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ABSTRACT

We introduce “Talk The Walk”, the first large-scale dialogue dataset grounded in
action and perception. The task involves two agents (a “guide” and a “tourist”)
that communicate via natural language in order to achieve a common goal: having
the tourist navigate to a given target location. The task and dataset, which are
described in detail, are challenging and their full solution is an open problem
that we pose to the community. We (i) focus on the task of tourist localization and
develop the novel Masked Attention for Spatial Convolutions (MASC) mechanism
that allows for grounding tourist utterances into the guide’s map, (ii) show it yields
significant improvements for both emergent and natural language communication,
and (iii) using this method, we establish non-trivial baselines on the full task.

1 INTRODUCTION

As artificial intelligence plays an ever more prominent role in everyday human lives, it becomes
increasingly important to enable machines to communicate via natural language—not only with
humans, but also with each other. Learning algorithms for natural language understanding, such
as in machine translation and reading comprehension, have progressed at an unprecedented rate in
recent years, but still rely on static, large-scale, text-only datasets that lack crucial aspects of how
humans understand and produce natural language. Namely, humans develop language capabilities
by being embodied in an environment which they can perceive, manipulate and move around in; and
by interacting with other humans. Hence, we argue that we should incorporate all three fundamental
aspects of human language acquisition—perception, action and interactive communication—and
develop a task and dataset to that effect.

We introduce the Talk the Walk dataset, where the aim is for two agents, a “guide” and a “tourist”, to
interact with each other via natural language in order to achieve a common goal: having the tourist
navigate towards the correct location. The guide has access to a map and knows the target location,
but does not know where the tourist is; the tourist has a 360-degree view of the world, but knows
neither the target location on the map nor the way to it. The agents need to work together through
communication in order to successfully solve the task. An example of the task is given in Figure 1.

Grounded language learning has (re-)gained traction in the AI community, and much attention is
currently devoted to virtual embodiment—the development of multi-agent communication tasks in
virtual environments—which has been argued to be a viable strategy for acquiring natural language
semantics Kiela et al. (2016). Various related tasks have recently been introduced, but in each case
with some limitations. Although visually grounded dialogue tasks de Vries et al. (2016); Das et al.
(2016) comprise perceptual grounding and multi-agent interaction, their agents are passive observers
and do not act in the environment. By contrast, instruction-following tasks, such as VNL Anderson
et al. (2017), involve action and perception but lack natural language interaction with other agents.
Furthermore, some of these works use simulated environments Das et al. (2017a) and/or templated
language Hermann et al. (2017), which arguably oversimplifies real perception or natural language,
respectively. See Table 1 for a comparison.

Talk The Walk is the first task to bring all three aspects together: perception for the tourist observ-
ing the world, action for the tourist to navigate through the environment, and interactive dialogue
for the tourist and guide to work towards their common goal. To collect grounded dialogues, we
constructed a virtual 2D grid environment by manually capturing 360-views of several neighbor-
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Figure 1: Example of the Talk The Walk task: two agents, a “tourist” and a “guide”, interact with
each other via natural language in order to have the tourist navigate towards the correct location.
The guide has access to a map and knows the target location but not the tourist location, while the
tourist does not have a map and is tasked with navigating a 360-degree street view environment.

hoods in New York City (NYC)1. As the main focus of our task is on interactive dialogue, we limit
the difficulty of the control problem by having the tourist navigating a 2D grid via discrete actions
(turning left, turning right and moving forward). Our street view environment was integrated into
ParlAI (Miller et al., 2017) and used to collect a large-scale dataset on Mechanical Turk involving
human perception, action and communication.

We argue that for artificial agents to solve this challenging problem, some fundamental architecture
designs are missing, and our hope is that this task motivates their innovation. To that end, we focus
on the task of localization and develop the novel Masked Attention for Spatial Convolutions (MASC)
mechanism. To model the interaction between language and action, this architecture repeatedly
conditions the spatial dimensions of a convolution on the communicated message sequence.

This work makes the following contributions: 1) We present the first large scale dialogue dataset
grounded in action and perception; 2) We introduce the MASC architecture for localization and
show it yields improvements for both emergent and natural language; 4) Using localization models,
we establish initial baselines on the full task; 5) We show that our best model exceeds human per-
formance under the assumption of “perfect perception” and with a learned emergent communication
protocol, and sets a non-trivial baseline with natural language.

2 TALK THE WALK

We create a perceptual environment by manually capturing several neighborhoods of New York City
(NYC) with a 360 camera2. Most parts of the city are grid-like and uniform, which makes it well-
suited for obtaining a 2D grid. For Talk The Walk, we capture parts of Hell’s Kitchen, East Village,
the Financial District, Williamsburg and the Upper East Side—see Figure 5 in Appendix 13 for their
respective locations within NYC. For each neighborhood, we choose an approximately 5x5 grid and
capture a 360 view on all four corners of each intersection, leading to a grid-size of roughly 10x10
per neighborhood.

The tourist’s location is given as a tuple (x, y, o), where x, y are the coordinates and o signifies the
orientation (north, east, south or west). The tourist can take three actions: turn left, turn right and
go forward. For moving forward, we add (0, 1), (1, 0), (0,−1), (−1, 0) to the x, y coordinates for
the respective orientations. Upon a turning action, the orientation is updated by o = (o+d) mod 4
where d = −1 for left and d = 1 for right. If the tourist moves outside the grid, we issue a warning
that they cannot go in that direction and do not update the location. Moreover, tourists are shown
different types of transitions: a short transition for actions that bring the tourist to a different corner
of the same intersection; and a longer transition for actions that bring them to a new intersection.

The guide observes a map that corresponds to the tourist’s environment. We exploit the fact that
urban areas like NYC are full of local businesses, and overlay the map with these landmarks as
localization points for our task. Specifically, we manually annotate each corner of the intersection
with a set of landmarks Λx,y = {l0, . . . , lK}, each coming from one of the following categories:

1We avoided using existing street view resources due to licensing issues.
2A 360fly 4K camera.
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Project Perception Action Language Dial. Size Acts

Visual Dialog (Das et al., 2016) Real 7 Human 3 120k dialogues 20
GuessWhat (de Vries et al., 2016) Real 7 Human 3 131k dialogues 10
VNL (Anderson et al., 2017) Real 3 Human 7 23k instructions -
Embodied QA (Das et al., 2017a) Simulated 3 Scripted 7 5k questions -
TalkTheWalk Real 3 Human 3 10k dialogues 62

Table 1: Talk The Walk grounds human generated dialogue in (real-life) perception and action.

