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ABSTRACT

Traditional compression methods including network pruning, quantization, low
rank factorization and knowledge distillation all assume that network architectures
and parameters are one-to-one mapped. In this work, we propose a new perspective
on network compression, i.e., network parameters can be disentangled from the
architectures. From this viewpoint, we present the Neural Epitome Search (NES),
a new neural network compression approach that learns to find compact yet expres-
sive epitomes for weight parameters of a specified network architecture end-to-end.
The complete network to compress can be generated from the learned epitome via
a novel transformation method that adaptively transforms the epitomes to match
weight shapes of the given architecture. Compared with existing compression
methods, NES allows the weight tensors to be independent of the architecture
design and hence can achieve a good trade-off between model compression rate
and performance given a specific model size constraint. Experiments demonstrate
that, on ImageNet, when taking MobileNetV2 as backbone, our approach improves
the full-model baseline by 1.47% in top-1 accuracy with 25% MAdd reduction,
and with the same compression ratio, improves AutoML for Model Compression
(AMC) by 2.5% in top-1 accuracy. Moreover, taking EfficientNet-B0 as baseline,
our NES yields an improvement of 1.2% but has 10% less MAdd. In particular,
our method achieves a new state-of-the-art results of 77.5% under mobile settings
(<350M MAdd). Code can be found at https://github.com/zhoudaquan/NES.

1 INTRODUCTION

Despite the remarkable performance achieved in many applications, powerful deep convolutional
neural networks (CNNs) typically suffer from high complexity (Han et al., 2015a). The large
model size and computation cost hinders their deployment on resource limited devices, such as
mobile phones. Very recently, huge efforts have been made to compress powerful CNNs. Existing
compression techniques can be generally categorized into four categories: network pruning (Han
et al., 2015a; Collins & Kohli, 2014; Han et al., 2015b), low rank factorization (Jaderberg et al.,
2014), quantization (Jacob et al., 2018; Hubara et al., 2017; Rastegari et al., 2016), and knowledge
distillation (Hinton et al., 2015; Papernot et al., 2016). Network pruning targets on removing
unimportant connections or weights to reduce the number of parameters and multiply-adds (MAdd).
Low rank factorization decomposes an existing layer into lower-rank and smaller layers to reduce
the computation cost. Weights quantization aims to use less number of bits to store the weights and
activation maps. Knowledge distillation uses a well trained teacher network to train a lightweight
student network. All of those compression methods assume that the model parameters (weight
tensors) must have one-to-one correspondence to the architectures. As a result, they suffer from
performance drop since changing architectures will inevitably lead to loss of informative parameters.

∗correspondence
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Figure 1: (a) illustrates the conventional convolution process; (b) shows the convolution with NES method.
Epitome E has a different shape as defined by the architecture. A transformation is learned automatically to
transform the E to a shape that match the architecture defined shape. By designing a smaller E, significant
compression can be achieved with less performance drop. In certain cases, the performance can be increased
with less computation as shown in Table 3.

In this paper, we consider the network compression problem from a new perspective where the shape
of the weight tensors and the architecture are designed independently. The key insight is that the
network parameters can be disentangled from the architecture and can be compactly represented by a
small-sized parameter set (called epitome), inspired by success of epitome methods in image/video
modeling and data sparse coding (Jojic et al., 2003; Cheung et al., 2008; Aharon & Elad, 2008). As
shown in Figure 1, unlike conventional convolutional layers that use the architecture tied weight
tensors to convolve with the input feature map, our proposed neural epitome search (NES) approach
first learns a compact yet expressive epitome along with an adaptive transformation function to
expand the epitomes. The transformation function is able to generate a variety of parameters from
epitomes via a novel learnable transformation function, which also guarantees the representation
capacity of the resulting weight tensors to be large. Our transformation function is differentiable and
hence enables the NES approach to search for optimal epitome end-to-end, achieving a good trade-off
between required model size and performance. In addition, we propose a novel routing map to
record the index mapping used for the transformation between the epitome and the convolution kernel.
During inference, this routing map enables the model to reuse computations when the expanded
weight tensors are formed based on the same set of elements in the epitomes and therefore effectively
reduces the computation cost.

Benefiting from the learned epitomic network parameters and transformation method, compared to
existing compression approaches, NES has less performance drop. To the best of our knowledge,
this is the first work that automatically learns compact epitomes of network parameters and the
corresponding transformation function for network compression. To sum up, our work offers the
following attractive properties:

• Our method is flexible. It allows the weight tensors to be independent of the architecture
design. We can easily control the model size by defining the size of the epitomes given a
specified network architecture. This is especially beneficial in the context of edge devices.
• Our method is effective. The learning-based transformation method empowers the epitomes

with highly expressive capability and hence incurs less performance drop even with large
compression ratios.
• Our method is easy to use. It can be encapsulated as a drop in replacement to the current

convolutional operator. There is no dependence on specialized platforms/frameworks for
NES to conduct compression.

To demonstrate the efficacy of the proposed approach, We conduct extensive experiments on CIFAR-
10 (Krizhevsky & Hinton, 2009) and ImageNet (Deng et al., 2009). On CIFAR-10 dataset, our method
outperforms the baseline model by 1.3%. On ImageNet, our method outperforms MobileNetV2
full model by 1.47% in top-1 accuracy with 25% MAdd reduction, and MobileNetV2-0.35 baseline
by 3.78%. Regarding MobileNetV2-0.7 backbone, our method improves AMC (He et al., 2018)
by 2.47%. Additionally, when taking EfficientNet-b0 (Tan & Le, 2019) as baseline, we have an
improvement of 1.2% top-1 accuracy with 10% MAdd reduction.

2 RELATED WORK

Traditional model compression methods include network pruning (Collins & Kohli, 2014; Han et al.,
2015b), low rank factorization (Jaderberg et al., 2014), quantization (Jacob et al., 2018; Hubara et al.,
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2017; Rastegari et al., 2016) and knowledge distillation (Hinton et al., 2015; Papernot et al., 2016).
For all of those methods, as mentioned in Section 1 extensive expert knowledge and manual efforts
are needed and the process might need to be done iteratively and hence is time consuming.

