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ABSTRACT

Proteins are ubiquitous molecules whose function in biological processes is deter-
mined by their 3D structure. Experimental identification of a protein’s structure
can be time-consuming, prohibitively expensive, and not always possible. Al-
ternatively, protein folding can be modeled using computational methods, which
however are not guaranteed to always produce optimal results.
GRAPHQA is a graph-based method to estimate the quality of protein models, that
possesses favorable properties such as representation learning, explicit modeling
of both sequential and 3D structure, geometric invariance and computational effi-
ciency. In this work, we demonstrate significant improvements over the state-of-
the-art for both hand-engineered and representation-learning approaches, as well
as carefully evaluating the individual contributions of GRAPHQA components.

1 INTRODUCTION

Protein molecules are predominantly present in biological forms, responsible for their cellular func-
tions. Therefore, understanding, predicting and modifying proteins in biological processes are essen-
tial for medical, pharmaceutical and genetic research. Such studies strongly depend on discovering
mechanical and chemical properties of proteins through the determination of their structure.

At the high level, a protein molecule is a chain of hundreds of smaller molecules called amino acids.
Identifying a protein’s amino-acid sequence is nowadays straightforward. However, the function of
a protein is primarily determined by its 3D structure. Spatial folding can be determined experimen-
tally, but the existing procedures are time-consuming, prohibitively expensive and not always possi-
ble. Thus, several computational techniques were developed for protein structure prediction (Arnold
et al., 2006; Wang et al., 2017; Xu, 2019). So far, no single method is always best, e.g. some protein
families are best modeled by certain methods, also, computational methods often produce multiple
outputs. Therefore, candidate generation is generally followed by an evaluation step. This work
focuses on Quality Assessment (QA) of computationally-derived models of a protein (Lundstrom
et al., 2001; Won et al., 2019).

QA, also referred to as model accuracy estimation (MAE), estimates the quality of computational
protein models in terms of divergence from their native structure. The downstream goal of QA is
two-fold: to find the best model in a pool of models and to refine a model based on its local quality.

Computational protein folding and design have recently received attention from the machine learn-
ing community (Wang et al., 2017; Xu, 2019; Jones & Kandathil, 2018; Ingraham et al., 2019b;
Anand & Huang, 2018; Evans et al., 2018; AlQuraishi, 2019), while QA has yet to follow. This
is despite the importance of QA for structural biology and the availability of standard datasets to
benchmark machine learning techniques, such as the biannual CASP event (Moult et al., 1999). The
field of bioinformatics, on the other hand, has witnessed noticeable progress in QA for more than a
decade: from earlier works using artificial neural networks (Wallner & Elofsson, 2006) or support
vector machines (Ray et al., 2012; Uziela et al., 2016) to more recent deep learning methods based
on 1D-CNNs, 3D-CNNs and LSTMs (Hurtado et al., 2018; Derevyanko et al., 2018; Pagès et al.,
2018; Conover et al., 2019).

In this work, we tackle Quality Assessment with Graph Convolutional Networks, which offer several
desirable properties over previous methods. Through extensive experiments, we show significant
improvements over the state-of-the-art, and offer informative qualitative and quantitative analyses.
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Figure 1: Protein Quality Assessment. GRAPHQA predicts local and global scores from a protein’s
graph using message passing among residues with chemical bond or spatial proximity. CASP QA
algorithms score protein models by comparison with experimentally-determined conformations.

1.1 RELATED WORKS

Protein Quality Assessment (QA) methods are evaluated in CASP (Moult et al., 1995) since
CASP7 (Cozzetto et al., 2007). Current techniques can be divided into two categories: single-
model methods which operate on a single protein model to estimate its quality (Wallner & Elofsson,
2003), and consensus methods that use consistency between several candidates to estimate their
quality (Lundstrom et al., 2001). Single-model methods are applicable to a single protein in iso-
lation and in the recent CASP13 performed comparable to or better than consensus methods for
the first time (Cheng et al., 2019). Recent single-model QA works are based on deep learning,
except VoroMQA that takes a statistical approach on atom-level contact area (Olechnovic & Ven-
clovas, 2017). 3DCNN adopts a volumetric representation of proteins (Derevyanko et al., 2018).
Ornate improves 3DCNN by defining a canonical orientation (Pagès et al., 2018). ProQ3D uses
a multi-layer perceptron on fixed-length protein descriptors (Uziela et al., 2017). ProQ4 adopts a
pre-trained 1D-CNN that is fine-tuned in a siamese configuration with a rank loss (Hurtado et al.,
2018). VoroMQA and ProQ3D are among the top performers of CASP13 (Won et al., 2019).

Graph Convolutional Networks (GCNs) bring the representation learning power of CNNs to graph
data, and have been recently applied with success to multiple domains, e.g. physics (Gonzalez
et al., 2018), visual scene understanding (Narasimhan et al., 2018) and natural language understand-
ing (Kipf & Welling, 2017). Molecules can be naturally represented as graphs and GCNs have been
proven effective in several related tasks, including molecular representation learning (Duvenaud
et al., 2015), protein interface prediction (Fout et al., 2017), chemical property prediction (Niepert
et al., 2016; Gilmer et al., 2017; Li et al., 2018a), drug-drug interaction (Zitnik et al., 2018), drug-
target interaction (Gao et al., 2018) molecular optimization (Jin et al., 2019), and generation of
proteins, molecules and drugs (Ingraham et al., 2019a; You et al., 2018; Liu et al., 2018; Li et al.,
2018b; Simonovsky & Komodakis, 2018). However, to the best of our knowledge, GCNs have never
been applied to the problem of protein quality assessment.

1.2 CONTRIBUTIONS

• This work is the first to tackle QA with GCN which bring several desirable properties over
previous methods, including representation learning (3DCNN, Ornate), geometric invariance
(VoroMQA, Ornate), sequence learning (ProQ4, AngularQA), explicit modeling of 3D structure
(3DCNN, Ornate, VoroMQA) and computational efficiency.

• Thanks to these desirable properties, a simple GCN setup achieves improved results compared
to the more sophisticated state-of-the-art methods such as ProQ4. This is demonstrated through
extensive experiments on multiple datasets and scoring regimes.

• Novel representation techniques are employed to explicitly reflect the sequential (residue sepa-
ration) and 3D structure (angles, spatial distance and secondary structure) of proteins.

• Enabled by the use of GCN, we combine the optimization of local and global score for QA,
improving over the performance of a global-only scoring method.

• Through an extensive set of ablation studies, the significance of different components of the
method, including architecture, loss, and features, are carefully analyzed.

PyTorch implementation, datasets and experiments: github.com/baldassarreFe/protein-quality-gn.
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2 METHOD

We start describing our method by arguing for representation of protein molecules as graphs in
learning tasks, then we define the problem of protein quality assessment (QA), and finally we present
the proposed GRAPHQA architecture.

