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Abstract

Randomly initialized first-order optimization algorithms are the method of
choice for solving many high-dimensional nonconvex problems in machine
learning, yet general theoretical guarantees cannot rule out convergence to
critical points of poor objective value. For some highly structured nonconvex
problems however, the success of gradient descent can be understood by
studying the geometry of the objective. We study one such problem –
complete orthogonal dictionary learning, and provide converge guarantees
for randomly initialized gradient descent to the neighborhood of a global
optimum. The resulting rates scale as low order polynomials in the dimension
even though the objective possesses an exponential number of saddle points.
This efficient convergence can be viewed as a consequence of negative
curvature normal to the stable manifolds associated with saddle points, and
we provide evidence that this feature is shared by other nonconvex problems
of importance as well.

1 Introduction

Many central problems in machine learning and signal processing are most naturally for-
mulated as optimization problems. These problems are often both nonconvex and high-
dimensional. High dimensionality makes the evaluation of second-order information pro-
hibitively expensive, and thus randomly initialized first-order methods are usually employed
instead. This has prompted great interest in recent years in understanding the behavior
of gradient descent on nonconvex objectives (18; 14; 17; 11). General analysis of first- and
second-order methods on such problems can provide guarantees for convergence to critical
points but these may be highly suboptimal, since nonconvex optimization is in general an
NP-hard probem (4). Outside of a convex setting (28) one must assume additional structure
in order to make statements about convergence to optimal or high quality solutions. It is
a curious fact that for certain classes of problems such as ones that involve sparsification
(25; 6) or matrix/tensor recovery (21; 19; 1) first-order methods can be used effectively. Even
for some highly nonconvex problems where there is no ground truth available such as the
training of neural networks first-order methods converge to high-quality solutions (40).

Dictionary learning is a problem of inferring a sparse representation of data that was originally
developed in the neuroscience literature (30), and has since seen a number of important
applications including image denoising, compressive signal acquisition and signal classification
(13; 26). In this work we study a formulation of the dictionary learning problem that can be
solved efficiently using randomly initialized gradient descent despite possessing a number
of saddle points exponential in the dimension. A feature that appears to enable efficient
optimization is the existence of sufficient negative curvature in the directions normal to the
stable manifolds of all critical points that are not global minima 1. This property ensures
that the regions of the space that feed into small gradient regions under gradient flow do
not dominate the parameter space. Figure 1 illustrates the value of this property: negative
curvature prevents measure from concentrating about the stable manifold. As a consequence
randomly initialized gradient methods avoid the “slow region” of around the saddle point.

1As well as a lack of spurious local minimizers, and the existence of large gradients or strong
convexity in the remaining parts of the space
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Figure 1: Negative curvature
helps gradient descent. Red:
“slow region” of small gradient
around a saddle point. Green: sta-
ble manifold associated with the
saddle point. Black: points that
flow to the slow region. Left: global
negative curvature normal to the
stable manifold. Right: positive
curvature normal to the stable man-
ifold – randomly initialized gradient
descent is more likely to encounter
the slow region.

The main results of this work is a convergence rate for randomly initialized gradient descent
for complete orthogonal dictionary learning to the neighborhood of a global minimum of the
objective. Our results are probabilistic since they rely on initialization in certain regions of
the parameter space, yet they allow one to flexibly trade off between the maximal number of
iterations in the bound and the probability of the bound holding.

While our focus is on dictionary learning, it has been recently shown that for other impor-
tant nonconvex problems such as phase retrieval (8) performance guarantees for randomly
initialized gradient descent can be obtained as well. In fact, in Appendix C we show that
negative curvature normal to the stable manifolds of saddle points (illustrated in Figure 1)
is also a feature of the population objective of generalized phase retrieval, and can be used
to obtain an efficient convergence rate.

2 Related Work

Easy nonconvex problems. There are two basic impediments to solving nonconvex
problems globally: (i) spurious local minimizers, and (ii) flat saddle points, which
can cause methods to stagnate in the vicinity of critical points that are not minimizers.
The latter difficulty has motivated the study of strict saddle functions (36; 14), which have
the property that at every point in the domain of optimization, there is a large gradient, a
direction of strict negative curvature, or the function is strongly convex. By leveraging this
curvature information, it is possible to escape saddle points and obtain a local minimizer
in polynomial time.2 Perhaps more surprisingly, many known strict saddle functions also
have the property that every local minimizer is global; for these problems, this implies that
efficient methods find global solutions. Examples of problems with this property include
variants of sparse dictionary learning (38), phase retrieval (37), tensor decomposition (14),
community detection (3) and phase synchronization (5).

