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ABSTRACT

Understanding three-dimensional (3D) geometries from two-dimensional (2D)
images without any labeled information is promising for understanding the real
world without incurring annotation cost. We herein propose a novel generative
model, RGBD-GAN, which achieves unsupervised 3D representation learning
from 2D images. The proposed method enables camera parameter—conditional
image generation and depth image generation without any 3D annotations, such as
camera poses or depth. We use an explicit 3D consistency loss for two RGBD im-
ages generated from different camera parameters, in addition to the ordinal GAN
objective. The loss is simple yet effective for any type of image generator such as
DCGAN and StyleGAN to be conditioned on camera parameters. Through exper-
iments, we demonstrated that the proposed method could learn 3D representations
from 2D images with various generator architectures.

1 INTRODUCTION

Figure 1: Generated face images from PGGAN and car images from StyleGAN. Images in even
rows are generated depth images with colormaps. Though the models are trained on unlabeled
RGB image datasets, they achieve RGBD image generation as well as explicit control over the
camera poses.

Understanding three-dimensional (3D) geometries from two-dimensional (2D) images is important
in computer vision. An image of real-world objects comprises two independent components: object
identity and camera pose. Object identity represents the shape and texture of an object, and camera
pose comprises camera rotation, translation, and intrinsics such as focal length. Learning the rep-
resentation of these two components independently facilitates in understanding the real 3D world.
For example, camera pose invariant feature extraction can facilitate object identification problems,
and camera pose variant feature representations are beneficial for the pose estimation of the objects.
These tasks are easy for humans but difficult for machines.

Recently, 3D representation learning through 3D object generation has been actively researched.
Many techniques are available for learning the relationship between 2D images and 3D objects. Typ-
ically used 3D representations are voxel grids (Yan et al., 2016; Wu et al., 2016; Choy et al., 2016;
Henzler et al., 2019), point clouds (Fan et al., 2017), and meshes (Rezende et al., 2016; Kato et al.,
2018; Wang et al., 2018; Kato & Harada, 2019). For most of the methods, 3D annotations such
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as ground truth 3D models (Choy et al., 2016; Fan et al., 2017; Wang et al., 2018), multiple-view
images (Yan et al., 2016), or silhouette annotations of objects (Yan et al., 2016; Kato et al., 2018;
Kato & Harada, 2019) must be used to reconstruct 3D shape from 2D images. Although these meth-
ods achieve 3D object generation by controlling the object identity and camera poses independently,
the construction of such datasets requires considerable time and effort. Therefore, a method that can
learn 3D representations without any labeled information must be developed. Though some research
tackles this problem, their performance is limited when applied to natural images. Rezende et al.
(2016) proposed unsupervised single-view 3D mesh reconstruction, but it can only be applied to
a primitive dataset. Henzler et al. (2019) recently proposed unsupervised single-view voxel recon-
struction on natural images, but the resolution is limited due to the memory constraint.

To realize unsupervised 3D object generation, we employ a different approach, i.e., RGB-Depth
(RGBD) image generation. RGBD images comprise the color and depth information of each pixel.
The proposed RGBD image generation can be achieved through a simple extension of recently
developed image generation models. We propose RGBD Generative Adversarial Networks (RGBD-
GAN), which learns to generate RGBD images from natural RGB image datasets without the need of
any annotations, such as camera pose and depth annotations, multiple viewpoints for the single ob-
jects. The proposed model uses an explicit 3D consistency loss for the generated images; the model
generates two RGBD images with different camera parameters and learns them to be consistent with
the 3D world. This training pipeline is simple yet effective for generating depth images without su-
pervision and for disentangling a camera pose from the image content. Because the proposed model
does not restrict the generator architecture, we can condition any type of image generator (e.g., PG-
GAN (Karras et al., 2018), StyleGAN (Karras et al., 2019)) on camera parameters. Figure 1 shows
the generation results from the proposed models. As such, our model can generate RGBD images
from arbitrary viewpoints without any supervision, and therefore we regard this as “unsupervised
3D representation learning” though a single output cannot represent a full 3D scene.

