (Yyi

;θ′θ′θ′) as the last parameter because only Yyj
⊂ D

is utilized.

Formally, let the teacher signal for each category with label yi at stage Mn be fffnT (Yyi
;θ′θ′θ′), where n

is the index of the current training stage. We denote the checkpoint of student model fffS at the end
of nth stage be θθθn. We define fff1T (Yyi

;θ′θ′θ′) to be zero. The rest of teacher signals are computed based
on

fffnT (Yyi ;θ
′θ′θ′) =

1

‖Yyi‖
∑

(x,y)∈Yyi

fffS(x;θθθ
n−1) (5)

. The average softened logit of each category obtained at the last epoch of each stage is used as
the “teacher model” for training of student model at next stage. In total, there are m − 1 iterations
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of knowledge distillation between “teacher models” and “student models” in the whole training
process.

Algorithm 1: DUPS implementation
Input: Current epoch Tc ∈Mn, the set of training samples D
Output: Improved neural network model parameters θθθ

1 for each batch B in D do
2 for each sample (xj, yj) in B do
3 Compute the logits l and prediction fffS(xj) produced by the current model;
4 Compute cross entropy loss LCE using fffS(xj) and yj

5 if Mn is the first stage M1 then
6 Set knowledge distillation loss LKD to be fff1T (Yyj

;θ′θ′θ′) = 0;
7 else
8 Compute knowledge distillation loss LKD using l and fffnT (Yyj ;θ

′θ′θ′) where
Yyj = {(x, y) ∈ D | y = yj};

9 Obtain the total loss (Eq 2);
10 Calculate the average loss of this batch;
11 Update model parameters;
12 if Tc is the last epoch in the current stage Mn then
13 Update fffn−1T (Yyp ;θ

′θ′θ′) to fffnT (Yyp ;θ
′θ′θ′) using the corresponding set of peer samples Yyp for all

yp ∈ {1, 2, . . . , C} (Eq 5);

4 EXPERIMENTS

4.1 TASKS AND DATASETS

Image Classification We use CIFAR100 (Krizhevsky, 2009) and ImageNet (Deng et al., 2009)
to test the performance of DUPS on image classification task. CIFAR 100 contains RGB images
categorized into 100 classes, with each class composing 600 images. There are 500 training images
and 100 testing images in each class. ImageNet is a tree-structured image database created according
to the WordNet hierarchy. It consists of more than 20K categories and a total of 14 million images.
We use the popular subset ILSVRC2012 which containing 1.3M images covering 1K categories.
We do not conduct experiments on CIFAR10 because it has been empirically observed that, due to
the lack of fine-level categorization in CIFAR10, neural networks do not significantly benefit from
distillations between teacher and student models (Yang et al., 2018; Furlanello et al., 2018).

Transfer Learning We use ImageNet as the source dataset and have 4 different datasets as the
target dataset in the transfer learning task, covering typical types of plants, animals, objects and
texture . The 4 target datasets are (1) Flower102 (Nilsback & Zisserman, 2008) which contains
102 categories of 8189 flower images, (2) Caltech-UCSD Birds-200-2011 (Wah et al., 2011), which
has 11,788 images classified into 200 categories, (3) FGVC-Aircraft (Maji et al., 2013) which com-
poses 10,000 images of aircraft across 100 aircraft models, and (4) Describable Textures Dataset
(DTD) (Cimpoi et al., 2015) which is a texture database, consisting of 5640 images, organized ac-
cording to a list of 47 terms (categories).

Natural Language Processing We use Penn Tree Bank (PTB) dataset (Marcus et al., 1993) to
evaluate the performance of DUPS on language modeling.

4.2 EXPERIMENT SETTINGS

Image Classification We train all models except DenseNet for image classification in 160 epochs.
For DenseNet we train 240 epochs because it converges slower. The initial learning rate is 0.1 for all
architectures. Training batch size is 64. We use standard SGD optimizer with momentum 0.9 and
weight decay 0.0001. We apply standard data augmentation the same way as the Pytorch official
examples on both CIFAR100 and ImageNet classification task. For CIFAR100, we pad the input
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Table 1: Test accuracy on CIFAR100. SGD refers to models trained with standard Stochastic
Gradient Descent optimizer. LS are models improved by using Label Smoothing technique. SD
are the models trained with SnapShot Distillation method. Finally, DUPS and DUPS+ are our
methods proposed in this paper. The difference between DUPS and DUPS+ is that DUPS+ uses
cyclic learning rate while DUPS does not.