2.1 PROTEIN REPRESENTATION AS GRAPHS

Proteins are large molecular structures that perform vital functions in all living organisms. At the
chemical level, a protein consists of one or more chains of smaller molecules, which we interchange-
ably refer to as residues for their role in the chain, or as amino acids for their chemical composition.
The sequence of residues S = { ai } that composes a protein represents its primary structure, where
ai is one of the 22 amino acid types. The interactions between neighboring residues and with the en-
vironment dictate how the chain will fold into complex spatial structures that represent the protein’s
secondary structure and tertiary structure.

Therefore, for learning tasks involving proteins, a suitable representation should reflect both the
identity and sequence of the residues, i.e. the primary structure, and geometric information about
the protein’s arrangement in space, i.e. its tertiary structure. Some works use RNN or 1D-CNN
to model proteins as sequence with the spatial structure potentially embedded in the handcrafted
residue features (Hurtado et al., 2018; Conover et al., 2019). Other recent works explicitly model
proteins’ spatial structure using 3D-CNN but ignore its sequential nature (Derevyanko et al., 2018;
Pagès et al., 2018). We argue that a graph-based learning can explicitly model both the sequential
and geometric structures of proteins. Moreover, it accommodates proteins of different lengths and
spatial extent, and is invariant to rotations and translations.

In the simplest form, a protein can be represented as a linear graph, where nodes represent amino
acids and edges connect consecutive residues according to the primary structure. This set of edges,
which represent the covalent bonds that form the protein backbone, can be extended to include
the interactions between non-consecutive residues, e.g. through Van der Waals forces or hydrogen
bonds, commonly denoted as contacts. By forming an edge between all pairs of residues that are
within a chemically reasonable distance of each other, the graph becomes a rich representation of
both the sequential and geometric structure of the protein (figure 2). We refer to this representation,
composed of residues, bonds and contacts, as the protein graph:

P =
(
{ vi } ,

{
ebond
i,j

∣∣ |i− j| = 1
}
∪
{
econtact
i,j

∣∣ |i− j| > 1, ‖Ci − Cj‖ ≤ dmax
})

, (1)

where i, j = 1, . . . , |S| are residue indices, C = { (x, y, z)i } represents the spatial arrangement of
the residues, i.e. the protein’s conformation, and dmax is a cutoff distance for contacts.

With the protein’s structure encoded in the graph, additional residue and relationship features can
be encoded as nodes and edges attributes, vi and ei,j respectively. Section 3.2 describes, in detail,
an attribution that preserves the sequence information and 3D geometry while remaining invariant
to rotation.

A1

A3

B2

C4

B5

(a) Sequential

A
B
C

(b) Spatial

A1

A3

B2

C5

B4
Bond

Conta
ct

(c) Graph

Figure 2: Protein representations for learning. Sequential representations for LSTM or 1D-CNN
fail to represent spatial proximity of non-consecutive residues. Volumetric representations for 3D-
CNN fail instead to capture sequence information and is not rotation invariant. Protein graphs ex-
plicitly represent both sequential and spatial structure, and are geometrically invariant by design.
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2.2 PROTEIN QUALITY ASSESSMENT

Experimental identification of a protein’s native structure can be time consuming and prohibitively
expensive. Alternatively, computational folding methods are used to generate decoy conformations
for a specific target protein. Since no single method is consistently best, a Quality Assessment (QA)
step is used to identify the decoys that most correctly represent the native structure.
If the native structure Cnative is experimentally determined, the quality of a decoy can be measured
by comparison, e.g., in the CASP challenge, decoys submitted for a target are scored against the
unreleased native structure. Some comparative algorithms compute global (per decoy) scores, which
can be used for ranking and represent the principal factor for CASP, while others produce local (per
residue) scores which help identify incorrect parts of a decoy (Uziela et al., 2018).
In most scenarios, however, the native structure is not available and quality must be estimated based
on physical and chemical properties of the decoy, e.g. in drug development, it would be unpractical
to synthesize samples of novel proteins and researchers rely on computational folding and quality
assessment instead.

Here we introduce GRAPHQA, a graph-based QA neural network that learns to predict local and
global scores, with minimal feature and model engineering, using existing datasets of scored pro-
teins. In this paper, we train GRAPHQA on two widely-used scoring algorithms: the Global Distance
Test Total Score (Zemla, 2003), which is the official CASP score for decoy-level quality assessment,
and the Local Distance Difference Test (Mariani et al., 2013), a residue-level score. We denote them
as qg := GDT TS(Cd, Cnative) and { q`i } := LDDT(Cd, Cnative).
With GRAPHQA`

i(P) and GRAPHQAg(P) denoting the network’s local and global predictions for
an input P , the learning objective is to minimize the following Mean Squared Error (MSE) losses:

L` =

|S|∑
i

[
GRAPHQA`

i(P)− q`i
]2

Lg = [GRAPHQAg(P)− qg]2 . (2)

Note that, for the sole purpose of sorting decoy according to ground-truth quality, training with a
ranking loss would be sufficient (Derevyanko et al., 2018). Instead, MSE forces the output to match
the quality score, which is a harder objective, but results in a network can be more easily inspected
and possibly used to improve existing folding methods in an end-to-end fashion (section 4.2).

2.3 GRAPHQA ARCHITECTURE

GRAPHQA is a graph convolutional network that operates on protein graphs using the message-
passing algorithm described in Battaglia et al. (2018). The building block of GRAPHQA, a graph
layer, takes a protein graph as input (with an additional global feature u), and performs the following
propagation steps to output a graph with updated node/edge/global features and unchanged structure:

e′i,j = φe (ei,j ,vi,vj ,u)

ē′i = ρe→v
(
{ e′j,i }

)
v′i = φv (ē′i,vi,u)

Update edges
Aggregate edges
Update nodes

ē′ = ρe→u
(
{ e′i,j }

)
v̄′ = ρv→u ({v′i })
u′ = φu (ē′, v̄′,u)

Aggregate all edges
Aggregate all nodes
Update global features

where φ represent three update functions that transform nodes/edges/global features (e.g. a MLP),
and ρ represent three pooling functions that aggregate features at various levels (e.g. sum or mean).

Similarly to CNNs, multiple graph layers are stacked together to allow local information to prop-
agate to increasingly larger neighborhoods (i.e. receptive field). This enables the network to learn
quality-related features at multiple scales: secondary structures in the first layers, e.g. α-helices and
β-sheets, and larger structures in deeper layers e.g. domain structures and arrangements.