• Bar

• Playfield
• Bank

• Hotel

• Shop

• Subway
• Coffee Shop

• Restaurant

• Theater

The right-side of Figure 1 illustrates how the map is presented. Note that within-intersection transi-
tions have a smaller grid distance than transitions to new intersections. To ensure that the localization
task is not too easy, we do not include street names in the overhead map and keep the landmark cat-
egories coarse. That is, the dialogue is driven by uncertainty in the tourist’s current location and the
properties of the target location: if the exact location and orientation of the tourist were known, it
would suffice to communicate a sequence of actions.

2.1 TASK

For the Talk The Walk task, we randomly choose one of the five neighborhoods, and subsample a 4x4
grid (one block with four complete intersections) from the entire grid. We specify the boundaries of
the grid by the top-left and bottom-right corners (xmin, ymin, xmax, ymax). Next, we construct the
overhead map of the environment, i.e. {Λx′,y′} with xmin ≤ x′ ≤ xmax and ymin ≤ y′ ≤ ymax.
We subsequently sample a start location and orientation (x, y, o) and a target location (x, y)tgt at
random3.

The shared goal of the two agents is to navigate the tourist to the target location (x, y)tgt, which
is only known to the guide. The tourist perceives a “street view” planar projection Sx,y,o of the
360 image at location (x, y) and can simultaneously chat with the guide and navigate through the
environment. The guide’s role consists of reading the tourist description of the environment, building
a “mental map” of their current position and providing instructions for navigating towards the target
location. Whenever the guide believes that the tourist has reached the target location, they instruct
the system to evaluate the tourist’s location. The task ends when the evaluation is successful—i.e.,
when (x, y) = (x, y)tgt—or otherwise continues until a total of three failed attempts. The additional
attempts are meant to ease the task for humans, as we found that they otherwise often fail at the task
but still end up close to the target location, e.g., at the wrong corner of the correct intersection.

2.2 DATA COLLECTION

We crowd-sourced the collection of the dataset on Amazon Mechanical Turk (MTurk). We use the
MTurk interface of ParlAI (Miller et al., 2017) to render 360 images via WebGL and dynamically
display neighborhood maps with an HTML5 canvas. Detailed task instructions, which were also
given to our workers before they started their task, are shown in Appendix 14. We paired Turkers at
random and let them alternate between the tourist and guide role across different HITs.

2.3 DATASET STATISTICS

The Talk The Walk dataset consists of over 10k successful dialogues—see Table 11 in the appendix
for the dataset statistics split by neighborhood. Turkers successfully completed 76.74% of all fin-
ished tasks (we use this statistic as the human success rate). More than six hundred participants
successfully completed at least one Talk The Walk HIT. Although the Visual Dialog (Das et al.,
2016) and GuessWhat (de Vries et al., 2016) datasets are larger, the collected Talk The Walk dialogs
are significantly longer. On average, Turkers needed more than 62 acts (i.e utterances and actions)
before they successfully completed the task, whereas Visual Dialog requires 20 acts. The majority
of acts comprise the tourist’s actions, with on average more than 44 actions per dialogue. The guide
produces roughly 9 utterances per dialogue, slightly more than the tourist’s 8 utterances. Turkers
use diverse discourse, with a vocabulary size of more than 10K (calculated over all successful dia-

3Note that we do not include the orientation in the target, as we found in early experiments that this led to
an unnatural task for humans. Similarly, we explored bigger grid sizes but found these to be too difficult for
most annotators.

3



Under review as a conference paper at ICLR 2019

logues). An example from the dataset is shown in Appendix 13. The dataset is available at [URL
ANONYMIZED].

3 EXPERIMENTS

We investigate the difficulty of the proposed task by establishing initial baselines. The final Talk
The Walk task is challenging and encompasses several important sub-tasks, ranging from landmark
recognition to tourist localization and natural language instruction-giving. Arguably the most im-
portant sub-task is localization: without such capabilities the guide can not tell whether the tourist
reached the target location. In this work, we establish a minimal baseline for Talk The Walk by
utilizing agents trained for localization. Specifically, we let trained tourist models undertake ran-
dom walks, using the following protocol: at each step, the tourist communicates its observations
and actions to the guide, who predicts the tourist’s location. If the guide predicts that the tourist is at
target, we evaluate its location. If successful, the task ends, otherwise we continue until there have
been three wrong evaluations. The protocol is given as pseudo-code in Appendix 11.

3.1 TOURIST LOCALIZATION

The designed navigation protocol relies on a trained localization model that predicts the tourist’s
location from a communicated message. Before we formalize this localization sub-task in Sec-
tion 3.1.1, we further introduce two simplifying assumptions—perfect perception and orientation-
agnosticism—so as to overcome some of the difficulties we encountered in preliminary experiments.

Perfect Perception Early experiments revealed that perceptual grounding of landmarks is diffi-
cult: we set up a landmark classification problem, on which models with extracted CNN (He et al.,
2016) or text recognition features (Gupta et al., 2016) barely outperform a random baseline—see
Appendix 12 for full details. This finding implies that localization models from image input are
limited by their ability to recognize landmarks, and, as a result, would not generalize to unseen
environments. To ensure that perception is not the limiting factor when investigating the landmark-
grounding and action-grounding capabilities of localization models, we assume “perfect percep-
tion”: in lieu of the 360 image view, the tourist is given the landmarks at its current location. More
formally, each state observation Sx,y,o now equals the set of landmarks at the (x, y)-location, i.e.
Sx,y,o = Λx,y . If the (x, y)-location does not have any visible landmarks, we return a single “empty
corner” symbol. We stress that our findings—including a novel architecture for grounding actions
into an overhead map, see Section 4.2.1—should carry over to settings without the perfect perception
assumption.

Orientation-agnosticism We opt to ignore the tourist’s orientation, which simplifies the set of
actions to [Left, Right, Up, Down], corresponding to adding [(-1, 0), (1, 0), (0, 1), (0, -1)] to the
current (x, y) coordinates, respectively. Note that actions are now coupled to an orientation on the
map—e.g. up is equal to going north—and this implicitly assumes that the tourist has access to a
compass. This also affects perception, since the tourist now has access to views from all orientations:
in conjunction with “perfect perception”, implying that only landmarks at the current corner are
given, whereas landmarks from different corners (e.g. across the street) are not visible.