Model SGD LS DUPS SD DUPS+
PreActResNet18 0.7646 0.7795 0.7785 0.7729 0.7794
PreActResNet34 0.7701 0.7729 0.7823 0.7665 0.7785
PreActResNet50 0.7687 0.7798 0.7847 0.7809 0.7877

PreActResNet101 0.7756 0.7829 0.7882 0.7788 0.7899
DenseNet40(240) 0.7003 0.7034 0.7101 0.7115 0.7174
DenseNet100(240) 0.7515 0.7559 0.7557 0.7657 0.7617
WideResNet28x10 0.7968 0.7996 0.8028 0.8013 0.8062
ResNeXt29 8x64d 0.8017 0.8103 0.8184 - -

images by 4 pixels, and then randomly crop a sub-region of 32 × 32 and randomly do a horizontal
flip. For ImageNet, we first randomly crop a sub-region of 224× 224 and randomly do a horizontal
flip. We normalize the input data as done in common practice.

Transfer Learning We use ResNet-101 as the base model to apply DUPS. We train the model
with 40 epochs and the batch size for training is 64. SGD optimizer is used with a momentum of
0.9. The initial learning rate is set to 0.01 and the weight decay is set to 0.0001. We use exactly the
same data augmentation methods as in ImageNet classification task.

Natural Language Processing We validate the performance of DUPS on three regularized LSTM
models with varying depth. For the large model, we use 1500 hidden units and train 55 epochs. The
learning rate decays by 1 / 1.5 after 15 epochs. Its dropout rate is set to be 0.65 and dropout is
applied to all non-recurrent connections. The medium model consists of 650 hidden units. We train
it with 40 epochs. The learning rate decays by 0.8 after 5 epochs. Its dropout rate is 0.5. The small
model has 200 hidden units. It is trained in 15 epochs. The learning rate remains as the initial value
for 4 epochs and then starts to decay at the rate of 0.5. No dropout is used in the small model. For
all three models, the initial learning rate is 20.

While training DUPS to compare with models trained with SGD optimizer or label smoothing tech-
nique in the three tasks, we use cosine annealing policy to update learning rates for all these models.
In order to make fair comparisons with Snapshot Distillation, we upgrade our DUPS with cyclic
learning rate policy, which is named DUPS+. Within each cycle , DUPS+ uses cosine annealing
learning rate.

For hyper-parameters specific to DUPS, we also use a common setting for all tasks following in-
structions from some empirical studies. We set λCE to 0.8 and λKD to 0.2. The Kullback Leibler
divergence is used to calculate knowledge distillation term. We use temperature of 6 to soften the
logits. We divide the training process into 10 stages for image classification tasks and 5 stages for
transfer learning and language model tasks.

4.3 EXPERIMENT RESULTS

We present our experiment results and give insights into the advantages as well as disadvantages us-
ing DUPS. We achieve this by comparing DUPS with models trained with SGD, and sometimes with
closely related algorithms, namely Label Smoothing and Snapshot Distillation. Although SnapShot
Ensembles (Huang et al., 2017) also offers ideas on which we further develop, we do not carry out
duplicate experiments to compare with it because (Yang et al., 2018) have already made compar-
isons between Snapshot Distillation and SnapShot Ensembles. Therefore, we directly compare our
proposed DUPS with SnapShot Distillation.

Image Classification Table. 1 shows that our DUPS implementation consistently and significantly
improve baseline models in accuracy for the vast majority of neural network architectures we tested.
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Table 2: Training Time of Different Algorithms on PreActResNet50 and WideResNet28x10.
All abbreviations follow the same rule as in Table. 1. We run experiments on Tesla V100 GPUs and
normalize the training time of SGD to 1 for simplified comparison.

Model SGD LS SD DUPS
PreActResNet50 1 ∼1 1.32 1.04

WideResNet28x10 1 ∼1 1.27 1.01

Table 3: Top-1 Test accuracy on ImageNet. All abbreviations follow the same rule as in Table. 1.

Model SGD LS DUPS
ResNet50 76.58 76.69 77.58

ResNet101 77.86 78.41 78.74
ResNet152 78.17 78.63 79.06

The improvement is generally within 1%-2% in comparison to models trained with the standard SGD
optimizer. We notice that more complex architectures do not always perform better than simpler
ones, while DUPS achieves stable improvement. We can observe a similar trend in Table. 3 when
we apply DUPS to different models on ImageNet.