The GRAPHQA architecture is conceptually divided in three stages (figure 1). At the input, the en-
coder increases the node and edge features’ dimensions through 2×(Linear-Dropout-ReLU) trans-
formation and adds a global bias. Then, at its the core, L message-passing layers operate on the en-
coded graph, leveraging its structure to propagate and aggregate information. The update functions
φ consist of Linear-Dropout-ReLU transformations, with the size of the linear layers progressively
decreasing. We use average pooling for the aggregation functions ρ, since preliminary experiments
with max/sum pooling performed poorly. Finally, the readout layer outputs local and global quality
scores by applying a Linear-Sigmoid operation to the latest node and global features, respectively.
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3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Following the common practice in Quality Assessment, we use the data from past years’ editions of
CASP, encompassing several targets with multiple scored decoys each. Removing all sequences with
|S| < 50 from CASP 7-10 results in a dataset of ∼100k scored decoys (P, { q`i } , qg)t,d, which we
randomly split into a training set (402 targets) and a validation set for hyper-parameter optimization
(35 targets). CASP 11 and 12 are set aside for testing against top-scoring methods (table 3).

We evaluate the performances of GRAPHQA on the following standard metrics. At the global level,
we compare the predicted and ground-truth GDT TS scores and compute: Root Mean Squared Er-
ror (RMSE), Pearson correlation coefficient computed across all decoys of all targets (R), and Pear-
son correlation coefficient computed on a per-target basis and then averaged over all targets (Rtarget).
At the local level, we compare the predicted and ground-truth LDDT scores and compute: RMSE,
Pearson correlation coefficient computed across all residues of all decoys of all targets (R), and
Pearson correlation coefficient computed on a per-decoy basis and then averaged over all decoys of
all targets (Rmodel). Of these, we focus on Rtarget and Rmodel, which respectively measure the ability
to rank decoys by quality and to distinguish the correctly-predicted parts of a model from those that
need improvement. A detailed description of these and other metrics can be found in appendix E.

3.2 FEATURES

Node features The node attributes vi of a protein graph P represent the identity, statistical, and
structural features of the i-th residue. We encode the residue identity using a one-of-22 encoding
of the corresponding amino acid. Following Hurtado et al. (2018), we also add two residue-level
statistics computed using Multiple Sequence Alignment (MSA) (Rost et al., 1994), namely self-
information and partial entropy, each described by a 23-dimensional vector. Finally, we add a
14-dimensional vector of 3D spatial information including the dihedral angles, surface accessibility
and secondary structure type as determined by DSSP (Kabsch & Sander, 1983).

Edge features An edge represents either a contact or a bond between two residues i and j w.r.t. to
the conformation C = { (x, y, z)i }. An edge always exists between two consecutive residues, while
non-consecutive residues are only connected if ||Ci −Cj || < dmax, with dmax optimized on the vali-
dation set. We further enrich this connectivity structure by encoding spatial and sequential distances
as an 8D feature vector ei,j . Spatial distance is encoded using a radial basis function exp(−d2i,j/σ),
with σ determined on the validation set. Sequential distance is defined as the number of amino acids
between the two residues in the sequence and expressed using a separation encoding, i.e. a one-hot
encoding of the separation |i− j| according to the classes { 0, 1, 2, 3, 4, 5 : 10, > 10 }.

3.3 OPTIMIZATION AND HYPERPARAMETER SEARCH

The MSE losses in equation 2 are weighted as Ltot = λ`L` + λgLg and minimized using Adam
Optimizer (Kingma & Ba, 2014) with L2 regularization. GRAPHQA is significantly faster to train
than LSTM or 3D-CNN methods, e.g. 35 epochs takes∼2 hours on one NVIDIA 2080Ti GPU with
batches of 200 graphs. This allows us to perform extensive hyper-parameter search. Table 4 reports
the search space, as well as the parameters of the model with highest Rtarget on the validation set.

4 EVALUATION

We compare GRAPHQA with the following methods, chosen either for their state-of-the-art perfor-
mances or because they represent a class of approaches for Quality Assessment. ProQ3D (Uziela
et al., 2017) computes fixed-size statistical descriptions of the decoys in CASP 9-10, including
Rosetta energy terms, which are then used to train a Multi Layer Perceptron on quality scores. In
ProQ4 (Hurtado et al., 2018), a 1D-CNN is trained to predict LDDT scores from a vectorized repre-
sentation of protein sequences, a global score is then obtained by averaging over all residues. ProQ4
is pretrained on a large dataset of protein secondary structures and then fine tuned on CASP 9-10
using a siamese configuration to improve ranking performances. Their results are reported on both
CASP 11, which is used as a validation set, and CASP 12. 3DCNN (Derevyanko et al., 2018) trains
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Table 1: Comparison of state-of-the-art QA methods. At the residue level we compare LDDT
scores and report Pearson correlation and Pearson correlation per model. At the global level we
compare GDT TS scores and report Pearson correlation and Pearson correlation per target.

CASP 11 CASP 12
GDT TS LDDT GDT TS LDDT

R Rtarget R Rmodel R Rtarget R Rmodel

ProQ3D .772 .452 .84 .61 .806 .609
ProQ4 .77 .56 .772 .516
VoroMQA .651 .457 .605 .559
Rwplus .206 -.096 .417
AngularQA .651 .439
3D CNN .629 .421 .607
Ornate .637 .386 .670 .491
GRAPHQA .910 .740 .855 .610 .843 .745 .843 .573
GRAPHQARAW .836 .609 .799 .529 .816 .673 .796 .507

a CNN on a three-dimensional representation of atomic densities to rank the decoys in CASP 7-10
according to their GDT TS scores. Notably, no additional feature is used other than atomic structure
and type, however, the fixed-size volumetric representation of this method is sensitive to rotations
and does not scale well with protein size. Ornate (Pagès et al., 2018) applies a similar 3D approach
to predict local CAD-scores (Olechnovic & Venclovas, 2017) and achieves rotation invariance by
specifying a canonical residue-centered orientation. Although optimized for local scoring, the av-
erage of the predicted scores is shown to correlate well with GDT TS. AngularQA (Conover et al.,
2019) feeds a sequence-like representation of the protein structure to an LSTM to predict GDT TS
scores. The LSTM network is trained on decoys from 3DRobot and CASP 9-11, while CASP 12
is used for model selection and testing. VoroMQA and RWplus (Olechnovič & Venclovas, 2017;
Zhang & Zhang, 2010) are two statistical potential methods that represent an alternative to the other
machine-learning based methods.

Table 1 compares the performances of GRAPHQA and other state-of-the-art methods on CASP 11
and 12, while figure 3 contains a graphical representation of true vs. predicted scores for all target in
CASP 12, and an example funnel plot for the decoys of a single target. A more in-depth evaluation
on the stage 1 and stage 2 splits of CASP 11, 12, 13 and CAMEO can be found in appendix F.

Of all methods, only GRAPHQA and ProQ4 co-optimize for local and global predictions, the former
thanks to the graph-based architecture, the latter thanks to its siamese training configuration (the re-
sults reported for ProQ3D refer to two separate models trained for either local or global scores). At
the local level, our method proves to be on par or better than ProQ3D and ProQ4, demonstrating the
ability to evaluate quality at the residue level and distinguishing correctly predicted parts of the pro-
tein chain. At the global level, significantly higher R and Rtarget metrics indicate than GRAPHQA is
more capable than other state-of-the-art methods at ranking decoys based on their overall quality. As
shown in our ablation studies (section 5), hand-engineered features like MSA and DSSP contribute
to the performances of GRAPHQA, yet we wish to prove that our method can learn directly from raw
data. GRAPHQARAW is a variant that relies uniquely on the one-hot encoding of amino acid identity,
similarly to how 3D-CNN and Ornate employ atomic features only. The results for GRAPHQARAW
show that, even without additional features, our method outperforms purely representation-learning
methods.