Recently, AutoML based methods have been proposed to reduce the experts efforts for model
compression (He et al., 2018; Zoph et al., 2018; Noy et al., 2019; Li et al., 2019) and efficient
convolution architecture design (Liu et al., 2018; Wu et al., 2018; Tan et al., 2018). As proposed in
AutoML for model compression (AMC (He et al., 2018)), reinforcement learning can be used as an
agent to remove redundant layers by adding resource constraints into the rewards function which
however is highly time consuming. Later, gradient based search method such as DARTS (Liu et al.,
2018) is developed for higher search efficiency over basic building blocks. There are also methods
that use AutoML based method to search for efficient architectures directly (Wu et al., 2018; He
et al., 2018). All of those methods are searching for optimized network architecture with an implicit
assumption that the weights and the model architecture have one-to-one correspondence. Different
from all of the above mentioned methods, our method provides a new search space by separating the
model weights from the architecture. The model size can thus be controlled precisely by nature.

Our method is also related to the group-theory based network transformation. Based on the group
theory proposed in Cohen & Welling (2016), recent methods try to design a compact filter to reduce
the convolution layer computation cost such as WSNet (Jin et al., 2017) and CReLU (Shang et al.,
2016). WSNet tries to reduces the model parameters and computations by allowing overlapping
between adjacent filters of 1D convolution kernel. This can be seen as a simplified version of our
method as the overlapping can be regarded as a fixed rule transformation. CReLu tries to learn
diversified features by concatenating ReLU output of original and negated inputs. However, as the
rule is fixed, the design of those schemes are application specific and time consuming. Besides, the
performance typically suffers since the scheme is not optimized during the training. In contrast, our
method requires negligible human efforts and the transformation rule is learned end-to-end.

3 METHOD

3.1 OVERVIEW

A convolutional layer is composed of a set of learnable weights (or kernels) that are used for
feature transformation. The observation of this paper is that the learnable weights in CNNs can be
disentangled from the architecture. Inspired by this fact, we provide a new perspective on the network
compression problem, i.e., finding a compact yet expressive parameter set, called epitome, along with
a proper transformation function to fully represent the whole network, as illustrated in Figure 1.

Formally, consider a convolutional network with a fixed architecture consisting of a stack of convo-
lutional layers, each of which is associated with a weight tensor θi (i is layer index). Further, let
L(X,Y ; θ) be the loss function used to train the network, where X and Y are the input data and label
respectively and θ = {θi} denotes the parameter set in the network. Our goal is to learn epitomes
E = {Ei} which have smaller sizes than θ and the transformation function τ = {τi} to represent
the network parameter θ with the compact epitome as τ(E). In this way, network compression is
achieved. The objective function of neural epitome search (NES) for a given architecture is to learn
optimal epitomes E∗ and transformation functions τ∗:

{E∗, τ∗} = argmin
E,τ

L(X,Y ; τ(E)), s.t. |E| < |θ|, (1)

where | · | calculates the number of all elements.

The above NES approach provides a flexible way to achieve network compression since the epitomes
can be defined to be of any size. By learning a proper transformation function, the epitomes
of predefined sizes can be adaptively transformed to match and instantiate the specified network
architecture. In the following sections, we will elaborate on how to learn the transformation functions
τ(·), the epitome (E ∈ RWE×HE×CE

in×C
E
out ) and how to compress models via NES in an end-to-end

manner. In this paper, we use “a sub-tensor in the epitome” to describe a patch of the epitome that
will be selected to construct the convolution weight tensor. The sub-tensor, Es, is represented with
the starting index and the length along each dimension in the epitome as shown below:

Es = E[p : p+ w, q : q + h, cin : cin + β1, cout : cout + β2], (2)
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Figure 2: Our proposed compression process along the spatial dimension. We only show the transformation
along spatial dimensions for easy understanding and the transformation along the channel dimension can be
found in Figure 3. The indexing learner learns the position mapping function,M : (i, j,m) −→ (p, q), between
the convolution kernel elements and the sub-tensor in the epitome Es. The learned starting indices and the
epitome are fed into Eqn. (7) to sample the weight tensor. The outputs of Eqn. (7) are concatenated together
to form the weight tensor. Note that we use a moving average way to updateM so that the indexing learner
can be removed during inference. This is shown in details in section 3.2 in the paragraph ‘Routing map’. The
whole training process is end-to-end trainable and hence can be used for any specified network architecture.
Here, we abuse the notion for the starting index pair (pn, qn) by using subscript n to denote the nth pair of the
starting index during sampling(Eqn. (7)) while in the main text, we use subscript t to denote the training epoch.
The learned indices and the epitome are fed into the interpolation-based sampler (Eqn. (7)) and the outputs of
Eqn. (7) are concatenated together to form the convolution weights tensor.

where (p, q, cin, cout) denote the starting index of the sub-tensor and (w, h, β1, β2) denotes the length
of the sub-tensor along each dimension.

3.2 DIFFERENTIABLE SEARCH FOR EPITOME TRANSFORMATION

As aforementioned, NES generates convolution weight tensors from the epitome E via a transfor-
mation function τ . In this section, we explain how the transformation τ is designed and optimized.
We start with the formulation of a conventional convolution operation. Then we introduce how the
transformed epitome is deployed to conduct the convolution operations, with a reduced number of
parameters and calculations.

A conventional 2D convolutional layer transforms an input feature tensor F ∈ RW×H×Cin to
an output feature tensor G ∈ RW×H×Cout through convolutional kernels with weight tensor
θ ∈ Rw×h×Cin×Cout . Here (W,H,Cin, Cout) denote the width, height, input and output chan-
nel numbers of the feature tensor; w and h denote width and height of the convolution kernel. The
convolution operation can be formulated as:

Gtw,th,c =

w−1∑
i=0

h−1∑
j=0

Cin−1∑
m=0

Ftw+i,th+j,mθi,j,m,c,∀ tw ∈ [0,W ), th ∈ [0, H), c ∈ [0, Cout). (3)

Instead of maintaining the full weight tensor θ, NES maintains a much smaller epitome E that can
generate the weight tensor and thus achieves model compression. To make sure the generated weights
τ(E) can conduct the above convolution operation without incurring performance drop, we carefully
design the transformation function τ with following three novel components: (1) a learnable indexing
function η to determine starting indices of the sub-tensor within the epitome E to sample the weight
tensor; (2) a routing mapM that records the location mapping from the sampled sub-tensors epitome
to the generated weight tensor; (3) an interpolation-based sampler to perform the sampling from E
even when the indices are fractional. We now explain their details.