Even with these simplifications, the localization-based baseline comes with its own set of challenges.
As we show in Section 5.1, the task requires communication about a short (random) path—i.e., not
only a sequence of observations but also actions—in order to achieve high localization accuracy.
This means that the guide needs to decode observations from multiple time steps, as well as un-
derstand their 2D spatial arrangement as communicated via the sequence of actions. Thus, in order
to get to a good understanding of the task, we thoroughly examine whether the agents can learn a
communication protocol that simultaneously grounds observations and actions into the guide’s map.
In doing so, we thoroughly study the role of the communication channel in the localization task,
by investigating increasingly constrained forms of communication: from differentiable continuous
vectors to emergent discrete symbols to the full complexity of natural language.

3.1.1 FORMALIZATION

The full navigation baseline hinges on a localization model from random trajectories. While we can
sample random actions in the emergent communication setup, this is not possible for the natural
language setup because the messages are coupled to the trajectories of the human annotators. This
leads to slightly different problem setups, as described below.
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Emergent language A tourist, starting from a random location, takes T ≥ 0 random actions
A = {α0, . . . , αT−1} to reach target location (xtgt, ytgt). Every location in the environment has
a corresponding set of landmarks Λx,y = {l0, . . . , lK} for each of the (x, y) coordinates. As the
tourist navigates, the agent perceives T + 1 state-observations Z = {ζ0, . . . , ζT } where each ob-
servation ζt consists of a set of K landmark symbols {lt0, . . . , ltK}. Given the observations Z and
actions A, the tourist generates a message M which is communicated to the other agent. The objec-
tive of the guide is to predict the location (xtgt, ytgt) from the tourist’s message M .

Natural language In contrast to our emergent communication experiments, we do not take ran-
dom actions but instead extract actions, observations, and messages from the dataset. Specifically,
we consider each tourist utterance (i.e. at any point in the dialogue), obtain the current tourist loca-
tion as target location (x, y)tgt, the utterance itself as message M , and the sequence of observations
and actions that took place between the current and previous tourist utterance as Z and A, respec-
tively. Similar to the emergent language setting, the guide’s objective is to predict the target location
(x, y)tgt models from the tourist message M . We conduct experiments with M taken from the
dataset and with M generated from the extracted observations Z and actions A.

4 MODEL

This section outlines the tourist and guide architectures. We first describe how the tourist produces
messages for the various communication channels across which the messages are sent. We subse-
quently describe how these messages are processed by the guide, and introduce the novel Masked
Attention for Spatial Convolutions (MASC) mechanism that allows for grounding into the 2D over-
head map in order to predict the tourist’s location.

4.1 THE TOURIST

For each of the communication channels, we outline the procedure for generating a message M .
Given a set of state observations {ζ0, . . . , ζT }, we represent each observation by summing the L-
dimensional embeddings of the observed landmarks, i.e. for {o0, . . . ,oT }, ot =

∑
l∈ζt E

Λ(l),
where EΛ is the landmark embedding lookup table. In addition, we embed action αt into a L-
dimensional embedding at via a look-up table EA. We experiment with three types of communica-
tion channel.

Continuous vectors The tourist has access to observations of several time steps, whose order is
important for accurate localization. Because summing embeddings is order-invariant, we introduce
a sum over positionally-gated embeddings, which, conditioned on time step t, pushes embedding
information into the appropriate dimensions. More specifically, we generate an observation message
mobs =

∑T
t=0 sigmoid(gt) � ot, where gt is a learned gating vector for time step t. In a similar

fashion, we produce action message mact and send the concatenated vectors m = [mobs;mact] as
message to the guide. We can interpret continuous vector communication as a single, monolithic
model because its architecture is end-to-end differentiable, enabling gradient-based optimization for
training.

Discrete symbols Like the continuous vector communication model, with discrete communication
the tourist also uses separate channels for observations and actions, as well as a sum over positionally
gated embeddings to generate observation embedding hobs. We pass this embedding through a
sigmoid and generate a message mobs by sampling from the resulting Bernoulli distributions:

hobs =

T∑
t=0

sigmoid(gt)� ot; mobs
i ∼ Bernoulli(sigmoid(hobsi ))

The action message mact is produced in the same way, and we obtain the final tourist message
m = [mobs;mact] through concatenating the messages.

The communication channel’s sampling operation yields the model non-differentiable, so we use
policy gradients (Sutton & Barto, 1998; Williams, 1992) to train the parameters θ of the tourist
model. That is, we estimate the gradient by

∇θEm∼p(h)[r(m)] = Em[∇θ log p(m)(r(m)− b)],

where the reward function r(m) = − log p(x, y)tgt|m,Λ) is the negative guide’s loss (see Section
4.2) and b a state-value baseline to reduce variance. We use a linear transformation over the con-
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catenated embeddings as baseline prediction, i.e. b = W base[hobs;hact] + bbase, and train it with a
mean squared error loss4.

Natural Language Because observations and actions are of variable-length, we use an LSTM
encoder over the sequence of observations embeddings [ot]

T+1
t=0 , and extract its last hidden state

hobs. We use a separate LSTM encoder for action embeddings [at]
T
t=0, and concatenate both hobs

and hact to the input of the LSTM decoder at each time step:

ik = [Edec(wk−1);hobs;hact] hdeck = fLSTM (it,h
dec
k−1)

p(wk|w<k, A, Z) = softmax(W outhdeck + bout)k, (1)

where Edec a look-up table, taking input tokens wk. We train with teacher-forcing, i.e. we optimize
the cross-entropy loss: −

∑
K log p(wk|w<k, A, Z). At test time, we explore the following decoding

strategies: greedy, sampling and a beam-search. We also fine-tune a trained tourist model (starting
from a pre-trained model) with policy gradients in order to minimize the guide’s prediction loss.

4.2 THE GUIDE

Given a tourist message M describing their observations and actions, the objective of the guide is to
predict the tourist’s location on the map. First, we outline the procedure for extracting observation
embedding e and action embeddings at from the messageM for each of the types of communication.
Next, we discuss the MASC mechanism that takes the observations and actions in order to ground
them on the guide’s map in order to predict the tourist’s location.

Continuous For the continuous communication model, we assign the observation message to the
observation embedding, i.e. e = mobs. To extract the action embedding for time step t, we apply a
linear layer to the action message, i.e. at = W act

t mact + bactt .

Discrete For discrete communication, we obtain observation e by applying a linear layer to the
observation message, i.e. e = W obsmobs + bobs. Similar to the continuous communication model,
we use a linear layer over action message mact to obtain action embedding at for time step t.