4.1 ABLATION STUDIES

In this section we analyse how various components of our method contribute to the final perfor-
mance, ranging from optimization and architectural choices to protein feature selection. Unless
stated otherwise, all ablation studies follow the training procedure described in section 3.3 for a
lower number of epochs. We report results on CASP 11 as mean and standard deviation of 10 runs.

Local and global co-optimization We investigate the interplay between local and global predic-
tions, specifically whether co-optimizing for both is beneficial or detrimental. At the global level,
models trained to predict only global scores achieve a global RMSE of 0.129±.007, whereas models
trained to predict both local and global scores obtain 0.117±.006, suggesting that local scores can
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provide additional information and help the assessment of global quality. At the local level instead,
co-optimization does not seem to improve performances: models trained uniquely on local scores
achieve a local RMSE of 0.121±.002, while models trained to predict both obtain 0.123±.004.

Connectivity and Architecture In this study, we test the combined effects of the depth of the
networkL and the cutoff value dmax. On the one hand, every additional message-passing layer allows
to aggregate information from a neighborhood that is one hop larger than the previous, effectively
extending the receptive field at the readout. On the other hand, the number of contacts included in
the graph affects its connectivity and the propagation of messages, e.g. low dmax correspond to a low
average degree and long shortest paths between any two residues, and vice versa (section B.2).
Thus, an architecture that operates on sparsely-connected graphs will require more message-passing
layers to achieve the same holistic view of a shallow network operating on denser representations.
However, this trade off is only properly exposed if u, φu, ρu are removed from the architecture. In
fact, this global pathway represents a propagation shortcut that connects all nodes in the graph and
sidesteps the limitations of shallow networks. With the global pathway disabled, global predictions
are computed in the readout layer by aggregating node features from the last MP layer.
Figure 4 reports the RMSE obtained by networks of different depth with no global path, operating on
protein graphs constructed with different cutoff values. As expected, the shallow 3-layer architecture
requires more densely-connected inputs to achieve the same performances of the 9-layer network.
Surprisingly, local predictions seem to be more affected by these factors than global predictions,
suggesting that a large receptive field is important even for local scores.

Node and Edge Features We evaluate the impact of node and edge features on the overall pre-
diction performances (figure 5). For the nodes, we use the amino acid identity as a minimal rep-
resentation and combine it with: a) DSSP features, b) partial entropy, c) self information, d) both
DSSP and MSA features. All features improve both local and global scoring, with DSSP features
being marginally more relevant for LDDT. For the edges, we evaluate the effect of having either:
a) a binary indicator of bond/contact, b) geometric features, i.e. the euclidean distance between
residues, c) sequential features, i.e. the categorical encoding of the separation between residues, d)
both distance and separation encoding. Progressively richer edge features seem to be benefit LDDT
predictions, while little improvement can be seen at the global level.

4.2 VISUALIZATION AND EXPLAINABILITY

The design of GRAPHQA makes it suitable not only for scoring, but also to identify refinement
opportunities for computationally-created decoys. Figure 6 shows a decoy that correctly models the
native structure of its target for most of the sequence, but one extremity to which both GRAPHQA
and LDDT assign low local scores. Unlike LDDT, however, GRAPHQA is fully differentiable and
the trained model can be used to explain the factors that influenced a low score and provide useful
feedback for computational structure prediction.

A simple approach for explaining predictions of a differentiable function f(x) is Sensitivity Anal-
ysis (Baehrens et al., 2010; Simonyan et al., 2014), which uses ‖∇xf‖ to measure how variations
in the input affect the output. In figure 6 we consider the scores predicted for two different residues
and compute the magnitude of the gradients w.r.t. the edges of the graph. Interestingly, GRAPHQA

(a) (b) (c)

Figure 3: Histograms of true vs. predicted LDDT
(a) and GDT TS (b) scores on CASP 12, (c) funnel
plot of the decoys of target T0944 (PDB 5ko9).
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Figure 5: Ablation study of node and edge features. All node features improve both local and
global scoring, with DSSP features being marginally more relevant for LDDT (left). Richer edge
features benefit LDDT predictions, while little improvement can be seen at the global level (right).

is able to capture quality-related dependencies not only in the neighborhood of the selected residues,
but also further apart in the sequence.

Finally, we measure whether the global predictions of GRAPHQA could be used to improve the
contact maps used by computational methods to build protein models. If the network has learned a
meaningful scoring function for a decoy, then the gradient of the score w.r.t. the contact distances
should aim in the direction of the native structure. Considering all decoys of all targets in CASP 11,
we obtain an average cosine similarity cos (∂GRAPHQAg/∂d,ddecoy − dnative) of 0.14±.08, which
suggests that gradients can be used as a coarse feedback for end-to-end protein model prediction.

(a) Predicted (b) True (c) Native (d) (e)

Figure 6: One decoy of T0773 in CASP11. Both GRAPHQA (a) andLDDT (b) assign low local
scores to a segment of the decoy (in red), highlighting a discrepancy w.r.t. the native structure (c).
The gradient magnitude w.r.t. the edges of the predicted LDDT score for residues 20 (d) and 60 (e)
reveal long range dependencies inside the protein graph.

5 CONCLUSION

For the first time we applied graph convolutional networks to the important problem of protein qual-
ity assessment (QA). Since proteins are naturally represented as graphs, GCN allowed us to collect
the individual benefits of the previous QA methods including representation learning, geometric in-
variance, explicit modeling of sequential and 3D structure, simultaneous local and global scoring,
and computational efficiency. Thanks to these benefits, and through an extensive set of experiments,
we demonstrated significant improvements upon the state-of-the-art results on various metrics and
datasets and further analyzed the results via thorough ablation and qualitative studies.

Finally, we wish that Quality Assessment will gain popularity in the machine learning community,
that could benefit from several curated datasets and ongoing regular challenges. We believe that
richer geometric representations, e.g. including relative rotations, and raw atomic representations
could represent an interesting future direction for learning-based Quality Assessment.
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A PROTEIN QUALITY ASSESSMENT

For the interested reader, we describe here in more detail how the Global Distance Test Total Score
(Zemla, 2003) and the Local Distance Difference Test (Mariani et al., 2013) are computed. Further-
more, we provide an intuition over what the benefits and downsides of each method are and motivate
why a better quality assessment should consider both a global measure and a local measure.