Indexing function The indexing function η is used to localize the sub-tensor within the epitome
that is used to generate the weight tensor, as illustrated in Figure 2. Concretely, given the input feature
tensor F ∈ RW×H×Cin , the function generates indices as follows,

(p,q, cin, cout) = S(η(F )), (4)

where p,q, cin, cout are vectors of learned starting indices along the spatial, input channel and filter
dimensions respectively to sample the sub-tensor within epitome to generate the model weight tensors.
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Figure 3: Transformation along the input channel dimension of NES. In the figure, we only show three dimensions
of the epitome with E ∈ RW

E×HE×CE
in×1. To simplify the illustration, we set WE = w and HE = h where

w and h are the size of the convolution kernel. Thus, the starting indices along the spatial dimension,(p,q), are not
shown in the figure. The generated weight tensor has input channel number equal to 8. Rcin = dCin/β1e = 2
denotes the number of samplings applied along the input channel dimension. During each transformation,
sub-tensor with shape w × h× β1 is selected each time based on Eqn. (8) by replacing the starting index (p,q)
in Eqn. (7) with (cin) and enumerating over the input channel dimension. In this example, β1 is set to 4.

Each vector contains a set of starting indices and the element number inside each vector is equal to the
number of transformations that will be applied along each dimension. Note they are all non-negative
real numbers. η is the index learner and it outputs the normalized indices (p′,q′, c′in, c

′
out) through a

sigmoid function, each ranging from 0 to 1. These outputs are further up-scaled by a scaling function
S(·) to the corresponding dimension of the epitome by S(·)

S(p′,q′, c′in, c
′
out) = [WE , HE , CEin, C

E
out]⊗ [p′,q′, c′in, c

′
out], (5)

whereWE , HE , CEin, C
E
out are dimensions of the epitome and⊗ denotes element-wise multiplication.

The learned indices are then fed into the following interpolation based sampler to generate the weight
tensor. We implement the indexing learner by a two-layer convolution module that can be jointly
optimized with the backbone network end-to-end. In particular, we use separate indexing learners
and epitomes for each layer of the network. More implementation details are given in Appendix A.3.

Routing map The routing map is constructed to record the position correspondence between the
convolution weight tensor and the sub-tensor in the epitome. It takes a position within the weight
tensor as input and returns the corresponding starting index of the sub-tensor in the epitome. The
mapped starting index of the sub-tensor in the epitome can thus be retrieved from the routing map
fast. More importantly, the indexing learner can be removed during inference with the help of the
routing map. The routing map is built as a look-up table during the training phase by recording the
moving average of the output index from the index learner η. For example, the starting index pair as
shown in Figure 2 can be fetched via (pt, qt) =M(i, j,m) where (i, j,m) is the spatial location in
the weight tensor and (pt, qt) is the starting index of the selected sub-tensor in the epitome at training
epoch t. The routing mapM is constructed via Eqn. (6) as shown below with momentum µ during
the training phase. µ is treated as a hyper-parameter and is decided empirically1:

M(i, j,m) = (pt, qt) = (pt−1, qt−1) + µ · η(x). (6)

Interpolation based sampler The learned starting index and the pre-defined dimension
(w, h, β1, β2) of the sub-tensor in the epitome is then fed into the sampler function. The sam-
pler function samples the sub-tensor within the epitome to generate the weight tensor. To simplify
the illustration on the sampler function, we use the transformation along the spatial dimension as an
example as shown in Figure 2. The weight tensor is generated via the equation as shown below:

θ(:,:,m) = τ(E|(p, q)) =
WE−1∑
nw=0

HE−1∑
nh=0

G(nw, p)G(nh, q)E(nw:nw+w,nh:nh+h), (7)

where G(a, b) = max(0, 1−|a−b|); nw and nh enumerate over all integral spatial locations withinE.
Following Eqn. (7), we first find all sub-tensors in the epitome whose starting indices (nw, nh) along

1We set µ to be 0.97 in our experiments.
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spatial dimensions satisfy: G(nw, pt)G(nh, qt) > 0. Then a weighted summation (or interpolation)
over the involved sub-tensors is computed according to Eqn. (7). In the case of applying the sampling
along input channel dimension, (p, q) in the equation is replaced with the learned starting index cin
and the weight tensor is generated by iterating along the input channel dimension as shown below:

θ(:,:,m:m+β1) = τ(E|cin) =
Rcin−1∑
nc=0

G(nw, cin)E(:,:,cin:cin+β1), (8)

Where Rcin = dCin/β1e is the number of samplings applied along the input channel dimension.An
example of the generation process with Eqn. (8) along the channel dimension can be found in Figure 3.

The transformation function can be applied in any dimension of the weight tensor. Figure 2
illustrates the transformation along the spatial dimension and Figure 3 shows the transformation
along the input channel dimension. The transformation along the filter dimension is the same as
the transformation along the input channel dimension. However, transformation along the filter
dimension is easier for the computation reuse. We will show this in details in section 3.4.

3.3 LEARNING TO SEARCH EPITOMES END-TO-END

Benefiting from the differentiable Eqn. (7), the elements in E and the transformation learner η can be
updated together with the convolutional layers through back propagation in an end-to-end manner.
For each element in the epitome E, as its transformed weight parameter can be used in multiple
positions in weight tensor, the gradients of the epitome are thus the summation of all the positions
where the weight parameters are used.