Natural Language The message M contains information about observations and actions, so we
use a recurrent neural network with attention mechanism to extract the relevant observation and
action embeddings. Specifically, we encode the message M , consisting of K tokens wk taken from
vocabulary V , with a bidirectional LSTM:
−→
hk = fLSTM (

−−−→
hk−1, E

W (wk));
←−
hk = fLSTM (

←−−−
hk+1, E

W (wk)); hk = [
−→
hk;
←−
hk] (2)

where EW is the word embedding look-up table. We obtain observation embedding et through an
attention mechanism over the hidden states h:

sk = hk · ct; et =
∑
k

softmax(s)khk, (3)

where c0 is a learned control embedding who is updated through a linear transformation of the
previous control and observation embedding: ct+1 = W ctrl[ct; et] +bctrl. We use the same mech-
anism to extract the action embedding at from the hidden states. For the observation embedding,
we obtain the final representation by summing positionally gated embeddings, i.e., e =

∑T
t=0 =

sigmoid(gt)� et.

4.2.1 MASKED ATTENTION FOR SPATIAL CONVOLUTIONS (MASC)

We represent the guide’s map as U ∈ RG1×G2×L, where in this case G1 = G2 = 4, where each
L-dimensional (x, y) location embedding ux,y is computed as the sum of the guide’s landmark
embeddings for that location.

Motivation While the guide’s map representation contains only local landmark information, the
tourist communicates a trajectory of the map (i.e. actions and observations from multiple locations),
implying that directly comparing the tourist’s message with the individual landmark embeddings
is probably suboptimal. Instead, we want to aggregate landmark information from surrounding
locations by imputing trajectories over the map to predict locations. We propose a mechanism for

4This is different from A2C which uses a state-value baseline that is trained by the Bellman residual
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MASC Train Valid Test
Cont. Disc. Upper Cont. Disc. Upper Cont. Disc. Upper

Random 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25

T=0 7 29.59 28.89 30.23 30.00 30.63 32.50 32.29 33.12 35.00

T=1 7 39.83 35.40 43.44 35.23 36.56 45.39 35.16 39.53 51.72
3 55.64 51.66 62.78 53.12 53.20 65.78 56.09 55.78 72.97

T=2 7 41.50 40.15 47.84 33.50 37.77 50.29 35.08 41.41 57.15
3 67.44 62.24 78.90 64.55 59.34 79.77 66.80 62.15 86.64

T=3 7 43.48 44.49 45.22 35.40 39.64 48.77 33.11 43.51 55.84
3 71.32 71.80 87.92 67.48 65.63 87.45 69.85 69.51 92.41

Table 2: Accuracy results for tourist localization with emergent language, showing continuous
(Cont.) and discrete (Disc.) communication, along with the prediction upper bound. T denotes
the length of the path and a 3 in the “MASC” column indicates that the model is conditioned on the
communicated actions.

translating landmark embeddings according to state transitions (left, right, up, down), which can be
expressed as a 2D convolution over the map embeddings. For simplicity, let us assume that the map
embeddingU is 1-dimensional, then a left action can be realized through application of the following
3x3 kernel:

0 0 0
1 0 0
0 0 0

, which effectively shifts all values of U one position to the left. We propose to
learn such state-transitions from the tourist message through a differentiable attention-mask over the
spatial dimensions of a 3x3 convolution.

MASC We linearly project each predicted action embedding at to a 9-dimensional vector zt,
normalize it by a softmax and subsequently reshape the vector into a 3x3 mask Φt:

zt = W actat + bact, φt = softmax(zt), Φt =

φ0
t φ1

t φ2
t

φ3
t φ4

t φ5
t

φ6
t φ7

t φ8
t

 . (4)

We learn a 3x3 convolutional kernel W ∈ R3×3×N×N , with N features, and apply the mask Φt to
the spatial dimensions of the convolution by first broadcasting its values along the feature dimen-
sions, i.e. Φ̂x,y,i,j = Φx,y , and subsequently taking the Hadamard product: Wt = Φ̂t �W . For
each action step t, we then apply a 2D convolution with masked weight Wt to obtain a new map
embedding Ut+1 = Ut ∗Wt, where we zero-pad the input to maintain identical spatial dimensions.

Prediction model We repeat the MASC operation T times (i.e. once for each action), and
then aggregate the map embeddings by a sum over positionally-gated embeddings: ux,y =∑T
t=0 sigmoid(gt) � ux,yt . We score locations by taking the dot-product of the observation em-

bedding e, which contains information about the sequence of observed landmarks by the tourist,
and the map. We compute a distribution over the locations of the map p(x, y|M,Λ) by taking a
softmax over the computed scores:

sx,y = e · ux,y, p(x, y|M,Λ) =
exp(sx,y)∑

x′,y′ exp(sx′,y′)
. (5)

Predicting T While emergent communication models use a fixed length trasjectory T , natural
language messages may differ in the number of communicated observations and actions. Hence, we
predict T from the communicated message. Specifically, we use a softmax regression layer over
the last hidden state hK of the RNN, and subsequently sample T from the resulting multinomial
distribution:

z = softmax(W tmhK + btm); T̂ ∼ Multinomial(z). (6)
We jointly train the T -prediction model via REINFORCE, with the guide’s loss as reward function
and a mean-reward baseline.

4.3 COMPARISONS

To better analyze the performance of the models incorporating MASC, we compare against a no-
MASC baseline in our experiments, as well as a prediction upper bound.
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No MASC We compare the proposed MASC model with a model that does not include this mech-
anism. Whereas MASC predicts a convolution mask from the tourist message, the “No MASC”
model uses W , the ordinary convolutional kernel to convolve the map embedding Ut to obtain
Ut+1. We also share the weights of this convolution at each time step.

Prediction upper-bound Because we have access to the class-conditional likelihood p(Z,A|x, y),
we are able to compute the Bayes error rate (or irreducible error). No model (no matter how expres-
sive) with any amount of data can ever obtain better localization accuracy as there are multiple
locations consistent with the observations and actions.

5 RESULTS AND DISCUSSION

In this section, we describe the findings of various experiments. First, we analyze how much in-
formation needs to be communicated for accurate localization in the Talk The Walk environment,
and find that a short random path (including actions) is necessary. Next, for emergent language, we
show that the MASC architecture can achieve very high localization accuracy, significantly outper-
forming the baseline that does not include this mechanism. We then turn our attention to the natural
language experiments, and find that localization from human utterances is much harder, reaching an
accuracy level that is below communicating a single landmark observation. We show that generated
utterances from a conditional language model leads to significantly better localization performance,
by successfully grounding the utterance on a single landmark observation (but not yet on multiple
observations and actions). Finally, we show performance of the localization baseline on the full task,
which can be used for future comparisons to this work.