Global Distance Test Total Score (GDT TS) Global Distance Test Total Score (GDT TS) is a
global-level score obtained by first superimposing the structure of a decoy to the experimental struc-
ture using an alignment heuristic, and then computing the fraction of residues whose position is
within a certain distance from the corresponding residue in the native structure (figure 7). This
percentage is computed at different thresholds and then averaged to produce a score in the range
[0, 100], which we rescale between 0 and 1 (table 2).

1

2

3

4

5

Figure 7: GDT TS

Table 2

i ‖Cd
i − Cnative

i ‖ < 1 < 2 < 5 < 10
1 0.6 Å x x x x
2 1.2 Å x x x
3 1.9 Å x x x
4 2.5 Å x x
5 6.3 Å x

20% 60% 80% 100%

Local Distance Difference Test (LDDT) Local Distance Difference Test (LDDT), is a residue-level
score that does not require alignment of the structures and compares instead the local neighborhood
of every residue, in the decoy and in the native structure. If we define the neighborhood of a residue
as the set of its contacts, i.e. the set of other residues that lie within a certain distance from it, we can
express the quality of that residue as the percentage of contacts that it shares with the corresponding
residue in the native structure.
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Figure 8: Example of LDDT scoring for residue 7: the residues within a radius R1 are { 6, 8, 10 }
the native structure (left) and { 6, 8 } for the decoy (right); at a radiusR2 we have { 3, 6, 8, 9, 10, 11 }
the native structure (left) and { 3, 6, 8, 9, 10 } for the decoy (right).
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B DATASETS AND STATISTICS

B.1 DATASETS

We consider all decoys of all target included in CASP 7-13, excluding proteins whose sequence is
shorter than 50 residues and targets that have been canceled by the organizers. In addition to CASP
datasets, we test our method on all targets published in CAMEO (Haas et al., 2013) between July
and December 2017.

Table 3: Datasets from previous CASP editions

Dataset Targets Models Usage
CASP 7 95 19591

Train/ValCASP 8 122 34789
CASP 9 117 34946
CASP 10 103 26254

CASP 11 83 16094

TestCASP 12 40 6924
CASP 13 20 7838
CAMEO 676 20891

B.2 PROTEIN GRAPHS STATISTICS

The cutoff value dmax determines which edges are included in the graph and, consequentially, its
connectivity. A low cutoff implies a sparsely connected graph, with few edges and long paths
between nodes. A higher cutoff yields a denser graph with more edges and shorter paths.

In figure 9 we report some statistics about number of edges, average degree and average shortest
paths, evaluated at different cutoff values on 1700 decoys from CASP 11.
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Figure 9: Number of edges, average degree, and average shortest paths at different cutoff values
(sample size: 1700 decoys from CASP 11)
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C GRAPHQA ARCHITECTURE

In this section, we illustrate in more detail the structure of the GRAPHQA architecture, as well as
the hyperparameter space that was explored to optimize performances on the validation set.

C.1 MESSAGE-PASSING LAYERS

Within GRAPHQA, a protein structure is represented as a graph whose nodes correspond to residues
and whose edges connect interacting pairs of amino acids. At the input, the features of the i-th
residue are encoded in a node feature vector vi. Similarly, the features of the pairwise interaction
between residues i and j are encoded in an edge feature vector ei,j . A global bias term u is also
added to represent information that is not localized to any specific node/edge of the graph.

With this graph representation, one layer of message passing performs the following updates.

1. For every edge i → j, the edge feature vector is updated using a function φe of adjacent
nodes vi and vj , of the edge itself ei,j and of the global attribute u:

e′i,j = φe (ei,j ,vi,vj ,u)

2. For every node i, features from incident edges { e′j,i } are aggregated using a pooling func-
tion ρe→v:

ē′i = ρe→v
(
{ e′j,i }

)
3. For every node i, the node feature vector is updated using a function φv of aggregated

incident edges ē′i, of the node itself vi and of the global attribute u:

v′i = φv (ē′i,vi,u)

4. All edges are aggregated using a pooling function ρe→u:

ē′ = ρe→u
(
{ e′i,j }

)
5. All nodes are aggregated using a pooling function ρv→u:

v̄′ = ρv→u ({v′i })

6. The global feature vector is updated using a function φu of the aggregated edges ē′, of the
aggregated nodes v̄′ and of the global attribute u:

u′ = φu (ē′, v̄′,u)

In GRAPHQA, all intermediate updates are implemented as Linear-Dropout-ReLU functions, and
all aggregation functions use average pooling. The encoder and readout layers do not make use of
message passing, effectively processing every node/edge in isolation. Message passing is instead
enabled for the core layers of the network and enables GRAPHQA to process information within
progressively expanding neighborhoods.

The number of neurons in the core message-passing layers decreases from the input to the output.
Specifically it follows a linear interpolation between the input and output numbers reported below,
rounded to the closest power of two. In preliminary experiments, we noticed that a progressive
increase of the number of layers results in convergence issues, which is in contrast to the practice of
increasing the number of channels in Convolutional Neural Networks.
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C.2 HYPERPARAMETER OPTIMIZATION

We perform a guided grid search over the following hyper parameter space. The final model is
chosen to be the one with the highestRtarget on the validation set. The following considerations were
made:

• The values for dmax are chosen on the base that the typical bond length is∼ 5Å and residue-
residue interactions are negligible after ∼ 10Å.

• The values for σ are chosen so that the RBF encoding of the edge length is approximately
linear around ∼ 5Å.

• The values for L are chosen to approximately match the average length of the shortest paths
in the protein graphs at different cutoffs.

• In addition to what described in section 2.3, we also tested an architecture with BatchNorm
layers between the Dropout and ReLU operations, but apart from a significant slowdown
we did not notice any improvement.

Table 4: Hyper parameter space and best values

Hyper parameter Values Best
MP Layers L 3, 4, 5, 6, 7, 8, 9 6
MP input size e 32, 64, 128 128
MP input size v 64, 128, 256, 512 512
MP input size u 64, 128, 256, 512 512
MP output size e 8, 12, 16, 32 16
MP output size v 8, 16, 32, 64 64
MP output size u 8, 12, 16, 32 32
Cutoff dmax 6, 8, 10, 12 8
Sigma σ 10, 15, 20 15
Dropout rate 0, 0.1 0.2, 0.3, 0.4 0.2
Learning rate 10−2, 10−3 10−3

Weight decay 10−4, 10−5 10−5

Local weight λ` 1, 5, 10 1
Global weight λg 1, 5, 10 1
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D ADDITIONAL STUDIES

To complement the analysis reported in the main text, we perform additional studies on the effect of
feature representation and on the generalization ability of the trained model.

D.1 DISTANCE AND SEPARATION ENCODING

The feature vectors associated to the edge of the graph represent two types of distances between
residues, namely spatial distance and separation in the sequence. In this study we evaluate the effect
of different representations on validation performances.