Here, for clarity, we use {τ−1(p, q)} to denote the set of the indices in the convolution kernel that are
mapped from the same position (p, q) in E. Note that here we abuse the notion of (p, q) to denote the
integer spatial position in the epitome. The gradients of E(p,q) can, thus, be calculated as:

∇E(p,q)
L =

∑
z∈{τ−1(p,q)}

αz∇θzL, (9)

where θz is the kernel parameters that are transformed from E(p,q), and αz are the fractions that are
assigned to E(p,q) during the transformation. The epitome can thus be updated via Eqn. (10):

Et(pt,qt) = Et−1(pt,qt)
− ε∇Et−1

(pt,qt)
L, (10)

where ε denotes the learning rate and subscript t denotes the training epoch. Eqn. (9) and (10) use
the parameter updating rule along the spatial dimension as an example. The above equations can be
applied on any dimension by replacing the index mapping. The indexing learner η can be simply
updated according to the chain rule.

3.4 COMPRESSION EFFICIENCY

Parameter reduction By using the routing map which records location mappings from the sub-tensor
in the epitome to the convolution weight tensor, the indexing learner can be removed during the
inference phase. Thus, the total number of parameters during inference is decided by the size of the
epitome and the routing map. Recall that the epitome E is a four dimensional tensor with shape
(WE , HE , CEin, C

E
out). The size of an sub-tensor in the epitome is denoted as (w, h, β1, β2)2 where

β1 ≤ CEin and β2 ≤ CEout. The size of the epitome can be calculated as WE ×HE × CEin × CEout.
The size of the routing mapM is calculated as 3×Rcin +Rcout where Rcout = dCout/β2e is the
number of starting indices learned along the output channel dimension, and 3×Rcin = 3×dCin/β1e
is the number of starting index learned along the spatial and input channel dimension. Note that we
can enlarge the size of the sub-tensor in the epitome to reduce the size of the routing map. Here, the
size is referring to the number of parameters. Detailed explanations of how Rcin is calculated can be
found in the Figure 3. The parameter compression ratio r can thus be calculated via Eqn. (11):

r =
w × h× Cin × Cout

WE ×HE × CEin × CEout + 3×Rcin +Rcout
≈ Cout × Cin × w × h
CEout × CEin ×WE ×HE

, (11)

2We set β1 to CEin and β2 to CEout in this paper.
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Figure 4: NES transformation along the input channel dimension with channel wrapping. To simplify the
illustration, we choose an epitome with shape Rw×h×3×1 and CEin = 3. In this example, the transformation is
applied twice and the two learned starting indices are 0 . The input feature map F is first added based on the
learned interpolation position of the kernels. Input feature map F1 and F4 are both multiplied with the first
channel in the epitome since W1 and W4 are both generated with E1. To reuse the multiplication, feature map
F1 and F4 are first added together before multiplying with the weights kernel E1. The figure uses integer index
to simplify the illustration. When the learned indices are fractions, the feature maps are the weighted summation
of the two nearest integer indexed sub-tensors in the epitome as shown in Eqn. (8). For example, if the two
starting indices in this figure are 0.6 and 0.3, the calculation becomes (0.6F1 + 0.3F4 + 0.4F3 + 0.7F6)⊗E1 +
(0.4F1 + 0.7F4 + 0.6F2 + 0.3F5) ⊗E2 + (0.4F2 + 0.7F5 + 0.6F3 + 0.3F6) ⊗E3. Since we group the feature
map first before the convolution, the computation cost is reduced.

From Eqn. (11), it can be seen that the compression ratio is nearly proportional to the ratio between the
size of the epitome and the generated weight tensor. Detailed proof can be found in Appendix E. The
above analysis demonstrates that NES provides a precise control of the model size via the proposed
transformation function.

Computation reduction As the weight tensor θ is generated from the epitome E, the computation in
convolution can be reused when different elements in θ are from the same portion of elements in E.

Concretely, we propose two novel schemes to reuse the computation along the input channel dimen-
sion and the filter dimension respectively.

Channel wrapping. During the inference, the computation along the input channel dimension is
reduced with channel wrapping as illustrated in Figure 4. For the elements in the input feature map
that are multiplied with the same element in the epitome, we group the feature map elements first and
then multiplied with the weight tensor in the epitome as follows:

F̃ (i, j,m) =

Rcin−1∑
c′=0

F (p, q,m+ c′ × CEin + cin), (12)

where Rcin = dCin/CEine is the number of samplings (Eqn. (8)) applied along the input channel
dimension and m + cin + c′ × CEin is the learned position with (p, q, cin) = M(i, j,m) and
cin ∈ [0, CEin). This process is also illustrated in Figure 4.

Product map and integral map. For the reuse along the filter dimension, given the routing mapM
for the transformation, we first calculate the convolution results between the epitome and the input
feature map once and then save the results as a product map P .

During inference, given P , the multiplication in convolution can be reused in a lookup table manner
with O(1) complexity:

Gtw,th,c =

W−1∑
i=0

H−1∑
j=0

Cin−1∑
m=0

Ftw+i,th+j,mθM(i,j,m,c) =

W−1∑
i=0

H−1∑
j=0

Cin−1∑
m=0

PM(i,j,m,c). (13)

The additions in Eqn. (13) can also be reused via an integral map I (Crow, 1984) as done in Viola
et al. (2001). With the product map and the integral map, the MAdd can be calculated as:

Reduced MAdd = (2CinW
EHE − 1)WHCEout +WHWEHECEout +2RcinWHβ1 +2Rcoutβ2.

(14)
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Table 1: Comparison with WSNet on ESC-50 dataset. We use the same configuration but change the sampling
stride to be learnable. ‘S’ denotes the stride and ‘C’ denotes the repetition times along the input channel
dimension. We use the ‘S’ in WSNet as initial values and learns the offsets.