Our contributions are as follows.

e We propose a new image generation technique, i.e., RGBD image generation, which can be
achieved from RGB images without any labeled information such as annotations of camera
parameters, depth, or multiple viewpoints for single objects.

e The proposed method can disentangle camera parameters from the image content without
any supervision.

e Our method can be used to condition any type of generator on camera parameters because
the proposed loss function does not restrict the generator architecture.

2 RELATED WORKS

Recently, image generation models have shown significant progress, especially generative adver-
sarial networks (GANSs) (Goodfellow et al., 2014). GAN trains a discriminator that estimates the
distribution distance between generated and real images; additionally it trains a generator that min-
imizes the estimated distance. As such, the distribution of training images can be estimated pre-
cisely without supervision. Recent interest in generative models pertain to their training stability
(Arjovsky et al., 2017; Gulrajani et al., 2017; Miyato et al., 2018) and improvement in quality and
diversity (Karras et al., 2018; Brock et al., 2019; Karras et al., 2019). Furthermore, methods to learn
3D morphable generative models from 2D images have been proposed (Tran et al., 2017; Shen et al.,
2018; Sitzmann et al., 2019; Nguyen-Phuoc et al., 2019). Tran et al. (2017) and Shen et al. (2018)
learned to generate images by controlling camera poses using camera pose annotations or images
captured from multiple viewpoints. Although these methods can successfully control an object
pose, the scalability is limited owing to the annotation costs. Nguyen-Phuoc et al. (2019) recently
proposed a method to disentangle object identity and camera poses without any annotations. This
method uses latent 3D features and learns to generate images from the feature projected from the 3D
feature with rigid-body transformations. That is, this method uses strong inductive biases regarding
the 3D world to learn the relationship between camera poses and images. These image generation
models cannot output explicit 3D representations, thus limiting the comprehensibility of the out-
put. Sitzmann et al. (2019) achieved RGB and depth image synthesis from 2D image datasets by
unsupervisingly learning occlusion aware projection from 3D latent feature to 2D. The model, how-
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ever, requires multiple viewpoints for a single object and camera pose annotations, thus limiting the
scalability.

Similarly, Rajeswar et al. (2019) proposed depth image generator trained on unlabeled RGB images.
The model can control the pose of generated images without supervision. However, it only works
on a synthetic dataset, where the surface-normal of each pixel is easily estimated by the color and
location.

3 METHOD

In this study, unsupervised 3D representation learning is achieved via RGBD image synthesis. In
this section, we first describe the motivation to use RGBD representation in Section 3.1 and we
provide the details of our method in Section 3.2.

3.1 MOTIVATION

A goal of this research is to construct a model that can generate images I conditioned on camera pa-
rameters c. However, it is impossible to perfectly model the relationship between c and I without any
annotations. Therefore, we alleviate the problem by considering optical flow consistency. Although
optical flow is typically used for two different frames in a movie, we used it for images captured with
different camera parameters. Optical flow consistency is expressed as the pixel movement between
two images.

I(z,y,c) = I(z+ Az,y + Ay, c+ Ac) for Vz,y,c (D)

Here, = and y are pixel coordinates in the image. Considering a small Ac, this equation can be
written as the following partial differential equation.
oldz Oldy  OI
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% and g—f/ can be estimated using ordinary image generation models. Therefore, if % and %
are known, then % can be calculated. This term can be helpful for conditioning the generator on

the camera parameters when optimizing the GAN objective. As ?Tf and % remain unknown, we

consider a geometric constraint on a homogeneous coordinate. Let D be the depth, p = (,y, 1) the
homogeneous coordinate of the pixel, p,oriq the world coordinate of the pixel, R the rotation matrix,
t the translation vector, and K the camera intrinsics. The camera parameters c are represented herein
as { K, R,t}. pyoria is constant to c. Then, we can calculate the position on an image and the depth
from the world coordinate p,,or4.

Dp = KRpyoria + Kt 3)

This facilitates in calculating % and % by estimating the depth D. Hence, we used the RGBD
representation for camera parameter conditioning. For depth image D, an optical flow consistency
as an RGB image exists, considering the camera parameter change. This facilitates in estimating the
depth image D.