Spatial distance is the physical distance between ammino acids, measured as the euclidean distance
between their β carbon atoms. We consider three possible encodings for this distance:

• Absent: spatial distance is not provided as input;

• Scalar: spatial distance is provided as a raw scalar value (in Ångstrom);

• RBF: spatial distance is encoded using 32 RBF kernels, with unit variance, equally spaced
between 0 and 20.

Figure 10 reports the aggregated performances on CASP 11 of ten runs for each of the above.
The rich representation of the RBF kernels seem to improve both LDDT and GDT TS scoring
performances, even though the effect is rather limited.

0.58 0.59 0.60 0.61

Absent

Scalar

RBF

Rmodel (LDDT)

0.68 0.70 0.72 0.74 0.76

Rtarget (GDT-TS)

Figure 10: Spatial distance: absent, encoded as a scalar, encoded using RBF kernels.

Separation is the number of residues between to amino acids in the sequence, we consider three
possible encodings:

• Absent: sequential separation is not provided as input;

• Scalar: sequential separation is provided as a raw scalar value (positive integer);

• Categorical: sequential separation is encoded as a one-hot categorical variable, according
to the classes { 0, 1, 2, 3, 4, 5 : 10, > 10 }, which are based on typical interaction patterns
within a peptidic chain.

Figure 11 reports the aggregated performances on CASP 11 of ten runs for each of the above. For
local scoring, the choice of encoding plays little difference as long as separation is present in the
input. On the other hand, the choice of categorical encoding over scalar encoding results in higher
global scoring performance.

0.56 0.58 0.60

Absent

Scalar

Categorical

Rmodel (LDDT)

0.68 0.70 0.72 0.74 0.76

Rtarget (GDT-TS)

Figure 11: Sequential separation: absent, encoded as a scalar, encoded as a categorical variable.
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D.2 TRANSMEMBRANE VS. SOLUBLE PROTEINS

In this study, we evaluate how the natural environment of a protein affects the predictive perfor-
mances of our method. Targets from CASP 11 and 12 are classified as transmembrane and soluble
according to Peters et al. (2015) and scored separately using GRAPHQA. Transmembrane proteins
behave differently from soluble proteins as a consequence of the environment they are placed in.
The former expose non-polar residues to the cellular membrane that surrounds their structure. On
the contrary, the latter tend to present polar amino acids to the surrounding water-based solvent.

Since this information is not explicitly provided to the model, we can compare the predictive perfor-
mances between the two sets and check that it has actually learned a flexible protein representation.
The outcome of this evaluation is shown in table 5. While it is evident that GRAPHQA performs
better on soluble proteins, which are more numerous in the training set, it also scores transmembrane
proteins to an acceptable degree.

Table 5: Performances of GRAPHQA on transmembrane and soluble targets from CASP 11 and 12.

GDT TS LDDT
FRL R Rtarget RMSE ρ ρtarget τ τtarget R Rmodel RMSE

Transmembrane 0.092 0.714 0.538 0.209 0.714 0.463 0.523 0.328 0.679 0.487 0.170
Soluble 0.076 0.790 0.627 0.177 0.796 0.500 0.594 0.361 0.770 0.532 0.155
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E ADDITIONAL METRICS

The Quality Assessment literature is rich of metrics to measure the performances of a scoring
method. In the main text we tried to keep the exposition uncluttered by only reporting figures for
the most important metrics. Here we present a more extensive set of metrics, that further describe
our method and can serve as future benchmark.

In the following, we use:

t = 1, . . . , T

d = 1, . . . , Dt

i, j = 1, . . . , |St|
qg,t,d = GDT TS(Ct,d, Ct,native)

q`,t,di = LDDT(Ct,d, Ct,native)

GRAPHQAg(Pt,d)

GRAPHQA`
i(Pt,d)

Target proteins
Decoys of a target
Residue indexes of a target
Global quality score (true)
Local quality scores (true)
Global quality score (predicted)
Local quality scores (predicted)

Root Mean Squared Error (RMSE) We compute RMSE between all true and predicted scores, for
both LDDT and GDT TS.

For LDDT, it it the square root of:

MSE =
1

T

T∑
t=1

1

Dt

Dt∑
d=1

1

|St|

|St|∑
i=1

(
q`,t,di − GRAPHQA`

i(Pt,d)
)2

For GDT TS, it it the square root of:

MSE =
1

T

T∑
t=1

1

Dt

Dt∑
d=1

(
qg,t,d − GRAPHQAg(Pt,d)

)2
Correlation coefficients We compute the Pearson (R), Spearman (ρ) and Kendall (τ ) correlation
coefficients between all true and predicted scores. Since all scores are treated equally, with no dis-
tinction between different decoys or different targets, a high value for these scores can be misleading.
Thus, their per-model and per-target versions should be also checked.

For LDDT:

R = PEARSON
(
{ q`,t,di } , {GRAPHQA`

i(Pt,d) }
)

ρ = SPEARMAN
(
{ q`,t,di } , {GRAPHQA`

i(Pt,d) }
)

τ = KENDALL
(
{ q`,t,di } , {GRAPHQA`

i(Pt,d) }
)

For GDT TS:

R = PEARSON
(
{ qg,t,d } , {GRAPHQAg(Pt,d) }

)
ρ = SPEARMAN

(
{ qg,t,d } , {GRAPHQAg(Pt,d) }

)
τ = KENDALL

(
{ qg,t,d } , {GRAPHQAg(Pt,d) }

)
Correlation coefficients per-model For every decoy of every target, we compute the Pearson
(Rmodel), Spearman (ρmodel) and Kendall (τmodel) correlation coefficients between true and predicted
residue-level scores (LDDT). We then report the average correlation coefficients across all decoys
of all targets. The per-model correlation coefficients estimate the performance of the network to
rank individual residues by their quality and distinguish correctly vs. incorrectly folded segments.
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Per-model correlation coefficients are computed only for LDDT:

Rmodel =
1

T

T∑
t=1

1

Dt

Dt∑
d=1

PEARSON
(
{ q`,t,di } , {GRAPHQA`

i(Pt,d) }
)

ρmodel =
1

T

T∑
t=1

1

Dt

Dt∑
d=1

SPEARMAN
(
{ q`,t,di } , {GRAPHQA`

i(Pt,d) }
)

τmodel =
1

T

T∑
t=1

1

Dt

Dt∑
d=1

KENDALL
(
{ q`,t,di } , {GRAPHQA`

i(Pt,d) }
)

Correlation coefficients per-target For every target, we compute the Pearson (Rtarget), Spearman
(ρtarget) and Kendall (τtarget) correlation coefficients between true and predicted decoy-level scores
(GDT TS). We then report the average correlation coefficients across all targets. With reference to
the funnel plots, this would be the correlation between the markers in every plot, averaged across
all plots. The per-target correlation coefficients estimate the performance of the network to rank the
decoys of a target by their quality and select the ones with highest global quality.