5.1 ANALYSIS OF LOCALIZATION TASK

Task is not too easy The upper-bound on localization performance in Table 2 suggest that com-
municating a single landmark observation is not sufficient for accurate localization of the tourist
(∼35% accuracy). This is an important result for the full navigation task because the need for two-
way communication disappears if localization is too easy; if the guide knows the exact location of
the tourist it suffices to communicate a list of instructions, which is then executed by the tourist. The
uncertainty in the tourist’s location is what drives the dialogue between the two agents.

Importance of actions We observe that the upperbound for only communicating observations
plateaus around 57% (even for T = 3 actions), whereas it exceeds 90% when we also take actions
into account. This implies that, at least for random walks, it is essential to communicate a trajectory,
including observations and actions, in order to achieve high localization accuracy.

5.2 EMERGENT LANGUAGE LOCALIZATION

We first report the results for tourist localization with emergent language in Table 2.

MASC improves performance The MASC architecture significantly improves performance com-
pared to models that do not include this mechanism. For instance, for T = 1 action, MASC already
achieves 56.09 % on the test set and this further increases to 69.85% for T = 3. On the other hand,
no-MASC models hit a plateau at 43%. In Appendix 10, we analyze learned MASC values, and
show that communicated actions are often mapped to corresponding state-transitions.

Continuous vs discrete We observe similar performance for continuous and discrete emergent
communication models, implying that a discrete communication channel is not a limiting factor for
localization performance.

5.3 NATURAL LANGUAGE LOCALIZATION

We report the results of tourist localization with natural language in Table 3. We compare accuracy
of the guide model (with MASC) trained on utterances from (i) humans, (ii) a supervised model with
various decoding strategies, and (iii) a policy gradient model optimized with respect to the loss of a
frozen, pre-trained guide model on human utterances.

Human utterances Compared to emergent language, localization from human utterances is much
harder, achieving only 16.17% on the test set. Here, we report localization from a single utterance,
but in Appendix 9.2 we show that including up to five dialogue utterances only improves perfor-
mance to 20.33%. We also show that MASC outperform no-MASC models for natural language
communication.

8
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Model Decoding Train Valid Test

Random 6.25 6.25 6.25
Human utterances 23.46 15.56 16.17

Supervised
sampling 17.19 12.23 12.43
greedy 34.14 29.90 29.05
beam (size: 4) 26.21 22.53 25.02

Policy Grad. sampling 29.67 26.93 27.05
greedy 29.23 27.62 27.30

Table 3: Localization accuracy of tourist communi-
cating in natural language.

Train Valid Test #steps

Random 18.75 18.75 18.75 -
Human 76.74 76.74 76.74 15.05

Best Cont. 89.44 86.35 88.33 34.47
Best Disc. 86.23 82.81 87.08 34.83
Best NL 39.65 39.68 50.00 39.14

Table 4: Full task evaluation of localization
models using protocol of Appendix 11.

Method Decoding Utterance

Observations (Bar)
Actions -

Human a field of some type

Supervised
greedy at a bar
sampling sec just hard to tell which is a restaurant ?
beam search im at a bar

Policy Grad. greedy bar from bar from bar and rigth rigth bulding bulding
sampling which bar from bar from bar and bar rigth bulding bulding..

Table 5: Samples from the tourist models communicating in natural language. Contrary to the
human generated utterance, the supervised model with greedy and beam search decoding produces
an utterance containing the current state observation (bar). Also the reinforcement learning model
mentions the current observation but has lost linguistic structure. The fact that these localization
models are better grounded in observations than human utterances explains why they obtain higher
localization accuracy.

Generated utterances We also investigate generated tourist utterances from conditional language
models. Interestingly, we observe that the supervised model (with greedy and beam-search decod-
ing) as well as the policy gradient model leads to an improvement of more than 10 accuracy points
over the human utterances. However, their level of accuracy is slightly below the baseline of com-
municating a single observation, indicating that these models only learn to ground utterances in a
single landmark observation.

Better grounding of generated utterances We analyze natural language samples in Table 5, and
confirm that, unlike human utterances, the generated utterances are talking about the observed land-
marks. This observation explains why the generated utterances obtain higher localization accuracy.
The current language models are most successful when conditioned on a single landmark observa-
tion; We show in Appendix 9.1.1 that performance quickly deteriorates when the model is condi-
tioned on more observations, suggesting that it can not produce natural language utterances about
multiple time steps.

5.4 LOCALIZATION-BASED BASELINE

Table 4 shows results for the best localization models on the full task, evaluated via the random
walk protocol defined in Algorithm 1.

Comparison with human annotators Interestingly, our best localization model (continuous com-
munication, with MASC, and T = 3) achieves 88.33% on the test set and thus exceed human perfor-
mance of 76.74% on the full task. While emergent models appear to be stronger localizers, humans
might cope with their localization uncertainty through other mechanisms (e.g. better guidance, bias
towards taking particular paths, etc). The simplifying assumption of perfect perception also helps.

Number of actions Unsurprisingly, humans take fewer steps (roughly 15) than our best random
walk model (roughly 34). Our human annotators likely used some form of guidance to navigate
faster to the target.

9
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6 CONCLUSION

We introduced the Talk The Walk task and dataset, which consists of crowd-sourced dialogues in
which two human annotators collaborate to navigate to target locations in the virtual streets of NYC.
For the important localization sub-task, we proposed MASC—a novel grounding mechanism to
learn state-transition from the tourist’s message—and showed that it improves localization perfor-
mance for emergent and natural language. We use the localization model to provide baseline num-
bers on the Talk The Walk task, in order to facilitate future research.
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7 RELATED WORK

The Talk the Walk task and dataset facilitate future research on various important subfields of artifi-
cial intelligence, including grounded language learning, goal-oriented dialogue research and situated
navigation. Here, we describe related previous work in these areas.