D(z,y,c) = D(xz+ Az, y + Ay, c+ Ac) + AD for Vzx,y,c 4
Here, AD can be calculated from Equation 3.

Briefly, training a GAN with the constraints in Equation 1, 3, and 4 is beneficial for learning %,
which benefits camera parameter—conditional synthesis. Additionally, learning a camera parameter—
conditional image generation model facilitates in learning depth distributions with the constraint
from Equation 1 and 3. The details for each module are explained below.

3.2 PROPOSED PIPELINE

The proposed model comprises three components: an RGBD image generator conditioned on cam-
era parameters, RGB image discriminator for adversarial training, and self-supervised RGBD con-
sistency loss. The overview of the pipeline is shown in Figure 2.
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Figure 2: Proposed pipeline. We train the RGBD image generator with the self-supervised 3D
consistency loss and adversarial loss for RGB channels. The model generates two RGBD images
with different camera parameters and learns them to be consistent with the 3D world.

3.2.1 RGBD IMAGE GENERATOR

Considering the success in image generation, the generator of a GAN can estimate complicated
distributions. Therefore, we used ordinary RGB image generators such as DCGAN (Radford et al.,
2016) or StyleGAN for RGBD synthesis. RGBD synthesis is achieved by adding one channel to the
final layer of the RGB generator. Moreover, as described in the experimental section, we can use
image generation models through 3D latent representations such as HoloGAN (Nguyen-Phuoc et al.,
2019) or DeepVoxels (Sitzmann et al., 2019), which models the 3D world more naturally.

In the proposed pipeline, the generator is conditioned on camera parameters and trained with gra-
dient descent to minimize the self-supervised consistency loss and the adversarial loss described
bellow. Because no constraint exists for the generator architecture, any type of generator architec-
ture can be used for RGBD image synthesis, thus resulting in the high applicability of our method.

3.2.2 SELF-SUPERVISED RGBD CONSISTENCY LOSS

In Section 3.1, we showed that the optical flow consistency for RGB and depth can facilitate in learn-
ing camera parameter—conditional image generation. We approximated the constraint in Equation 1
and 4 by sampling two camera parameters ¢; and ¢ and minimizing the difference of both sides of
the equations for two generated images conditioned on those camera parameters, where ¢ = ¢; and
¢+ Ac = c¢o. In this study, the camera parameters are sampled from a predefined distribution p(c)
according to the dataset, similarly to HoloGAN. The detailed settings are explained in Section 4.2
and appendix. We limit the maximum values of Ac to 30° to avoid large occlusion.

The objective function for Equation 1 is similar to the loss used in monocular video depth estimation
(Zhou et al., 2017). Using Equation 3, we can calculate the 3D position of each pixel when an RGBD
image is viewed from different viewpoints. Therefore, images captured from c; can be rendered
by sampling the pixel values from RGBD images captured from cp. This operation is typically
called as “warp” operation and is implemented with bilinear sampling. We applied this loss to the
generated RGBD images conditioned on ¢; and c;. The main difference between depth estimation
(Zhou et al., 2017) and the proposed method is that our method optimizes both the RGB and depth
image generator, while depth estimation only optimizes the depth estimator.

Moreover, for the constraints of the depth map in Equation 4, we define a consistency loss on the
generated depth maps. This loss, which is similar to the left-right disparity consistency loss in
(Godard et al., 2017), attempts to equate the depth map generated from c; to that generated from co
in 3D space. The overall proposed 3D loss function can be written as Equation 5.

1
L3p =K. p),e1.0~p(c) WHGRGB(Z, c1) — warp(Gra(z, ), c152) |1
1 .
+W|\pr0Jectlon(GD(z, 1), c1-2) — warp(Gp(z, ca), clﬂg)H% 5)
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Here, Grap(z,c) and Gp(z,c) denote the generated RGB and depth image from a latent vector
z and camera parameters c respectively, W and H denote the width and height of the images re-
spectively, and c;_;2 is a relative transformation matrix from c; to ce. The “projection” operation
calculates the depth value viewed from different viewpoints from the input depth map using Equa-
tion 3. For simplification, we omit the loss for the inverse transformation co_,1 in the equation. The
detailed explanations of “warp” and “projection” are provided in the appendix.