For the majority of the models we tested, DUPS also outperforms Label Smoothing (LS) in im-
age classification. Although DUPS does not beat LS on PreActResNet18 and DenseNet100, the
difference is relatively marginal. When compared with a recently proposed KD method SnapShot
Distillation, DUPS shows comparable performance even though the SD uses a more complicated
learning rate policy. We also demonstrate that DUPS+ which combines cyclic learning rate outper-
forms SD in most cases. However we noticed that leveraging cyclic learning rate doesn’t always
bring benefit. In addition, DUPS obtains the improved results with significantly less training time
than that SD needs as showed in Table. 2.

Transfer Learning We fixed our test model to be ResNet101 and perform experiments on the cho-
sen datasets. Results in Table. 4 indicate that, compared with models trained using SGD, DUPS im-
proves the transfer learning outcomes on all four datasets, and the improvements range from 0.46%
to 1.78%. These results testify that DUPS can enhance model performance on varying datasets.

In contrast, LS does not always yield positively improved results. Furthermore, the extent of im-
provement LS brings is considerably less than that of DUPS, as shown by the statistics.

Natural Language Processing Last but not least, we investigate the effectiveness of DUPS on
language modeling. As shown in Table 5, the use of DUPS reduces the perplexity value by a pro-
portion of 1.5%∼4.1% on all three models. Note that the model displays better performance when
the perplexity value is low in language modeling. Since DUPS significantly lowers the perplexity
values to both small and large size of the LSTM models, its effectiveness is not hindered by scaling
the size of the model in this task. This flexibility is another advantage of DUPS.

4.4 DISCUSSIONS

Here we give a short discussion about how and why DUPS brings benefits. We first demonstrate
some empirical characteristics of DUPS observed in our experiments. We plot the learning curve
of the whole training procedure of PreActResNet18 as Fig. 1. For better demonstration purpose,
we divide the training process into only 4 stages for DUPS training, with each stage consisting of
40 epochs. We observe that SGD and DUPS display almost the same standard of performance in
the first stage as expected. While at the 41th epoch, both training and test accuracy of DUPS get
a sharp rise due to involving teacher signal generated in the 40th epoch. Then both training and
test accuracy drop slightly for a few epochs, and then return to the trend of slowly rising for the
remaining epochs until next stage. A similar phenomenon also appears at the beginning of next
stage, although the magnitude of accuracy improvement becomes much more smaller. As the model
reaches the beginning of final stage, we no longer see increases in accuracy since training is nearly
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Table 4: Test accuracy using ResNet101 on various datasets. All abbreviations follow the same
rule as in Table. 1 or explained in Section 4.1.

Dataset SGD LS DUPS
Flower102 0.9179 0.9279 0.9294

FGVC Aircraft 0.7741 0.7675 0.7787
DTD 0.6646 0.6705 0.6824

CUB 200 2011 0.8172 0.8152 0.8246

Table 5: Perplexity value of the model using LSTM on Penn Treebank. Lower is better. All
abbreviations follow the same rule as in Table. 1 or explained in Section 4.1.

Model Size SGD LS DUPS
Small 129.7 129.1 125.4

Medium 95.3 96.7 93.9
Large 89.2 88.7 85.7

saturated. We notice that since the first sharp rising, DUPS continuously outperforms SGD by a
stable gap for the following training epochs until convergence.

We also investigate the influence of different choices of hyper-parameters specific to DUPS. The
most important two are the number of stages and number of random peer samples. We run a grid
search method to validate different combinations of these two variables. We use update intervals, or
equivalently number of epochs per stage, instead of number of stages for clarity in this experiments.
In Fig. 2 we see that performance of DUPS does not seem to be very sensitive to most combinations
of the hyperparameters. When the number of peer samples increases to 5 or more, model accuracy
tends to be over 77.3%. Even when the number of peer samples is low, a good choice of the value of
update interval can boost the model performance significantly. For example, when number of peer
samples is 1 and update interval is set to be between 20 to 40, DUPS still delivers satisfying results
which is comparable to its best performance. Low accuracy of the model only happens consistently
when the value of update interval is large. If update interval is set to 80, the model, teacher-student
knowledge transfer only takes place once during the whole training process. Consequently, the
opportunity to distill the knowledge obtained from the dataset is too rare for the model to benefit
from DUPS.

5 CONCLUSION

In this paper, we have introduced a general framework for one-generation KD: We incorporate the
information contained within the dataset into teacher-student optimization. We have also proposed
an effective implementation of this general framework named DUPS. With extensive experiments,
this simple yet effective algorithm is verified to be effective in improving model performance in tasks
like image classification, transfer learning and language modeling with almost no additional cost in
training resources. The demonstrated success of DUPS imply that utilizing dataset information
during training potentially allow us to gain even more benefits.
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