Related tasks There has been a long line of work involving related tasks. Early work on task-
oriented dialogue dates back to the early 90s with the introduction of the Map Task (Anderson et al.,
1991) and Maze Game (Garrod & Anderson, 1987) corpora. Recent efforts have led to larger-scale
goal-oriented dialogue datasets, for instance to aid research on visually-grounded dialogue (Das
et al., 2016; de Vries et al., 2016), knowledge-base-grounded discourse (He et al., 2017) or negotia-
tion tasks (Lewis et al., 2017). At the same time, there has been a big push to develop environments
for embodied AI, many of which involve agents following natural language instructions with re-
spect to an environment(Artzi & Zettlemoyer, 2013; Yu et al., 2017; Hermann et al., 2017; Mei
et al., 2016; Chaplot et al., 2018b;a), following-up on early work in this area (MacMahon et al.,
2006; Chen & Mooney, 2011). An early example of navigation using neural networks is (Hadsell
et al., 2007), who propose an online learning approach for robot navigation. Recently, there has
been increased interest in using end-to-end trainable neural networks for learning to navigate indoor
scenes(Gupta et al., 2017b;a) or large cities (Brahmbhatt & Hays, 2017; Mirowski et al., 2018),
but, unlike our work, without multi-agent communication. Also the task of localization (without
multi-agent communication) has recently been studied (Chaplot et al., 2018a; Vo et al., 2017).

Grounded language learning Grounded language learning is motivated by the observation that
humans learn language embodied (grounded) in sensorimotor experience of the physical world
(Barsalou, 2008; Smith & Gasser, 2005). On the one hand, work in multi-modal semantics has
shown that grounding can lead to practical improvements on various natural language understand-
ing tasks (see Baroni, 2016; Kiela, 2017, and references therein). In robotics, researchers dissatis-
fied with purely symbolic accounts of meaning attempted to build robotic systems with the aim of
grounding meaning in physical experience of the world (Roy, 2005; Steels & Hild, 2012). Recently,
grounding has also been applied to the learning of sentence representations (Kiela et al., 2017),
image captioning (Lin et al., 2014; Xu et al., 2015), visual question answering (Antol et al., 2015;
de Vries et al., 2017), visual reasoning (Johnson et al., 2017; Perez et al., 2018), and grounded ma-
chine translation (Riezler et al., 2014; Elliott et al., 2016). Grounding also plays a crucial role in the
emergent research of multi-agent communication, where, agents communicate (in natural language
or otherwise) in order to solve a task, with respect to their shared environment (Lazaridou et al.,
2016; Das et al., 2017b; Mordatch & Abbeel, 2017; Evtimova et al., 2017; Lewis et al., 2017; Strub
et al., 2017; Kottur et al., 2017).

8 IMPLEMENTATION DETAILS

For the emergent communication models, we use an embedding size L = 500. The natural language
experiments use 128-dimensional word embeddings and a bidirectional RNN with 256 units. In all
experiments, we train the guide with a cross entropy loss using the ADAM optimizer with default
hyper-parameters (Kingma & Ba, 2014). We perform early stopping on the validation accuracy, and
report the corresponding train, valid and test accuracy. We optimize the localization models with
continuous, discrete and natural language communication channels for 200, 200, and 25 epochs,
respectively. To facilitate further research on Talk The Walk, we make our code base for reproducing
experiments publicly available at [URL ANONYMIZED].

9 ADDITIONAL NATURAL LANGUAGE EXPERIMENTS

First, we investigate the sensitivity of tourist generation models to the trajectory length, finding that
the model conditioned on a single observation (i.e. T = 0) achieves best performance. In the next
subsection, we further analyze localization models from human utterances by investigating MASC
and no-MASC models with increasing dialogue context.

9.1 TOURIST GENERATION MODELS

9.1.1 PATH LENGTH

After training the supervised tourist model (conditioned on observations and action from human
expert trajectories), there are two ways to train an accompanying guide model. We can optimize
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Trajectories T Train Valid Test

Random 18.75 18.75 18.75

Human 0 38.21 40.93 40.00
1 21.82 23.75 25.62
2 19.77 24.68 23.12
3 18.95 20.93 20.00

Random

0 39.65 39.68 50.00
1 28.99 30.93 25.62
2 27.04 19.06 19.38
3 20.28 20.93 22.50

Table 6: Full task performance of localization
models trained on human and random trajecto-
ries. There are small benefits for training on ran-
dom trajectories, but the most important hyper-
parameter is to condition the tourist utterance
on a single observation (i.e. trajectories of size
T = 0.) at evaluation time.

Beam size Train Valid Test

Random 6.25 6.25 6.25

1 34.14 29.90 29.05
2 26.24 23.65 25.10
4 23.59 22.87 21.80
8 20.31 19.24 20.87

Table 7: Localization performance using pre-
trained tourist (via imitation learning) with
beam search decoding of varying beam size.
Locations and observations extracted from hu-
man trajectories. Larger beam-sizes lead to
worse localization performance.

#utterances MASC Train Valid Test E[T ]

Random 6.25 6.25 6.25 -

1 7 23.95 13.91 13.89 0.99
3 23.46 15.56 16.17 1.00

3 7 26.92 16.28 16.62 1.00
3 20.88 17.50 18.80 1.79

5 7 25.75 16.11 16.88 1.98
3 30.45 18.41 20.33 1.99

Table 8: Localization given last {1, 3, 5} dialogue utterances (including the guide). We observe
that (1) performance increases when more utterances are included; and (2) MASC outperforms no-
MASC in all cases; and (3) mean T̂ increases when more dialogue context is included.

a location prediction model on either (i) extracted human trajectories (as in the localization setup
from human utterances) or (ii) on all random paths of length T (as in the full task evaluation). Here,
we investigate the impact of (1) using either human or random trajectories for training the guide
model, and (2) the effect of varying the path length T during the full-task evaluation. For random
trajectories, guide training uses the same path length T as is used during evaluation. We use a pre-
trained tourist model with greedy decoding for generating the tourist utterances. Table 6 summarizes
the results.

Human vs random trajectories We only observe small improvements for training on random
trajectories. Human trajectories are thus diverse enough to generalize to random trajectories.

Effect of path length There is a strong negative correlation between task success and the con-
ditioned trajectory length. We observe that the full task performance quickly deteriorates for both
human and random trajectories. This suggests that the tourist generation model can not produce
natural language utterances that describe multiple observations and actions. Although it is possible
that the guide model can not process such utterances, this is not very likely because the MASC
architectures handles such messages successfully for emergent communication.

9.1.2 EFFECT OF BEAM-SIZE

We report localization performance of tourist utterances generated by beam search decoding of
varying beam size in Table 7. We find that performance decreases from 29.05% to 20.87% accuracy
on the test set when we increase the beam-size from one to eight.
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9.2 LOCALIZATION FROM HUMAN UTTERANCES

We conduct an ablation study for MASC on natural language with varying dialogue context. Specif-
ically, we compare localization accuracy of MASC and no-MASC models trained on the last [1, 3,
5] utterances of the dialogue (including guide utterances). We report these results in Table 8. In all
cases, MASC outperforms the no-MASC models by several accuracy points. We also observe that
mean predicted T̂ (over the test set) increases from 1 to 2 when more dialogue context is included.