Minimizing strict saddle functions. Strict saddle functions have the property that at
every saddle point there is a direction of strict negative curvature. A natural approach to
escape such saddle points is to use second order methods (e.g., trust region (9) or curvilinear
search (15)) that explicitly leverage curvature information. Alternatively, one can attempt
to escape saddle points using first order information only. However, some care is needed:
canonical first order methods such as gradient descent will not obtain minimizers if initialized
at a saddle point (or at a point that flows to one) – at any critical point, gradient descent
simply stops. A natural remedy is to randomly perturb the iterate whenever needed. A line
of recent works shows that noisy gradient methods of this form efficiently optimize strict
saddle functions (24; 12; 20). For example, (20) obtains rates on strict saddle functions that
match the optimal rates for smooth convex programs up to a polylogarithmic dependence on
dimension.3

2This statement is nontrivial: finding a local minimum of a smooth function is NP-hard.
3This work also proves convergence to a second-order stationary point under more general

smoothness assumptions.

2



Under review as a conference paper at ICLR 2019

Randomly initialized gradient descent? The aforementioned results are broad, and
nearly optimal. Nevertheless, important questions about the behavior of first order methods
for nonconvex optimization remain unanswered. For example: in every one of the aforemented
benign nonconvex optimization problems, randomly initialized gradient descent rapidly obtains
a minimizer. This may seem unsurprising: general considerations indicate that the stable
manifolds associated with non-minimizing critical points have measure zero (29), this implies
that a variety of small-stepping first order methods converge to minimizers in the large-time
limit (23). However, it is not difficult to construct strict saddle problems that are not
amenable to efficient optimization by randomly initialized gradient descent – see (12) for an
example. This contrast between the excellent empirical performance of randomly initialized
first order methods and worst case examples suggests that there are important geometric
and/or topological properties of “easy nonconvex problems” that are not captured by the strict
saddle hypothesis. Hence, the motivation of this paper is twofold: (i) to provide theoretical
corroboration (in certain specific situations) for what is arguably the simplest, most natural,
and most widely used first order method, and (ii) to contribute to the ongoing effort to
identify conditions which make nonconvex problems amenable to efficient optimization.

3 Dictionary Learning over the Sphere

Suppose we are given data matrix Y =
[
y1, . . .yp

]
∈ Rn×p. The dictionary learning problem

asks us to find a concise representation of the data (13), of the form Y ≈ AX, where X is
a sparse matrix. In the complete, orthogonal dictionary learning problem, we restrict the
matrix A to have orthonormal columns (A ∈ O(n)). This variation of dictionary learning is
useful for finding concise representations of small datasets (e.g., patches from a single image,
in MRI (32)).

To analyze the behavior of dictionary learning algorithms theoretically, it useful to posit that
Y = A0X0 for some true dictionary A0 ∈ O(n) and sparse coefficient matrix X0 ∈ Rn×p,
and ask whether a given algorithm recovers the pair (A0,X0).4 In this work, we further
assume that the sparse matrix X0 is random, with entries i.i.d. Bernoulli-Gaussian5. For
simplicity, we will let A0 = I; our arguments extend directly to general A0 via the simple
change of variables q 7→ A∗0q.

(34) showed that under mild conditions, the complete dictionary recovery problem can be
reduced to the geometric problem of finding a sparse vector in a linear subspace (31). Notice
that because A0 is orthogonal, row(Y ) = row(X0). Because X0 is a sparse random matrix,
the rows of X0 are sparse vectors. Under mild conditions (34), they are the sparsest vectors
in the row space of Y , and hence can be recovered by solving the conceptual optimization
problem

min ‖q∗Y ‖0 s.t. q∗Y 6= 0.

This is not a well-structured optimization problem: the objective is discontinuous, and the
constraint set is open. A natural remedy is to replace the `0 norm with a smooth sparsity
surrogate, and to break the scale ambiguity by constraining q to the sphere, giving

min fDL(q) ≡ 1

p

p∑
k=1

hµ(q∗yk) s.t. q ∈ Sn−1. (1)

Here, we choose hµ(t) = µ log(cosh(t/µ)) as a smooth sparsity surrogate. This objective was
analyzed in (35), which showed that (i) although this optimization problem is nonconvex,
when the data are sufficiently large, with high probability every local optimizer is near a
signed column of the true dictionary A0, (ii) every other critical point has a direction of
strict negative curvature, and (iii) as a consequence, a second-order Riemannian trust region
method efficiently recovers a column of A0.6 The Riemannian trust region method is of
mostly theoretical interest: it solves complicated (albeit polynomial time) subproblems that
involve the Hessian of fDL.