Method Conv1 Conv2 Conv3 Conv4 Conv5 Conv{6-8} Acc. (%) Params

Config. S C S C S C S C S C S C

baseline 1 1 1 1 1 1 1 1 S 1 1 1 66.0 1×
WSNet 8 1 4 1 2 2 1 2 S 4 1 8 66.5 4×
Ours 8 1 4 1 2 2 1 2 S 4 1 8 73.0 4×

Table 2: Results of ImageNet classification. Our method uses vanilla MobileVetV2 as backbone. For a fair
comparison, we evaluate multiple width multiplier values of 0.75, 0.5, 0.35 and 0.18 and only apply it on the
filter dimension of the first 1× 1 convolution. We apply the proposed method on all the invert residual blocks
equally to disentangle the architecture affects on the performance. MAdd are calculated based on all convolution
blocks with an assumption that the batch normalization layers are merged. ‘∗’ denotes our own implementation.

Methods MAdd(M) Parameters Param Compression Rate Top-1 Accuracy(%)

MobilenetV2-1.0 301 3.4M 1.00× 71.8
MobilenetV2-0.75∗ 217 2.94M 1.17× 69.14
MobilenetV2-0.5∗ 153 2.52M 1.36× 67.22
MobilenetV2-0.35∗ 115 2.26M 1.54× 65.18
MobilenetV2-0.18∗ 71 1.98M 1.80× 60.70

Our method-0.75 220 2.94M 1.17× 71.54
Our method-0.5 157 2.52M 1.36× 69.42
Our method-0.35 120 2.26M 1.54× 67.01
Our method-0.18 79 1.95M 1.80× 64.48

Hence, the computation cost reduction ratio can be written as:

MAdd Reduction Ratio =
CoutHW (2Cinwh− 1)

CEoutHW (WEHE + 2CEinW
EHE − 1) + 2RcinWHβ1 + 2β2Rcout

(15)

See more details and analysis in Appendix E.
Discussion. We make a few remarks on the advantages of our proposed method as follows. The
proposed NES method disentangles the weight tensors from the architecture by using a learnable
transformation function. This provides a new research direction for model compression by bringing
in better design flexibility against the traditional compression methods on both sides of software and
hardware. On the software side, NES does not require re-implementation of acceleration algorithms.
All the operations employed by NES are compatible with popular neural network libraries and can be
encapsulated as a drop in operator. On the hardware side, the memory allocation of NES is more
flexible by allowing easily adjust the epitome size. This is especially helpful for hardware platform
where the off chip memory access is the main power consumption as demonstrated in Han et al.
(2016). NES provides a way to balance the computation/memory-access ratio in hardware: a smaller
epitome with a complex transformation function results in a computation intense model while a large
epitome with simple transformation function results in a memory intensive model. Such ratio is an
important hardware optimization criteria which however is not covered by most previous compression
methods.

4 EXPERIMENTS

We first evaluate the efficacy of our method in 1D convolutional model compression on the sound
dataset ESC-50 (Piczak, 2015) for the comparison with WSNet. We then test our method with
MobileNetV2 and EfficientNet as the backbone on 2D convolutions on ImageNet dataset (Deng et al.,
2009) and CIFAR-10 dataset (Krizhevsky & Hinton, 2009). Detailed experiments settings can be
found in Appendix A. For all experiments, we do not use additional training tricks including the
squeeze-and-excitation module (Hu et al., 2018) and the Swish activation function (Ramachandran
et al., 2017) which can further improve the results unless those are used in the bachbone model
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Table 3: Comparison of our method with other state-of-the-art models on ImageNet where our method shows
superior performance over all other methods. MAdd are calculated based on all convolution blocks with an
assumption that the batch normalization layers are merged. Suffix ‘-A’ means we use larger compression ratio for
front layers. Our method does not modify the backbone model architecture and applies a uniform compression
ratio, unless specified with suffix ‘-A’. All experiments are using MobileNetV2 as backbone unless labeled with
EfficientNet as suffix.

GROUP Methods MAdd (M) Params Top-1 Acc. (%)

60M
MAdd

MobilenetV2-0.35 (Sandler et al., 2018) 59 1.7M 60.3
S-MobilenetV2-0.35 (Yu et al., 2018) 59 3.6M 59.7
US-MobilenetV2-0.35 (Yu & Huang, 2019b) 59 3.6M 62.3
MnasNet-A1 (0.35x) (Tan et al., 2018) 63 1.7M 62.4
Our method-0.18 79 2.0M 64.48

100M
MAdd

MobilenetV2-0.5 (Sandler et al., 2018) 97 2.0 M 65.4
S-MobilenetV2-0.5 (Yu et al., 2018) 97 3.6M 64.4
US-MobilenetV2-0.5 (Yu & Huang, 2019b) 97 3.6M 65.1
Our method-0.35 120 2.2M 67.01

200M+
MAdd

MobilenetV2-0.75 (Sandler et al., 2018) 209 2.6 M 69.8
S-MobilenetV2-0.75 (Yu & Huang, 2019a) 209 3.6M 68.9
US-MobilenetV2-0.75 (Yu & Huang, 2019b) 209 3.6M 69.6
FBNet-A (Wu et al., 2018) 246 4.3M 73
AUTO-S-MobilenetV2-0.75 (Yu & Huang, 2019a) 207 4.1M 73
Our method-0.5 157 2.5M 69.42
Our method-0.75 220 2.9M 71.54
Our method-0.75-A 225 3.7M 73.27
Our method-0.5 (EfficientNet-b0) 240 3.92M 75.55
Our method-0.5 (EfficientNet-b1) 350 5.46M 77.5

originally. The calculation of MAdd is performed for all convolution blocks. We evaluate our methods
in terms of three criteria: model size, multiply-adds(MAdd) and the classification performance.

4.1 1D CNN COMPRESSION

For 1D convolution compression, we compare with WSNet. Similar to WSNet (Jin et al., 2017), we
use the same 8-layer CNN model for a fair comparison. The compression ratio in WSNet is decided
by the stride (S) and the repetition times along the channel dimension (C), as shown in Table 1. From
Table 1, one can see that with the same compression ratio, our method outperforms WSNet by 6.5%
in classification accuracy. This is because our method is able to learn proper weights and learn a
transformation rules that are adaptive to the dataset of interest and thus overcome the limitation of
WSNet where the sampling stride is fixed. More results can be found in Appendix B.