10 VISUALIZING MASC PREDICTIONS

Figure 2 shows the MASC values for a learned model with emergent discrete communications and
T = 3 actions. Specifically, we look at the predicted MASC values for different action sequences
taken by the tourist. We observe that the first action is always mapped to the correct state-transition,
but that the second and third MASC values do not always correspond to right state-transitions.

Action sequence:
Right, Left, Up

Action sequence:
Up, Right, Down

Figure 2: We show MASC values of two action sequences for tourist localization via discrete com-
munication with T = 3 actions. In general, we observe that the first action always corresponds to
the correct state-transition, whereas the second and third are sometimes mixed. For instance, in the
top example, the first two actions are correctly predicted but the third action is not (as the MASC
corresponds to a “no action”). In the bottom example, the second action appears as the third MASC.
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11 EVALUATION ON FULL SETUP

We provide pseudo-code for evaluation of localization models on the full task in Algorithm 1, as
well as results for all emergent communication models in Table 9.

T MASC Comm. Train Valid Test #steps

Random 18.75 18.75 18.75 -
Human 76.74 76.74 76.74 15.05

0 7
cont. 46.17 46.56 52.91 39.87
disc. 46.65 47.70 52.50 38.56

1
7

cont. 51.46 46.98 46.46 38.05
disc 52.11 51.25 55.00 41.13

3
cont. 76.57 74.06 77.70 34.59
disc 71.96 72.29 74.37 36.19

2
7

cont. 53.51 45.93 46.66 40.26
disc 53.38 52.39 55.00 42.35

3
cont. 87.29 84.05 86.66 32.27
disc 86.23 82.81 87.08 34.83

3 7
cont. 54.30 43.43 43.54 39.14
disc 57.88 55.20 57.50 43.67

3
cont. 89.44 86.35 88.33 34.47
disc 86.23 82.81 87.08 34.83

Table 9: Accuracy of localization models on full task, using evaluation protocol defined in Algorithm
1. We report the average over 3 runs.
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Algorithm 1 Performance evaluation of location prediction model on full Talk The Walk setup
procedure EVALUATE(tourist, guide, T, xtgt, ytgt,maxsteps)

x, y ← randint(0, 3), randint(0, 3) . initialize with random location
features, actions← array(), array()
features[0]← features at location (x, y)
for t = 0; t < T ; t+ + do . create T -sized feature buffer

action← uniform sample from action set
x, y ← update location given action
features[t+ 1]← features at location (x, y)
actions[t]← action

for i = 0; i < maxsteps; i+ + do
M ← tourist(features, actions)
p(x, y|·)← guide(M)
xpred, ypred ← sample from p(x, y|·)
if xpred, ypred == xtgt, ytgt then . target predicted

if locations[0] == xtgt, ytgt then
return True

else
numevaluations← numevaluations− 1
if numevaluations ≤ 0 then

return False
features← features[1 :]
actions← actions[1 :]

x, y ← update location given action . take new action
features[t+ 1]← features at location (x, y)
actions[t]← action
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Figure 3: Result of running the text recognizer of Gupta et al. (2016) on four examples of the Hell’s
Kitchen neighborhood. Top row: two positive examples. Bottom row: example of false negative
(left) and many false positives (right)

12 LANDMARK CLASSIFICATION

While the guide has access to the landmark labels, the tourist needs to recognize these landmarks
from raw perceptual information. In this section, we study landmark classification as a supervised
learning problem to investigate the difficulty of perceptual grounding in Talk The Walk.

The Talk The Walk dataset contains a total of 307 different landmarks divided among nine classes,
see Figure 4 for how they are distributed. The class distribution is fairly imbalanced, with shops
and restaurants as the most frequent landmarks and relatively few play fields and theaters. We treat
landmark recognition as a multi-label classification problem as there can be multiple landmarks on
a corner5.

For the task of landmark classification, we extract the relevant views of the 360 image from which
a landmark is visible. Because landmarks are labeled to be on a specific corner of an intersec-
tion, we assume that they are visible from one of the orientations facing away from the intersec-
tion. For example, for a landmark on the northwest corner of an intersection, we extract views

5Strictly speaking, this is more general than a multi-label setup because a corner might contain multiple
landmarks of the same class.
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Figure 4: Frequency of landmark classes

Features Train loss Valid Loss Train F1 Valid F1 Valid prec. Valid recall

All positive - - - 0.39313 0.26128 1
Random (0.5) - - - 0.32013 0.24132 0.25773

Textrecog 0.01462 0.01837 0.31205 0.31684 0.2635 0.50515

Fasttext 0.00992 0.00994 0.24019 0.31548 0.26133 0.47423
Fasttext (100 dim) 0.00721 0.00863 0.32651 0.28672 0.24964 0.4433

ResNet 0.00735 0.00751 0.17085 0.20159 0.13114 0.58763
ResNet (256 dim) 0.0051 0.00748 0.60911 0.31953 0.27733 0.50515

Table 10: Results for landmark classification.

from both the north and west direction. The orientation-specific views are obtained by a planar
projection of the full 360-image with a small field of view (60 degrees) to limit distortions. To
cover the full field of view, we extract two images per orientation, with their horizontal focus point
30 degrees apart. Hence, we obtain eight images per 360 image with corresponding orientation
υ ∈ {N1, N2, E1, E2, S1, S2,W1,W2}.
We run the following pre-trained feature extractors over the extracted images:

ResNet We resize the extracted view to a 224x224 image and pass it through a ResNet-152 network
He et al. (2016) to obtain a 2048-dimensional feature vector Sresnetx,y,υ ∈ R2048 from the
penultimate layer.

Text Recognition We use a pre-trained text-recognition model Gupta et al. (2016) to extract a set
of text messages Stextx,y,υ = {Rtextβ }Bβ=0 from the images. Local businesses often advertise
their wares through key phrases on their storefront, and understanding this text might be a
good indicator of the type of landmark. In Figure 3, we show the results of running the text
recognition module on a few extracted images.