This loss function causes inaccurate gradients for the occluded pixels during the transformation ¢ _, o
because it does not consider those regions. Therefore, in this study, we used the technique proposed
in (Gordon et al., 2019). This technique propagates gradients only to pixels where the projected
depth is smaller than the depth of the other viewpoint image. This prevents inaccurate gradients in
pixels that move behind other pixels during projection.

Finally, we add a depth constraint term to stabilize the training. The loss above can be easily min-
imized to 0 when the generated depth is extremely small. Therefore, we set the minimum limit for
the depth value as D,,,;,, and add a regularization for depth values smaller than D,,,;,,.

1
£depth = W Z max (0, szn — D(J), y))2 (6)

3.2.3 RGB IMAGE DISCRIMINATOR

To achieve the training of an RGBD generator from unlabeled RGB images, we apply adversarial
loss only for the RGB channels of generated images. Although the loss can only improve the reality
of the images, this loss is beneficial for learning depth images and camera parameter conditioning
through the optimization of the loss in Equation 5.

Based on the above, the final objective for the generator L; is as follows.

Lo =Lcan +A3pL3p + ANdepth Ldepth @)
Here, L an is an adversarial loss function, and Azp and Agepen, are hyperparameters.

4 EXPERIMENTS

4.1 MODEL ARCHITECTURES

The proposed method does not restrict the generator architecture: any type of image generators
can be conditioned on camera parameters. To demonstrate the effectiveness of our method, we
tested three types of image generation models: PGGAN, StyleGAN, and DeepVoxels. The model
architectures are shown in Figure 3. Because perspective information is difficult to obtain from a
single image, in this experiment, the camera intrinsics K are fixed during training. We controlled
only the azimuth 6, (left-right rotation) and elevation 6, (up—down rotation) parameters based on
the training setting of HoloGAN. In the following, we provide the details of each model architecture.

PGGAN: PGGAN (Karras et al., 2018) is a state-of-the-art DCGAN. In this experiment, we con-
ditioned the model on two camera parameters, azimuth and elevation, as follows: First, these values
are input to cos and sin functions, respectively, and the outputs are concatenated to a single four—
dimensional vector cyciic. Subsequently, c.y ;¢ is concatenated to the latent vector z, which is input
to the generator. This operation allows the generated images to change continuously for a 360° angle
change. We start with a resolution of 32 x 32 and increase it progressively to 128 x 128.

StyleGAN: StyleGAN (Karras et al., 2019) is a state-of-the-art GAN model that controls the out-
put “style” of each convolutional layer by performing adaptive instance normalization (AdalN)
(Huang & Belongie, 2017) and acquires hierarchical latent representations. We used ccyci;c to only
control the style of features on resolutions of 4 x 4 and 8 x 8§, as it is known that styles at low-
resolution layers control global features such as the pose and shape of an object. More concretely,
we concatenated cqyqri. and the output of the mapping network w, which was then converted to w'
with a multilayer perceptron. Please refer to Figure 3. The image resolution is the same as PGGAN.

DeepVoxels: HoloGAN enables the disentanglement of camera parameters by using 3D latent fea-
ture representations. This is more natural modeling of the 3D world than the two models above be-
cause it considers explicit transformations in 3D space. However, HoloGAN cannot consider depth
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Figure 3: Generator architectures tested. PGGAN-based model (left), StyleGAN-based model (mid-
dle), and Deep Voxels-based model (right).