4This problem exhibits a sign permutation symmetry: A0X0 = (A0Γ)(Γ
∗X0) for any signed

permutation matrix Γ. Hence, we only ask for recovery up to a signed permutation.
5[X0]ij = V ijΩij , with V ij ∼ N (0, 1), Ωij ∼ Bern(θ) independent.
6Combining with a deflation strategy, one can then efficiently recover the entire dictionary A0.
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Figure 2: Left: The
separable objective for
n = 3. Note the
similarity to the dictio-
nary learning objective.
Right: The objective
for complete orthogo-
nal dictionary learning
(discussed in section 6)
for n = 3.

In practice, simple iterative methods, including randomly initialized gradient descent are
also observed to rapidly obtain high-quality solutions. In the sequel, we will give a geometric
explanation for this phenomenon, and bound the rate of convergence of randomly initialized
gradient descent to the neighborhood of a column of A0. Our analysis of fDL is probabilistic
in nature: it argues that with high probability in the sparse matrix X0, randomly initialized
gradient descent rapidly produces a minimizer.

To isolate more clearly the key intuitions behind this analysis, we first analyze the simpler
separable objective

min fSep(q) ≡
n∑
i=1

hµ(qi) s.t. q ∈ Sn−1. (2)

Figure 2 plots both fSep and fDL as functions over the sphere. Notice that many of the key
geometric features in fDL are present in fSep; indeed, fSep can be seen as an “ultrasparse”
version of fDL in which the columns of the true sparse matrix X0 are taken to have only
one nonzero entry. A virtue of this model function is that its critical points and their stable
manifolds have simple closed form expressions (see Lemma 1).

4 Outline of Important Geometric Features

Our problems of interest have the form
min f(q) s.t. q ∈ Sn−1,

where f : Rn → R is a smooth function. We let ∇f(q) and ∇2f(q) denote the Euclidean
gradient and hessian (over Rn), and let grad [f ] (q) and Hess [f ] (q) denote their Riemannian
counterparts (over Sn−1). We will obtain results for Riemannian gradient descent defined by
the update

q → expq(−η grad[f ](q))

for some step size η > 0, where expq : TqSn−1 → Sn−1 is the exponential map. The
Riemannian gradient on the sphere is given by grad[f ](q) = (I − qq∗)∇f(q).

We let A denote the set of critical points of f over Sn−1 – these are the points q̄ s.t.
grad [f ] (q̄) = 0. We let Ă denote the set of local minimizers, and “A its complement. Both
fSep and fDL are Morse functions on Sn−1,7 we can assign an index α to every q̄ ∈ A, which
is the number of negative eigenvalues of Hess [f ] (q̄).

Our goal is to understand when gradient descent efficiently converges to a local minimizer.
In the small-step limit, gradient descent follows gradient flow lines γ : R→M, which are
solution curves of the ordinary differential equation

γ̇(t) = −grad [f ] (γ(t))

To each critical point α ∈ A of index λ, there is an associated stable manifold of dimension
dim(M)− λ, which is roughly speaking, the set of points that flow to α under gradient flow:

W s(α) ≡
{
q ∈M

∣∣∣∣ lim
t→∞

γ(t) = α

γ a gradient flow line s.t. γ(0) = q

}
.

7Strictly speaking, fDL is Morse with high probability, due to results of (38).
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Figure 3: Negative curvature and efficient gradient descent. The union of the light
blue, orange and yellow sets is the set C. In the light blue region, there is negative curvature
normal to ∂C, while in the orange region the gradient norm is large, as illustrated by the
arrows. There is a single global minimizer in the yellow region. For the separable objective,
the stable manifolds of the saddles and maximizers all lie on ∂C (the black circles denote the
critical points, which are either maximizers "a", saddles "�", or minimizers "`"). The red
dots denote ∂Cζ with ζ = 0.2.