4.2 2D CNN COMPRESSION

Implementation details. We use both MobilenetV2 (Sandler et al., 2018) and EfficientNet (Tan &
Le, 2019) as our backbones to evaluate our approach on 2D convolutions. Both models are the most
representative mobile networks very recently and have achieved great performance on ImageNet
and CIFAR-10 datasets with much fewer parameters and MAdd than ResNet (He et al., 2016) and
VGGNet (Simonyan & Zisserman, 2014). For a fair comparison, we follow the experiment settings
as in the original papers.

Results on ImageNet. We first conduct experiments on the ImageNet dataset to investigate the
effectiveness of our method. We use the same width multiplier as in Sandler et al. (2018) as our
baseline. We choose four common width multiplier values, i.e., 0.75, 0.5, 0.35 and 0.18 (Sandler
et al., 2018; Zhang et al., 2018; Yu et al., 2018) for a fair comparison with other compression
approaches.

The performance of our method and the baseline is summarized in Table 2. For all the width
multiplier values, our method outperforms the baseline by a significant margin. It can be observed
that under higher compression ratio the performance gain is also larger. Moreover, the performance
of MobileNetV2 drops significantly when the compression ratio is larger than 3×. However, our NES
method increases the performance by 3.78% at a large compression ratio. This is because when the
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Figure 5: ImageNet classification accuracy of our method, EfficientNet, MobileNetV2 baselines and other
NAS based methods including AMC (He et al., 2018), IGCV3 (Sun et al., 2018), MNasNet (Tan et al., 2018),
ChamNet (Dai et al., 2018) and ChannelNet (Gao et al., 2018). Our method outperforms all the methods within
the same level of MAdd. Here, MobileNetV2∗ is our implementation of baseline models and MobileNetV2
is the original model with width multiplier of 0.35,0,5,0,75 and 1. The backbone model for our results are
EfficientNet b1 and b0 (Tan & Le, 2019) with multiplier 0.5 and MobileNetV2 with multiplier of 0.75, 0.5,
0.35 and 0.2, respectively (from top to bottom). Note that we do not use additional training tricks including the
squeeze-and-excitation module (Hu et al., 2018) and the Swish activation function (Ramachandran et al., 2017).

compression ratio is high, each layer in the baseline model does not have enough capacity to learn
good representations. Our method is able to generate more expressive weights from the epitome with
a learned transformation function.

We also compare our method with the state-of-the-art compression methods in Table 3. Since an
optimized architecture tends to allocate more channels to upper layers (He et al., 2018; Yu & Huang,
2019a), we also run experiments with larger size of the epitome for upper layers. The results is
denoted with suffix ‘-A’ in Table 3. Comparison with more models are shown in Figure 5. As shown,
NES outperforms the current SOTA mobile model (less than 400M MAdd model) EfficientNet-b0
by 1.2% with 40M less MAdd. Obviously, our method performs even better than some NAS-based
methods.Although our method does not modify the model architecture, the transformation from the
epitome to the convolution kernel optimizes the parameter allocation and enriches the model capacity
through the learned weight combination and sharing.

Results on CIFAR-10. We also conduct experiments on CIFAR-10 dataset to verify the efficiency
of our method as shown in Table 6. Our method achieves 3.5×MAdd reduction and 5.64× model
size reduction with only 1% accuracy drop, outperforming NAS-based AUTO-SLIM (Yu & Huang,
2019a). More experiments and implementation details are shown in the supplementary material.

Discussion. From the above results, one can observe significant improvements of our method over
competitive baselines, even the latest architecture search based methods. The improvement of our
method mainly comes from alleviating the performance degradation due to insufficient model size
by learning richer and more reasonable combination of weights parameters and allocating suitable
weight parameters sharing among different filters. The learned transformation from the epitome to the
convolution kernel increases the weight representation capability with less increase on the memory
footprint and the computation cost. This distinguishes our method from previous compression
methods and improves the model performance significantly under the same compression ratio.

5 CONCLUSION

We present a novel neural epitome search method which can reuse the parameters efficiently to reduce
the model size and MAdd with minimum classification accuracy drop or even increased accuracy
in certain cases. Motivated by the observation that the parameters can be disentangled form the
architecture, we propose a novel method to learn the transformation rule between the filters to make
the transformation adaptive to the dataset of interest. We demonstrate the effectiveness of the method
on CIFAR-10 and ImageNet dataset with extensive experimental results.

Acknowledgement Jiashi Feng was partially supported by NUS IDS R-263-000-C67-646, ECRA
R-263-000-C87-133, MOE Tier-II R-263-000-D17-112 and AI.SG R-263-000-D97-490.
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A IMPLEMENTATION DETAILS

A.1 MOBILENETV2 SETTINGS

Epitome dimensions for MobileNetV2 bottleneck. With our NES method, the shape of the feature map
produced by each layer can be kept the same as the ones from the original model before compression. However,
the number of channels in the feature map is reduced using the width multiplier method for MobileNetV2. Hence,
for a fair comparison, we only apply the width multiplier on the output dimension of the first 1× 1 convolutional
layer and the input channel dimension of the second 1× 1 convolutional layer within the bottleneck blocks of
MobileNetV2 for obtaining the same feature map shape between blocks as our method. Based on this principle,
we generate weight tensor based on the epitome along the filter dimension for the first 1× 1 convolutional layers
within the bottleneck and along the input channel dimension for the second 1× 1 convolutional layers.

Specifically, we set the epitome shape per layer as (#in channels, #out channels×expansion
multiplier

, 1, k) for the first
1×1 convolution layer and (#in channels×expansion

multiplier
,#out channels, 1, k) for the second 1×1 layer as shown

in Table 4. Here, expansion is referring to the ratio between the input size of the bottleneck and the inner size as
detailed in Figure 2 of (Sandler et al., 2018). The shape represents the number of input channels, the number of
output channels and the kernel size, respectively. The compression ratio for each layer, c, can thus be calculated
as c = 1

multiplier
.