Per-target correlation coefficients are computed only for GDT TS:

Rtarget =
1

T

T∑
t=1

PEARSON
(
{ qg,t,d } , {GRAPHQAg(Pt,d) }

)
ρtarget =

1

T

T∑
t=1

SPEARMAN
(
{ qg,t,d } , {GRAPHQAg(Pt,d) }

)
τtarget =

1

T

T∑
t=1

KENDALL
(
{ qg,t,d } , {GRAPHQAg(Pt,d) }

)
First Rank Loss (FRL) For every target, we compute the difference in GDT TS between the best
decoy according to ground-truth scores and best decoy according to the predicted scores. We then
report the average FRL across all targets. This represents the loss in (true) quality we would suffer
if we were to choose a decoy according to our rankings and can is represented in the funnel plots by
the gap between the two vertical lines indicating the true best (green) and predicted best (red).

FRL measures the ability to select a single best decoy for a given target. In our experiments, however,
we noticed that FRL is extremely subject to noise, as it only considers top-1 decoys. Therefore, we
consider NDCG to be a superior metric for this purpose, though we have not seen it used in the QA
literature.

FRL is only computed for GDT TS:

FRL =
1

T

T∑
t=1

∣∣max { qg,t,d } − qg,t,d∗
∣∣ ,

where d∗ = argmaxd {GRAPHQAg(Pt,d) } for every target t.

Recall at k (REC@k) We can describe Quality Assessment as an information retrieval task, where
every target represents a query and its decoys are the documents available for retrieval. If we con-
sider the best decoy to have a score of 1 and all others to have zero score, we can compute the
average REC@k as the percentage of queries for which the best decoy is retrieved among the top-k
results.

This metric, however, is subject to the same pitfalls of FRL, since it only considers the best decoy
of every target and ignores the relevance of the others. As described below, NDCG offers a better
perspective over the decoys retieved by a QA method.

Normalized Discounted Cumulative Gain at k (NDCG@k) For a given query we consider the
top-k decoys ranked according to their predicted global scores. Discounted Cumulative Gain at k
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(DCG@k) is computed as the cumulative sum of their ground-truth GDT TS scores (gain), dis-
counted however according to the position in the list. A high DCG@k is obtained therefore by
a) selecting the k-best decoys to be part of the top-k predictions, and b) sorting them in order of
decreasing quality (the higher in the list, the lower the discount).

Dividing DCG@k by DCGideal@k (obtained by ranking according to the ground-truth scores), yields
the Normalized Discounted Cumulative Gain NDCG@k ∈ [0, 1], which can be compared and aver-
aged across targets.

F ADDITIONAL RESULTS

In this section we present additional results for datasets, dataset splits, methods, and metrics that are
excluded from the main text for sake of brevity. The datasets considered in the following pages are:
CASP 11, CASP 12, CASP 13, CAMEO.

The CASP 11 and 12 datasets are conventionally divided into: stage 1, containing 20 randomly-
selected decoys per target, and stage 2, containing the top-150 decoys of each target. In the QA
literature, some papers report results either on the dataset as a whole, or on the stage 1 and stage 2
splits. Furthermore, some papers report performances of other methods that differ from the original
papers for reasons that are left unspecified. In the main text, we adhere to the following rules to
summarize the metrics we collected:

• Metrics computed on stage 1 are considered noisy and ignored, since stage 1 splits contain
only 20 randomly-selected decoys per target

• Metrics computed on stage 2 and on the whole dataset are considered equally valid, allow-
ing to ”merge” results from papers with different scoring strategies

• If multiple values are reported from multiple sources for the same (method, dataset) pair,
only the best one is reported
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F.1 CASP 11

GDT TS LDDT
TestSet Method Source FRL R Rtarget RMSE ρ ρtarget τ τtarget R Rmodel RMSE

CASP 11

ProQ3D ProQ4 0.84 0.61 0.125
ProQ4 ProQ4 0.77 0.56 0.147
GRAPHQARAW Ours 0.082 0.836 0.609 0.146 0.837 0.49 0.637 0.354 0.799 0.516 0.14
GRAPHQA Ours 0.071 0.91 0.74 0.117 0.918 0.622 0.747 0.461 0.852 0.602 0.122

stage 1

ProQ3D 3D CNN 0.046 0.755 0.673 0.529
Ornate 0.066 0.795 0.691 0.782 0.606 0.58 0.462

VoroMQA 3D CNN 0.087 0.637 0.521 0.394
Ornate 0.085 0.689 0.617 0.682 0.482 0.483 0.361

RWplus 3D CNN 0.122 0.512 0.402 0.303
Ornate 0.128 0.08 0.467 0.003 0.371 -0.016 0.274

3D CNN 3D CNN 0.064 0.535 0.425 0.325
Ornate 0.104 0.532 0.442 0.614 0.369 0.437 0.28

Ornate Ornate 0.077 0.635 0.465 0.634 0.372 0.44 0.275
GRAPHQARAW Ours 0.09 0.829 0.63 0.135 0.81 0.514 0.609 0.393 0.79 0.475 0.131
GRAPHQA Ours 0.035 0.923 0.788 0.09 0.924 0.647 0.755 0.515 0.861 0.57 0.108

stage 2

ProQ3D 3D CNN 0.066 0.452 0.433 0.307
Ornate 0.053 0.772 0.444 0.796 0.432 0.594 0.304

VoroMQA 3D CNN 0.063 0.457 0.499 0.321
Ornate 0.066 0.651 0.419 0.688 0.412 0.505 0.291

RWplus 3D CNN 0.089 0.206 0.248 0.176
Ornate 0.088 0.056 0.167 0.033 0.192 0.011 0.137

3D CNN 3D CNN 0.064 0.421 0.409 0.288
Ornate 0.074 0.629 0.375 0.655 0.363 0.433 0.254

Ornate Ornate 0.055 0.637 0.386 0.673 0.371 0.475 0.259
GRAPHQARAW Ours 0.071 0.82 0.379 0.149 0.82 0.357 0.618 0.251 0.787 0.529 0.142
GRAPHQA Ours 0.063 0.899 0.539 0.123 0.905 0.507 0.729 0.363 0.839 0.61 0.126
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Figure 12: CASP 11: Histograms of true vs. predicted LDDT and GDT TS scores, average recall
@ k, average NDCG @ k
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Figure 13: CASP 11: funnels (continues)
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Figure 14: CASP 11: funnels (continued)
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F.2 CASP 12

GDT TS LDDT
TestSet Method Source FRL R Rtarget RMSE ρ ρtarget τ τtarget R Rmodel RMSE ρ ρmodel