For the text recognition model, we use a learned look-up table Etext to embed the extracted text
features eβx,y,υ = Etext(Rtextβ ), and fuse all embeddings of four images through a bag of em-
beddings, i.e., efused =

∑
υ∈relevant views

∑
β e

β
x,y,υ . We use a linear layer followed by a sig-

moid to predict the probability for each class, i.e. sigmoid(Wefused + b). We also experiment
with replacing the look-up embeddings with pre-trained FastText embeddings Bojanowski et al.
(2016). For the ResNet model, we use a bag of embeddings over the four ResNet features, i.e.
efused =

∑
υ∈relevant views S

resnet
x,y,υ , before we pass it through a linear layer to predict the class prob-

abilities: sigmoid(Wefused + b). We also conduct experiments where we first apply PCA to the
extracted ResNet and FastText features before we feed them to the model.
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To account for class imbalance, we train all described models with a binary cross entropy loss
weighted by the inverted class frequency. We create a 80-20 class-conditional split of the dataset into
a training and validation set. We train for 100 epochs and perform early stopping on the validation
loss.

The F1 scores for the described methods in Table 10. We compare to an “all positive” baseline that
always predicts that the landmark class is visible and observe that all presented models struggle to
outperform this baseline. Although 256-dimensional ResNet features achieve slightly better preci-
sion on the validation set, it results in much worse recall and a lower F1 score. Our results indicate
that perceptual grounding is a difficult task, which easily merits a paper of its own right, and so we
leave further improvements (e.g. better text recognizers) for future work.

13 DATASET DETAILS

Figure 5: Map of New York City
with red rectangles indicating the
captured neighborhoods of the
Talk The Walk dataset.

Neighborhood #success #failed #disconnects

Hell’s Kitchen 2075 762 867
Williamsburg 2077 683 780
East Village 2035 713 624
Financial District 2042 607 497
Upper East 2081 359 576

Total 10310 3124 3344

Table 11: Dataset statistics split by neighborhood and dia-
logue status.

Dataset split We split the full dataset by assigning entire 4x4 grids (independent of the target
location) to the train, valid or test set. Specifically, we design the split such that the valid set contains
at least one intersection (out of four) is not part of the train set. For the test set, all four intersections
are novel. See our source code, available at URLANONYMIZED, for more details on how this split is
realized.

Example

Tourist: ACTION:TURNRIGHT ACTION:TURNRIGHT
Guide: Hello, what are you near?
Tourist: ACTION:TURNLEFT ACTION:TURNLEFT ACTION:TURNLEFT
Tourist: Hello, in front of me is a Brooks Brothers
Tourist: ACTION:TURNLEFT ACTION:FORWARD ACTION:TURNLEFT ACTION:TURNLEFT
Guide: Is that a shop or restaurant?
Tourist: ACTION:TURNLEFT
Tourist: It is a clothing shop.
Tourist: ACTION:TURNLEFT
Guide: You need to go to the intersection in the northwest corner of the map
Tourist: ACTION:TURNLEFT
Tourist: There appears to be a bank behind me.
Tourist: ACTION:TURNLEFT ACTION:TURNLEFT ACTION:TURNRIGHT ACTION:TURNRIGHT
Guide: Ok, turn left then go straight up that road
Tourist: ACTION:TURNLEFT ACTION:TURNLEFT ACTION:TURNLEFT ACTION:FORWARD ACTION:TURNRIGHT

ACTION:FORWARD ACTION:FORWARD ACTION:TURNLEFT ACTION:TURNLEFT ACTION:TURNLEFT
Guide: There should be shops on two of the corners but you

need to go to the corner without a shop.
Tourist: ACTION:FORWARD ACTION:FORWARD ACTION:FORWARD ACTION:TURNLEFT ACTION:TURNLEFT
Guide: let me know when you get there.
Tourist: on my left is Radio city Music hall
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Tourist: ACTION:TURNLEFT ACTION:FORWARD ACTION:TURNLEFT ACTION:TURNRIGHT ACTION:TURNRIGHT
Tourist: I can’t go straight any further.
Guide: ok. turn so that the theater is on your right.
Guide: then go straight
Tourist: That would be going back the way I came
Guide: yeah. I was looking at the wrong bank
Tourist: I’ll notify when I am back at the brooks brothers, and the bank.
Tourist: ACTION:TURNRIGHT
Guide: make a right when the bank is on your left
Tourist: ACTION:FORWARD ACTION:FORWARD ACTION:TURNRIGHT
Tourist: Making the right at the bank.
Tourist: ACTION:FORWARD ACTION:FORWARD
Tourist: I can’t go that way.
Tourist: ACTION:TURNLEFT
Tourist: Bank is ahead of me on the right
Tourist: ACTION:FORWARD ACTION:FORWARD ACTION:TURNLEFT
Guide: turn around on that intersection
Tourist: I can only go to the left or back the way I just came.
Tourist: ACTION:TURNLEFT
Guide: you’re in the right place. do you see shops on the corners?
Guide: If you’re on the corner with the bank, cross the street
Tourist: I’m back where I started by the shop and the bank.
Tourist: ACTION:TURNRIGHT
Guide: on the same side of the street?
Tourist: crossing the street now
Tourist: ACTION:FORWARD ACTION:FORWARD ACTION:TURNLEFT
Tourist: there is an I love new york shop across the street on the left from me now
Tourist: ACTION:TURNRIGHT ACTION:FORWARD
Guide: ok. I’ll see if it’s right.
Guide: EVALUATE_LOCATION
Guide: It’s not right.
Tourist: What should I be on the look for?
Tourist: ACTION:TURNRIGHT ACTION:TURNRIGHT ACTION:TURNRIGHT
Guide: There should be shops on two corners but you need to be on one of the corners

without the shop.
Guide: Try the other corner.
Tourist: this intersection has 2 shop corners and a bank corner
Guide: yes. that’s what I see on the map.
Tourist: should I go to the bank corner? or one of the shop corners?

or the blank corner (perhaps a hotel)
Tourist: ACTION:TURNLEFT ACTION:TURNLEFT ACTION:TURNRIGHT ACTION:TURNRIGHT
Guide: Go to the one near the hotel. The map says the hotel is a little

further down but it might be a little off.
Tourist: It’s a big hotel it’s possible.
Tourist: ACTION:FORWARD ACTION:TURNLEFT ACTION:FORWARD ACTION:TURNRIGHT
Tourist: I’m on the hotel corner
Guide: EVALUATE_LOCATION
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14 MECHANICAL TURK INSTRUCTIONS

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6: Set of instructions presented to turkers before starting their first task.
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(a) (b)

(c)

Figure 7: (cont.) Set of instructions presented to turkers before starting their first task.
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