Table 4: Epitome dimensions for the inverted residual blocks of the MobileNetV2 backbone. Here w, h, k, k′

denotes the spatial size, input channels and output channels of the input feature map respectively. Variables
wc and hc denote the spatial size of the epitome and are set to 1 for 1 × 1 convolutional layer. c is used
to set the compression ratio for each layer and is similar to the concept of width multiplier as defined in
MobileNet (Howard et al., 2017). t is the expansion ratio as defined in MobileNetV2.

Input Operators Output Epitome Comp. ratio

h× w × k 1× 1, conv2d, ReLU6 h× w × tk wc × hc × k × ctk wc×hc
c

h
s
× w

s
× tk 3× 3, depth-wise separable, ReLU6 h

s
× w

s
× tk – 1

h
s
× w

s
× tk 1× 1, conv2d, linear h

s
× w

s
× k′ wc × hc × ctk × k′ wc×hc

c

A.2 EPITOME DIMENSION DESIGN

The size of the epitome can be calculated precisely by the original model and the desired compression ratio r. For
a CNN with C n-dimensional convolutional layers and K fully-connected layers, its number of parameters can
be calculated as

∑C
i=1

∏
d L

i
d +

∑K
k=1N

k
inN

k
out, where Lid denotes the length of the convolution weight tensor

along the dth dimension of the ith convolutional layer. Nk
in and Nk

out denote the input and output dimension of
the kth fully-connected layer.

We assign an epitome Ej ∈ RW
E
j ×H

E
j for each layer j, and a routing mapM : (x1, x2, . . . , xn)→ (p, q), i.e.,

the weight value of an n-d filter at location (x1, x2, . . . , xn) being equal to E(p, q). We define the dimension
of the epitome to be 2D here to illustrate the general case and later, we will show that in practice, the dimension
of the epitome can be increased to save the computation memory. The size of the total epitome is, thus,∑C+K
j=1 WE

j ×HE
j . After learning the routing map for layer j, we store the location mapping as a lookup table

of size Mj . The size of all the mapping tables is
∑C+K
j=1 Mj . Hence, the compression ratio can be calculated as

r =

∑C
i

∏
d L

d
i +

∑K
k N

k
inN

k
out∑C+K

j (WE
j ×HE

j +Mj)
. (16)

In our analysis, we use a uniform compression ratio for all the layers. Therefore, given a compression ratio r,
the size of the epitome for each layer can be calculated accordingly. This deterministic design of the epitome
size is hardware friendly and can be used to control the memory allocation.

Epitome patch design We set the patch size along each dimension to be w, h, β1 and β2. Note that the
transformation along each dimension are independent and hence can be conducted separately. The starting index
of the transformation along the spatial dimension and the input channel dimension are learned in pairs. This is
because the transformation along the spatial dimension will also increase the input channel dimension.

13



Published as a conference paper at ICLR 2020

A.3 INDEX SEARCH SPACE IN EPITOME

The selection space of the starting index for the transformation is not all the indices available along the channel
dimension. We partition the channels into groups to build a super-index with a group length lg . For example,
for an epitome that has C channels along the input channel dimension, the potential channel index ranges from
0 to C - 1. With our super-index scheme, adjacent lg channels are grouped as a single index Cg and thus, the
selection space of the index ranges from 0 to C/lg − 1. The range of the super-index is used to scale the output
from the transformation learner.

B MORE RESULTS ON 1D CONVOLUTION COMPRESSION

We also conduct experiments to examine the highest compression ratio that our method can achieve without
performance drop compared to WSNet (Jin et al., 2017). For a fair comparison, we choose the same 8-layer
CNN model backbone as used in WSNet. Configuration details have been demonstrated in Table 1 in the formal
paper. The results are shown in Table 5.

Table 5: Comparison with WSNet on ESC-50 dataset. We choose the compressed model by WSNet method as
our baseline. By decreasing the size of the epitome, we can achieve higher compression ratio. We apply uniform
compression ratio for all layers. It is observed that the highest compression ratio we can achieve before our
method’s performance become smaller than WSNet is 3.16×.

Methods Compression Rate Accuracy (%) (top1)

WSNet 1.00× 66.5
Our method-1 1× 73.0
Our method-2 2.35× 69.25
Our method-3 3.16× 65.5

C EXPERIMENT RESULTS ON CIFAR10

The experiment results are shown in Table 6

Table 6: Comparison with other state-of-the-art models in classification accuracy on CIFAR-10. Our method
outperforms the recently proposed AUTO-SLIM (Yu & Huang, 2019a) which is a compression method using
AutoML method.

Methods Parameters MAdd (M) Top-1 Accuracy(%)

MobilenetV2-1 2.2M 93.52 94.06∗

MobilenetV2-0.18∗ 0.4 M 21.59 91.70
Auto-Slim 0.7M 59 93.00
Auto-Slim 0.3M 28 92.00
Our method 0.39M 26.8 93.22± 0.013

D NES FOR FULLY-CONNECTED LAYER

Let D ∈ RNin×Nout denotes the parameter matrix for a fully-connected (FC) layer. We could use Eqn. (18)
to sampling along the input dimension and Eqn. (23) to sample along the output dimension. We also conduct
experiments on CIFAR-10 dataset to verify the efficacy of our method on FC layers as shown in Table 7. We
take MobileNetV2-1.0 as our baseline.

Table 7: Experiment results of our method applied on fully connected layer of MobileNetV2.

Methods Parameters Model Comp. Rate FC Param. Comp. Rate Top-1 Acc. (%)

MobileNetV2-1 2.2M 1.00× 1.00× 94.06
MobileNetV2-0.5 FC∗ 0.4 M 5.55× 2.00× 91.8

Our method-0.5 FC 0.39M 5.64× 2.00× 92.96
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Figure 6: NES transformation along the input channel dimension with channel wrapping. To simplify the
illustration, we choose an epitome with shape Rw×h×3×1 and β1 = 3. The transformation is applied twice
and the two starting indices are 0. The input feature map F is first grouped based on the learned interpolation
position of the kernels. Input feature map F1 and F4 are both multiplied with the first channel in the epitome
since W1 and W4 are both generated with E1. To reuse the multiplication, feature map F1 and F4 are first
added together before multiplying with the weights kernel E1. The figure uses integer index to simplify the
illustration. When the learned indices are fractions, the feature maps are the weighted summation of the two
nearest integer indexed sub-tensors in the epitome as shown in Eqn. (7). For example, if the two starting indices
in this figure are 0.6 and 0.3, the calculation becomes (0.6F1 + 0.3F4 + 0.4F3 + 0.7F6)⊗E1 + (0.4F1 + 0.7F4 +
0.6F2 + 0.3F5) ⊗E2 + (0.4F2 + 0.7F5 + 0.6F3 + 0.3F6) ⊗E3. Since we group the feature map first before the
convolution, the cost is reduced.