information as the projection unit of HoloGAN only calculates the weighted sum of the feature on
the depth dimension. Therefore, we used the model inspired by DeepVoxels (Sitzmann et al., 2019)
to apply the proposed method. DeepVoxels is a method that can learn the 3D latent voxel representa-
tion of objects using images from multiple viewpoints of a single object; additionally, it can generate
novel-view images. This method uses the occlusion-aware projection module that learns which vox-
els are visible from the camera viewpoint along the depth axis. This is achieved via unsupervised
learning. Therefore, a depth image can be acquired from the model, which is suitable for combining
with our method. In this experiment, we combined DeepVoxels and a voxel feature generator that
generates features from random latent vector z, for the random image generation task. We used 3D
convolution and AdalN for the voxel feature generator, similarly to HoloGAN. DeepVoxels uses
an explicit camera model to acquire the feature visible in the camera frustum, whereas HoloGAN
uses rigid-body transformations. Therefore, Deep Voxels enables more accurate reasoning about the
3D world. We compare the three settings for the models using 3D feature representations. The
first model uses the weighted sum on the depth dimension instead of occlusion-aware projection
modules, similarly to HoloGAN. The second model uses occlusion-aware projection modules but
does not use the proposed 3D loss. The final model uses DeepVoxels and the proposed 3D loss.
The methods are called “HoloGAN-like,” “DeepVoxels,” and “DeepVoxels + 3D loss” in the figures
and tables. It is noteworthy that “HoloGAN-like” is not the same model as the original HoloGAN
because it is based on DeepVoxels’ network structures.

4.2 DATASETS

We trained our model using FFHQ (Karras et al., 2019), cars from ShapeNet (Chang et al., 2015),
car images (Krause et al., 2013), and the LSUN bedroom dataset (Yu et al., 2015). We used 128
x 128 images for the PGGAN and StyleGAN, and 64 x 64 images for models using 3D latent
feature representations owing to memory constraints. We used 35° for the elevation angle range for
all experiments, 120° for the azimuth range for the FFHQ and bedroom datasets, and 360° for the
azimuth range for the Car and ShapeNet car datasets. For the ShapeNet car dataset and car image
dataset, we used a new occlusion reasoning algorithm for DeepVoxels—based models to stabilize the
training. The details are explained in the appendix.

4.3 RESULTS

Qualitative results The generative results from each model controlling the camera parameters on
the FFHQ and ShapeNet car datasets are shown in Figures 4, 5, 10, and 11. In the figures, im-
ages with colormaps show the generated depth images. The depth is normalized (subtracted by the
minimum value and divided by the range) and visualized with colormaps. For all models using the
proposed loss (top three in the figures), images can be generated by controlling the camera param-
eters while preserving their identity. Moreover, the models can generate depth images that do not
exist in the training samples. To confirm the depth consistency, we show normal maps and rotated
images for the generative results from each model, as shown in Figure 6. The white regions of the
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Figure 4: Visualization of comparison for the generated images from each model on FFHQ dataset.
Images in each row are generated from the same latent vector z but different azimuth or elevation
angles. The images with colormaps are the generated depth images.
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Figure 5: Visualization of comparison for the generated images from each model on ShapeNet car
images. Images in each row are generated from the same latent vector z but different azimuth or
elevation angles. The images with colormaps are the generated depth images.

ShapeNet car dataset are omitted for the visualization of point clouds. As shown in the figure, the
models can generate the convex shape of a face and the rectangular shape of a car without any anno-
tations regarding the 3D world. In particular, although the PGGAN and StyleGAN use a 2D CNN,
consistent rotation and depth estimation are achieved, which is impossible with previous methods.
This implies that the proposed method has good generalization performance on the generator archi-
tecture. The DeepVoxels—based method with the proposed loss performs well on both FFHQ and the
ShapeNet car dataset. They can acquire more consistent rotation and generate more consistent depth
images than 2D CNN-based models. This is thanks to the explicit 3D space modeling, though it
does consume much memory and has high computational cost. In the experiments, although the out-
put images for DeepVoxels—based models were half the size than that of StyleGAN-based models,
they required 2.5 times higher memory and 2.9 times longer computational times for one iteration.
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Figure 6: Normal map and point cloud visualization for FFHQ and ShapeNet car datasets. Point
clouds in occluded region are not visualized in the figure.

Table 1: Performance comparison of unconditional generation models and proposed camera
parameter—conditional models. We report FID, Vepin, and Voo (lower is better) for each model.