CASP 12

ProQ3D 3D CNN 0.164 0.609 0.602 0.451
ProQ4 Ours 0.772 0.516 0.776 0.498
VoroMQA 3D CNN 0.161 0.557 0.515 0.38
RWplus 3D CNN 0.192 0.313 0.355 0.257
3D CNN 3D CNN 0.146 0.607 0.521 0.381
AngularQA AngularQA 0.138 0.651 0.439
GRAPHQARAW Ours 0.092 0.816 0.673 0.149 0.814 0.606 0.624 0.448 0.796 0.501 0.139
GRAPHQA Ours 0.089 0.843 0.745 0.137 0.834 0.66 0.684 0.503 0.843 0.565 0.124

stage 1

ProQ3D Ornate 0.086 0.671 0.705 0.478 0.636 0.335 0.482
VoroMQA Ornate 0.085 0.456 0.611 0.381 0.554 0.263 0.414
RWplus Ornate 0.132 -0.272 0.479 -0.538 0.465 -0.381 0.344
Ornate Ornate 0.113 0.551 0.566 0.484 0.504 0.339 0.374
AngularQA AngularQA 0.148 0.502
GRAPHQARAW Ours 0.068 0.721 0.679 0.127 0.623 0.596 0.451 0.448 0.661 0.413 0.118
GRAPHQA Ours 0.043 0.814 0.789 0.085 0.755 0.684 0.589 0.541 0.718 0.474 0.105

stage 2

ProQ3D Ornate 0.06 0.806 0.6 0.8 0.54 0.601 0.388
VoroMQA Ornate 0.106 0.605 0.559 0.604 0.501 0.445 0.362
RWplus Ornate 0.103 -0.096 0.417 -0.096 0.378 -0.067 0.265
Ornate Ornate 0.072 0.67 0.491 0.657 0.458 0.472 0.322
AngularQA AngularQA 0.128 0.377
GRAPHQARAW Ours 0.094 0.807 0.614 0.151 0.807 0.545 0.618 0.395 0.793 0.507 0.141
GRAPHQA Ours 0.08 0.832 0.707 0.141 0.828 0.61 0.679 0.456 0.842 0.573 0.125
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Figure 15: CASP 12: Histograms of true vs. predicted LDDT and GDT TS scores, average recall
@ k, average NDCG @ k
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Figure 16: CASP 12: funnels

At a close analysis, it appears that the model completely fails to score decoys of target T060 and
defaults to predicting a small constant value. To help pinpointing the problem, we compare the
predictions made by GRAPHQA and GRAPHQARAW (available in the repository). It turns out that
the model trained on amino acid identity only does not output the same degenerate predictions as
its fully-featured counterpart (the predictions are not perfect, but definitely better than a constant).
We suspect that an error in the preprocessing pipeline might have produced misleading features
for T060, e.g. the multiple sequence alignment program that extracts self information and partial
entropy, or the DSSP program that computes secondary structure features.
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F.3 CASP 13

CASP 13 is the most recent edition of CASP and, at the moment, only few targets are available
for public evaluation, i.e. their decoy structures are fully characterized, submitted predictions and
ground-truth GDT TS scores can be downloaded from the website. Here we present an evaluation
on publicly available targets, while waiting to update these results as more data is released.

Also, it is important to note that GRAPHQA is only trained on CASP 7-10, while other participants
have likely (re)trained their models on all previous CASP datasets as well as other datasets. How-
ever, even without retraining, we achieve performances that are in line with the results presented for
CASP 11 and 12.

GDT TS LDDT
TestSet Method Source FRL R Rtarget RMSE ρ ρtarget τ τtarget R Rmodel RMSE

CASP 13

ProQ3D Ours 0.160 0.849 0.671 0.129 0.810 0.619 0.625 0.458
ProQ4 Ours 0.147 0.671 0.733 0.182 0.645 0.668 0.492 0.508
VoroMQA Ours 0.024 0.767 0.665 0.177 0.765 0.606 0.571 0.443
3D CNN Ours 0.135 0.661 0.753 0.192 0.632 0.662 0.457 0.487
Ornate Ours 0.283 0.533 0.646 0.352 0.522 0.642 0.360 0.467
GRAPHQARAW Ours 0.122 0.767 0.727 0.167 0.774 0.701 0.573 0.524 0.723 0.475 0.154
GRAPHQA Ours 0.093 0.846 0.834 0.123 0.840 0.799 0.647 0.616 0.764 0.539 0.142
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Figure 17: CASP 13: Histograms of true vs. predicted LDDT and GDT TS scores, average recall
@ k, average NDCG @ k
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Figure 18: CASP 13: funnels
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F.4 CAMEO

GDT TS LDDT
TestSet Method Source FRL R Rtarget RMSE ρ ρtarget τ τtarget R Rmodel RMSE

CAMEO

ProQ3D ProQ4 0.79 0.64 0.137
ProQ4 ProQ4 0.65 0.56 0.201
VoroMQA 3D CNN 0.099 0.456 0.427 0.346
RWplus 3D CNN 0.162 0.122 0.095 0.068
3D CNN 3D CNN 0.06 0.586 0.532 0.426
GRAPHQARAW Ours 0.046 0.725 0.585 0.17 0.675 0.505 0.497 0.379 0.699 0.56 0.169
GRAPHQA Ours 0.044 0.747 0.598 0.197 0.666 0.525 0.495 0.399 0.748 0.616 0.161
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Figure 19: CAMEO: Histograms of true vs. predicted LDDT and GDT TS scores, average recall @
k, average NDCG @ k
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Figure 20: CAMEO: funnels (continues)
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Figure 21: CAMEO: funnels (continues)
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Figure 22: CAMEO: funnels (continues)
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Figure 23: CAMEO: funnels (continues)

32



Submitted as a conference paper at ICLR 2020

4Q32_D 4Q34_A 4Q3U_D 4Q47_B 4Q4T_A 4Q53_B

4Q5T_A 4Q69_B 4Q6K_D 4Q6U_B 4Q76_B 4Q7A_D

4Q97_B 4Q9A_B 4Q9B_B 4Q9C_A 4Q9D_B 4Q9O_B

4QAF_B 4QAN_B 4QAW_H 4QB1_A 4QB5_D 4QB7_A

4QBA_B 4QBD_C 4QBD_D 4QCC_B 4QD8_F 4QDG_B

4QDY_A 4QE0_B 4QEA_G 4QEY_J 4QEZ_C 4QF3_B

4QFH_B 4QFU_L 4QG5_D 4QGM_A 4QGN_A 4QGR_B

0 1True
0

1

Pr
ed

ict
ed

4QHB_D

Best decoy
Predicted
True

4QHQ_A 4QHX_A 4QHZ_D 4QKU_D 4QL5_B

Figure 24: CAMEO: funnels (continues)
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Figure 25: CAMEO: funnels (continues)
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Figure 26: CAMEO: funnels (continues)
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Figure 27: CAMEO: funnels (continues)
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Figure 28: CAMEO: funnels (continues)
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Figure 29: CAMEO: funnels (continues)
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Figure 30: CAMEO: funnels (continues)
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Figure 31: CAMEO: funnels (continues)
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Figure 32: CAMEO: funnels (continues)
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Figure 33: CAMEO: funnels (continues)
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Figure 34: CAMEO: funnels (continued)
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