Our analysis uses the following convenient coordinate chart

ϕ(w) =

(
w,

√
1− ‖w‖2

)
≡ q(w) (3)

where w ∈ B1(0). We also define two useful sets:

C ≡ {q ∈ Sn−1|qn ≥ ‖w‖∞}

Cζ ≡
{
q ∈ Sn−1

∣∣∣∣ qn
‖w‖∞

≥ 1 + ζ

}
. (4)

Since the problems considered here are symmetric with respect to a signed permutation of
the coordinates we can consider a certain C and the results will hold for the other symmetric
sections as well. We will show that at every point in C aside from a neighborhood of a global
minimizer for the separable objective (or a solution to the dictionary problem that may only
be a local minimizer), there is either a large gradient component in the direction of the
minimizer or negative curvature in a direction normal to ∂C. For the case of the separable
objective, one can show that the stable manifolds of the saddles lie on this boundary, and
hence this curvature is normal to the stable manifolds of the saddles and allows rapid
progress away from small gradient regions and towards a global minimizer 8. These regions
are depicted in Figure 3.

In the sequel, we will make the above ideas precise for the two specific nonconvex optimization
problems discussed in Section 3 and use this to obtain a convergence rate to a neighborhood
of a global minimizer. Our analysis are specific to these problems. However, as we will
describe in more detail later, they hinge on important geometric characteristics of these
problems which make them amenable to efficient optimization, which may obtain in much
broader classes of problems.

8The direction of this negative curvature is important here, and it is this feature that distinguishes
these problems from other problems in the strict-saddle class where this direction may be arbitrary
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5 Separable Function Convergence Rate

In this section, we study the behavior of randomly initialized gradient descent on the separable
function fSep. We begin by characterizing the critical points:
Lemma 1 (Critical points of fSep). The critical points of the separable problem (2) are

A =
{
PSn−1 [a]

∣∣a ∈ {−1, 0, 1}⊗n, ‖a‖ > 0
}
. (5)

For every α ∈ A and corresponding a(α), for µ < c√
n logn

the stable manifold of α takes the
form

W s(α) =

{
PSn−1 [a(α) + b ]

∣∣∣∣ supp(a(α)) ∩ supp(b) = ∅,
‖b‖∞ < 1

}
(6)

where c > 0 is a numerical constant.

Proof. Please see Appendix A

By inspecting the dimension of the stable manifolds, it is easy to verify that that there
are 2n global minimizers at the 1-sparse vectors on the sphere ±êi, 2n maximizers at the
least sparse vectors and an exponential number of saddle points of intermediate sparsity.
This is because the dimension of W s(α) is simply the dimension of b in 6, and it follows
directly from the stable manifold theorem that only minimizers will have a stable manifold
of dimension n− 1. The objective thus possesses no spurious local minimizers.

When referring to critical points and stable manifolds from now on we refer only to those
that are contained in C or on its boundary. It is evident from Lemma 1 that the critical
points in “A all lie on ∂C and that

⋃
α∈ “A

W s(α) = ∂C , and there is a minimizer at its center

given by q(0) = ên.

5.1 The effect of negative curvature on the gradient

We now turn to making precise the notion that negative curvature normal to stable manifolds
of saddle points enables gradient descent to rapidly exit small gradient regions. We do this by
defining vector fields u(i)(q), i ∈ [n− 1] such that each field is normal to a continuous piece
of ∂Cζ and points outwards relative to Cζ defined in 4. By showing that the Riemannian
gradient projected in this direction is positive and proportional to ζ, we are then able to show
that gradient descent acts to increase ζ(q(w)) = qn

‖w‖∞
− 1 geometrically. This corresponds

to the behavior illustrated in the light blue region in Figure 3.
Lemma 2 (Separable objective gradient projection). For any w ∈ Cζ , i ∈ [n− 1], we define
a vector u(i) ∈ Tq(w)Sn−1 by

u
(i)
j =


0 j /∈ {i, n},
sign(wi) j = i,

− |wi|qn
j = n.

(7)

If µ log
(

1
µ

)
≤ wi and µ < 1

16 , then

u(i)∗grad[fSep](q(w)) ≥ c ‖w‖∞ ζ,

where c > 0 is a numerical constant.

Proof. Please see Appendix A.

Since we will use this property of the gradient in Cζ to derive a convergence rate, we will
be interested in bounding the probability that gradient descent initialized randomly with
respect to a uniform measure on the sphere is initialized in Cζ . This will require bounding
the volume of this set, which is done in the following lemma:
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Lemma 3 (Volume of Cζ). For Cζ defined as in (4) we have
Vol(Cζ)

Vol(Sn−1)
≥ 1

2n
− log(n)

n
ζ

Proof. Please see Appendix D.3.