FFHQ ShapeNet Car
METRICS FID Vdepth Vcolor FID Vdepth Vco]or
PGGAN 28.5 - - 16.7 - -
PGGAN + 3D loss 30.3 0.00141 0.0142 | 145 0.00043 0.0444
StyleGAN 20.9 - - 15.5 - -
StyleGAN + 3D loss | 24.2 0.00077 0.0092 | 13.5 0.00027 0.0469
HoloGAN-Tike 234 n = ]335 - -
DeepVoxels 19.4 000487 0.0153 | 28.6 0.00045 0.0398
DeepVoxels + 3D loss | 21.1  0.00067 0.0072 | 31.2 0.00030 0.0283

For the ShapeNet car dataset in Figure 5, PGGAN- and StyleGAN-based methods can generate
consistently rotated images. However, for the PGGAN, only a 180° azimuth change is acquired.
This is because the model cannot distinguish between the front and back of the car, as it is difficult
to achieve only with unsupervised learning. Meanwhile, StyleGAN-based methods can learn con-
sistent azimuth and elevation angle changes. This is because the StyleGAN is stable owing to its
hierarchical latent representation.

Here we will compare the three 3D-latent—feature—based methods. In our training settings, the
“HoloGAN-like” method works well on the FFHQ dataset but cannot acquire consistent 360° ro-
tation on the ShapeNet car dataset. DeepVoxels—based methods, on the other hand, can control
360° object rotation on the dataset, realizing the depth map generation without any supervised in-
formation. This result shows that the depth reasoning helps to generate images considering the 3D
geometry of the objects. Moreover, DeepVoxels—based method with the proposed loss can gener-
ate more consistent images for the FFHQ dataset. For example, in “DeepVoxels”, the depth of the
background is smaller than that of the face, and the background pixels hide foregrounds when the
generated images are rotated as shown in Figure 6. However, this is not observed with the proposed
loss, as our method considers warped images from different viewpoints, which facilitates learning
the 3D world accurately.

Moreover, additional generative results on the car image and bedroom datasets are depicted in Fig-
ure 7. These datasets are more difficult to train than the other two datasets due to the imbalanced
distribution of the camera poses and the diversity of the object layouts. Although the models can
learn consistent rotation reasonably for both datasets, the models cannot generate consistent depth
maps. The results show the difficulty of the unorganized datasets.
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Figure 7: Generated car and bedroom images changing the azimuth angle range.

As aresult, the proposed method effectively helps various generators to learn both depth information
and explicit controls on camera poses. These are achieved without the need for 3D latent representa-
tions as required in HoloGAN. Moreover, the proposed method further improves the results for the
models using 3D latent representations.

Quantitative evaluation on RGB images We compared the Fréchet inception distance (FID)
(Heusel et al., 2017) between models with and without the proposed method for each generator
architecture. FID is a typical evaluation metric for the quality and diversity of the generated RGB
images. The results are shown in Table 1. The results show that the proposed camera parameter—
conditional image generation models can generate images with comparable or even better FIDs than
unconditional or RGB image generation models for all generator architecture types. Notably, this is
an unfair comparison because the models without 3D loss were trained just to minimize the distri-
bution distance between the appearance of the real and generated images, although the models with
3D loss learn camera parameter conditioning. The results show the robustness and effectiveness of
our method against the generator architectures.

Quantitative evaluation on RGBD images Evaluating the generated RGB and depth in the 3D
space is difficult as obtaining the ground truth color or depth for the generated images is impossi-
ble. A possible approach to evaluate RGBD images without ground truth images is by calculating
the inception score (IS) (Salimans et al., 2016) or FID on the generated images. However, this is
inappropriate, as IS and FID are estimated in the feature space of a pre-trained CNN, and they can-
not consider the 3D world geometry. Therefore, the evaluation of the generated RGBD with the
3D space is unattainable. Instead, we evaluated the color and depth consistency across the views
to quantitatively compare the RGBD images generated by different methods. For the point clouds
generated from the same latent vector z, but different camera parameters c, all points should be on
a single surface in the 3D space. Therefore, by calculating the variation of the generated RGBD
across the views, the 3D consistency can be quantitatively evaluated. We calculated the variance of
the point clouds for generated images as Vyepep, and Voo in Table 1. The details are provided in the
appendix. notably, these values cannot be calculated for PGGAN and StyleGAN without 3D loss,
and HoloGAN-like method.