E PROOF ON PARAMETER AND COMPUTATION REDUCTION

With the epitome E as defined in the main text, our method introduces a novel transformation function where
the convolution filter weights are transformed from E with τ(·). In this section, we start with the most general
situation where the epitome is two-dimensional,E ∈ RW

E×HE

, and we will show that increasing the dimension
of epitome can reduce the computation memory cost aggressively. Our method can be extended to n-dimension
convolution and fully-connected layers straightforwardly. The transformation process along the input channel
dimension is illustrated in Figure 3 In our method, all the weight parameters θi,j,m,c are transformed from the
compact epitome E. The convolution with NES is shown as below:

Gtw,th,c = ftw,th ∗ kc =
W∑
i

H∑
j

Cin∑
m

Ftw+i,th+j,mEM(i,j,m,c). (17)

Proof on computational cost reduction. Since the weight elements per convolutional layer are formed
based on the same E, there is computational redundancy when two convolution kernels are selected from the
same portion of E as shown in Figure 2. To reuse the multiplication in convolution, we first compute the
multiplication between each element in the epitome E and the input feature map. The results are saved as a
product map P such that the computations are done only once. However, given the epitome E ∈ RW

E×HE

, the
product map size is W ×H × Cin ×WE ×HE × Cout which consumes large computational memory. To
reduce its size, we propose to increase the dimensions of the epitome to E ∈ RW

E×HE×CE
in×C

E
out in order

to group the computation results in the product map. Each entry in the product map P is calculated as the dot
product between the channel dimension along the input feature map and the third dimension along the compact
weight matrix. We set CEin to be smaller than Cin to further boost the compression and β1 equal to CEin. As
illustrated in Figure 4, the input channels of the feature map is first grouped by

F̃ (i, j,m) =

Rcin−1∑
c′=0

F (p, q,m+ c′ × CEin + cin), (18)

where Rcin = dCin/CEine is the compression ratio along the input channel dimension and m+ cin + c× CEin
is the learned position with (p, q, cin, n) =M(i, j, c,m), where cin ∈ [1, CEin]. The transformed input feature
map F̃ has the same number of channels as CEin. Let (i, j,m) index the transformed feature map location. The
product map is then calculated as

Pi,j,p,q,n = F̃i,j,: · E′p,q,:,n, (19)
where · denotes the dot product operation.

Now, the multiplications can be reused by replacing the convolution kernels with the product map P . Based on
Eqns. (17), (18), (19), the convolution can be reduced by

Gtw,th,n =

W−1∑
i=0

H−1∑
j=0

P(tw+i,th+j,p,q,n). (20)
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To reuse the additions, we adopt an integral image I which is proposed in (Crow, 1984) but differently we extend
the integral image dimension to make it suitable for 2D convolution based on P . Our integral image can be
constructed by

I(tw, th, p, q, n) =



P0,th,p,q,n, tw = 0

Ptw,0,p,q,n, th = 0

Ptw,th,0,q,n, p = 0

Ptw,th,p,0,n, q = 0

Ptw,th,p,q,0, n = 0

I(tw − 1, th − 1, p− 1, q − 1, n− 1) + P (tw, th, p, q, n), else.

(21)

From Eqn. (21), the 2D convolution results can be retrieved in a similar way to (Jin et al., 2017) as follows:

Gtw,th,p,q,n = I(tw+w−1, th+h−1, p+w−1, q+h−1, n)−I(tw−1, th−1, p−1, q−1, n−1). (22)

As we set CEout to be smaller than the output channel dimension of the convolution kernel, we reuse the
computation results from the epitome via

G̃tw,th,rout×β2:(rout+1)×β2 = Gtw,th,n:n+β2 , (23)

where rout ∈ {0, 1, ..., Rcout − 1}, Rcout = dCout/β2e is the number of samplings conducted along the
output channel dimension, and n =M(rout × β2) is the learned mapping along the filter dimension. The filter
length β2 ∈ {1, 2, ..., CEout} is a hyper-parameter and is decided empirically. In our experiments, we choose
β2 = Cout. Thus, the MAdds can be calculated as

Reduced MAdd = (2CinW
EHE − 1)WHCEout︸ ︷︷ ︸
From Eqn. (19)

+WHWEHECEout︸ ︷︷ ︸
From Eqn. (21)

+2RcinWHβ1︸ ︷︷ ︸
From Eqn. (18)

+ 2Rcoutβ2︸ ︷︷ ︸
From Eqn.(23)

. (24)

Suppose we use sliding window with a stride of 1 and no bias term, the MAdds of the conventional convolution
can be calculated based on Eqn. (3) as shown below:

MAdd = (2× Cin × w × h− 1)×H ×W × Cout. (25)

Therefore, the total MAdd reduction ratio is

MAdd Reduction Ratio =
CoutHW (2Cinwh− 1)

CEoutHW (WEHE + 2CEinW
EHE − 1) + 2RcinWHβ1 + 2β2Rcout

≈ CoutCinwh

CEoutC
E
inW

EHE

(26)

Proof on parameter reduction. The parameter compression ratio for a 2D convolution layer can be
calculated as follows:

r =
whCinCout

WE ×HE × CEin × CEout + 3×Rcin +Rcout
, (27)

where w and h denote the width and height of the kernel of the layer. Wc and Hc denote the spatial size of the
corresponding epitome. From Eqn. (26) and Eqn. (27), it can be observed that the compression ratio is mainly
decided by CoutCinwh

CE
outC

E
inW

EHE .
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