The results show that DeepVoxels with 3D loss exhibited the best scores, due to the strong inductive
bias of the 3D-latent—representations. Compared to DeepVoxels without 3D loss, DeepVoxels with
3D loss generated consistent color and depth, exhibiting the effectiveness of the proposed loss.

5 CONCLUSION

We herein proposed an RGBD image synthesis technique for camera parameter—conditional image
generation. Although the proposed method does not require any labeled dataset, it can explicitly con-
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trol the camera parameters of generated images and generate consistent depth images. The method
does not limit the generator architecture, and can be used to condition any type of image generator
on camera parameters. As the proposed method can learn the relationship between camera param-
eters and images, future works will include extending the method for unsupervised camera pose
estimation and unsupervised camera pose invariant feature extraction from images.
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A “WARP” AND “PROJECTION”
Here, we explain the “warp” and “projection” operation in Equation 5.

Warp When we warp Grap(z,c2) to Grap(z, 1), first we calculate the position of pixels p.,
in Grgp(z, ¢1) when they are viewed from cs.

DCQpCQ = KRI—)QK_lpclpcl + Kt1~>2 (8)
Here, R;_,» and ?;_,o are relative rotation and translation matrices respectively. We warp
G reB(z, c2) according to the calculated positions, p..,. The operation is implemented with bilinear

sampling between the four neighboring pixel colors of warped coordinates, such that the operation
is differentiable. Same operation is performed to warp generated depth images.
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Figure 8: Comparison between the softmax weighting (left) and our occlusion reasoning algorithm
(right). The values denote the voxel weight, and the orange regions are the visible voxels in the
camera. For softmax weighting, the occlusion network needs to change the voxel weight, according
to the camera location. Our method accumulates the weight along the camera ray and ignored the
voxels where the accumulative values exceed one, thus the occlusion network does not need to
change the weights according to the camera location.

Projection As the depth values in warp(Gp(z, ¢2), ¢1—2) are sampled from Gp(z, ¢2), which is
viewed from cg, to compare G p(z, ¢1) with warp(Gp(z, c2), c1—2), we need to project the depth
values of each pixel in Gp(z,¢1) to the viewpoint co. This operation is the same as in Equation 8,
and D,, is used for the projected depth values. We denote it as “projection”.

B ‘/depth AND ‘/color

These metrics evaluated the depth and color consistency across the views. First, the images were
generated from the same z but different c. Second, the point clouds were plotted for each image
in the real-world coordinate. Third, the coordinates were converted to polar coordinates from the
origin, and the angle coordinates (azimuth and elevation) were quantized. Fourth, for each image,
the points were aggregated following the quantized coordinates, which we denote as “cell”. For
each cell, the point with the smallest radial coordinates were sampled. This prevented inaccurate
variance for cells with multiple surfaces. Fifth, the variance of the depth and color for each cell,
across different ¢, was calculated. Sixth, the variance was averaged across cells and different z.
Randomly sampled 100 z and 100 c for each z were employed to calculate the metrics.

For face images, the origin was set as (0,0,—0.5) (behind the head), and used —23° to 23° for
angular coordination. For ShapeNet car dataset, the origin was set as (0, 0,0), and used —180° to
180° for the azimuth angle and —90° to 90° for the elevation angle. The white region was ignored
for the evaluation of the ShapeNet car images.

C CAMERA PARAMETER DISTRIBUTIONS

To randomly sample two similar camera parameters, c; and ¢y, we sampled c¢; from a uniform
distribution and sampled c» from an area near to c;, within the angle range. We limited the maximum
distance between c¢; and co as 30°, to avoid large occlusions. Since it is difficult to obtain camera
intrinsics K from a single image, we fix K and the camera distance during training. We used K as,

2s 0
K:<0 2s ), )

0 0
wherein s is the size of images. We fixed the distance between the camera and origin of coordinates
as 1.

=N who|»

D IMPLEMENTATION DETAILS FOR DEEPVOXELS

The DeepVoxels—based methods were implemented using the projection layer, occlusion module,
and rendering module proposed in (Sitzmann et al., 2019). We implemented them with simpler
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Figure 9: Comparison of the occlusion reasoning algorithms. The proposed method can acquire
more consistent rotation and generate consistent depth maps than the softmax weighting.

structures than those in the original implementation, to reduce the computational and memory ex-
pense. We used fewer 3D convolutional layers for the occlusion module and a U-Net-like network
with AdalN for the rendering module. Moreover, for simplicity, we did not use the Identity regu-
lariser or style discriminator proposed in (Nguyen-Phuoc et al., 2019).

We employed a different algorithm in occlusion reasoning to enable consistent depth for the
ShapeNet car and car image datasets. The occlusion reasoning used to get image features in Deep-
Voxels is softmax weighting along the depth axis, which is visualized on the left side in Figure 8.
This algorithm needs the occlusion module to calculate the weight of the voxels according to the
camera poses, which is difficult through unsupervised learning. Therefore, to reduce the training ex-
penses of the occlusion network, we employ an explicit reasoning algorithm. The network estimates
the probability of each voxel to be on the surface of the object, i.e., the opacity of each voxel. This
is implemented using a sigmoid activation function. Further, the weights are accumulated along the
rays from the camera by adding-up the values. When the accumulated values exceed 1, the later
voxels are ignored by replacing the weight values with Os. By doing this, the occlusion module does
not need to change voxel weight according to the camera poses. The algorithm overview is shown
in the right side of Figure 8.

The image generation results on the ShapeNet car dataset using “DeepVoxels + 3D loss”, with each
algorithm, are depicted in Figure 9. The proposed occlusion reasoning model can acquire more
consistent 360° rotation, whereas the softmax weighting cannot. Moreover, the proposed algorithm
can generate consistent depth maps compared to the softmax weighting method. The results show
the effectiveness of the proposed method for unsupervised learning.

E TRAINING DETAILS

We trained PGGAN- and StyleGAN-based models for 250,000 iterations using batch-size of 32, and
3D-latent—feature—based models for 65,000 iterations with a batch-size of 10. All models are trained
with Adam optimizer with equalized learning rates 0.001 for the generators, 0.00001 for the map-
ping networks, and 0.003 for the discriminators. In the experiments, we used a ResNet-based dis-
criminator and non-saturating loss (Goodfellow et al., 2014) with gradient penalty (Mescheder et al.,
2018). Training with a single NVIDIA P100 GPU required 30, 40, and 50 hours for DeepVoxels—,
StyleGAN-, and PGGAN-based methods, respectively.

F ADDITIONAL RESULTS
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Figure 10: Additional results on FFHQ dataset. Images in each row are generated from the same la-
tent vector z but different azimuth or elevation angles. The images with colormaps are the generated
depth images.
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Figure 11: Additional results on ShapeNet car dataset. Images in each row are generated from the
same latent vector 2z but different azimuth or elevation angles. The images with colormaps are the
generated depth images.
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Figure 12: Randomly generated RGB images on the FFHQ dataset from PGGAN, with and without
proposed loss.
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Figure 13: Randomly generated RGB images on the ShapeNet car dataset from PGGAN, with and
without proposed loss.
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Figure 14: Randomly generated RGB images on the FFHQ dataset from StyleGAN

out proposed loss.

18



Published as a conference paper at ICLR 2020

< @ S O QR ap e R g
B s B > BB n G a2
iy W B e A BB SN, T W0
= . & = BN el -

G e W o

StyleGAN + 3D loss

oo a2 .ﬁ

ma "“ﬁﬁﬁ%@m-‘-
o Pemadg 1 m v

P

P oam m @ o &, L0 o
- W e w2 Pa
o e 2B e A g o, P A
ﬁ’&;ﬁghﬂ e o gy

-

@ Bl T T T e T R aER
StyleGAN

Figure 15: Randomly generated RGB images on the ShapeNet car dataset from StyleGAN, with and
without proposed loss.
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Figure 16: Randomly generated RGB images on the FFHQ dataset from DeepVoxels

without proposed loss.
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Figure 17: Randomly generated RGB images on the ShapeNet car dataset from DeepVoxels, with
and without proposed loss.
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