5.2 Convergence rate

Using the results above, one can obtain the following convergence rate:
Theorem 1 (Gradient descent convergence rate for separable function). For any 0 < ζ0 < 1,
r > µ log

(
1
µ

)
, Riemannian gradient descent with step size η < min

{
c1
n ,

µ
2

}
on the separable

objective (2) with µ < c2√
n logn

, enters an L∞ ball of radius r around a global minimizer in

T <
C

η

(√
n

r2
+ log

(
1

ζ0

))
iterations with probability

P ≥ 1− 2 log(n)ζ0,

where ci, C > 0 are numerical constants.

Proof. Please see Appendix A.

We have thus obtained a convergence rate for gradient descent that relies on the negative
curvature around the stable manifolds of the saddles to rapidly move from these regions
of the space towards the vicinity of a global minimizer. This is evinced by the logarithmic
dependence of the rate on ζ. As was shown for orthogonal dictionary learning in (38), we also
expect a linear convergence rate due to strong convexity in the neighborhood of a minimizer,
but do not take this into account in the current analysis.

6 Dictionary Learning Convergence Rate

The proofs in this section will be along the same lines as those of Section 5. While we
will not describe the positions of the critical points explicitly, the similarity between this
objective and the separable function motivates a similar argument. It will be shown that
initialization in some Cζ will guarantee that Riemannian gradient descent makes uniform
progress in function value until reaching the neighborhood of a global minimizer. We will
first consider the population objective which corresponds to the infinite data limit

fpop
DL (q) ≡ E

X0

fDL(q) = Ex∼i.i.d.BG(θ)

[
hµ(q∗x)

]
. (8)

and then bounding the finite sample size fluctuations of the relevant quantities. We begin
with a lemma analogous to Lemma 2:
Lemma 4 (Dictionary learning population gradient). For w ∈ Cζ , r < |wi|, µ < c1r

5/2
√
ζ

the dictionary learning population objective 8 obeys

u(i)∗grad[fpop
DL ](q(w)) ≥ cθr3ζ

where cθ depends only on θ, c1 is a positive numerical constant and u(i) is defined in 7.

Proof. Please see Appendix B

Using this result, we obtain the desired convergence rate for the population objective,
presented in Lemma 11 in Appendix B. After accounting for finite sample size fluctuations
in the gradient, one obtains a rate of convergence to the neighborhood of a solution (which
is some signed basis vector due to our choice A0 = I)
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Theorem 2 (Gradient descent convergence rate for dictionary learning). For any 1 > ζ0 >
0, s > µ

4
√

2
, Riemannian gradient descent with step size η < c5θs

n lognp on the dictionary learning

objective 1 with µ < c6
√
ζ0

n5/4 , θ ∈ (0, 1
2 ), enters a ball of radius c3s from a target solution in

T <
C2

ηθ

(
1

s
+ n log

1

ζ0

)
iterations with probability

P ≥ 1− 2 log(n)ζ0 − Py − c8p−6

where y = c7θ(1−θ)ζ0
n3/2 , Py is given in Lemma 10 and ci, Ci are positive constants.

Proof. Please see Appendix B

The two terms in the rate correspond to an initial geometric increase in the distance from
the set containing the small gradient regions around saddle points, followed by convergence
to the vicinity of a minimizer in a region where the gradient norm is large. The latter is
based on results on the geometry of this objective provided in (38).

7 Discussion

The above analysis suggests that second-order properties - namely negative curvature normal
to the stable manifolds of saddle points - play an important role in the success of randomly
initialized gradient descent in the solution of complete orthogonal dictionary learning. This
was done by furnishing a convergence rate guarantee that holds when the random initialization
is not in regions that feed into small gradient regions around saddle points, and bounding
the probability of such an initialization. In Appendix C we provide an additional example of
a nonconvex problem that for which an efficient rate can be obtained based on an analysis
that relies on negative curvature normal to stable manifolds of saddles - generalized phase
retrieval. An interesting direction of further work is to more precisely characterize the class
of functions that share this feature.

The effect of curvature can be seen in the dependence of the maximal number of iterations
T on the parameter ζ0. This parameter controlled the volume of regions where initialization
would lead to slow progress and the failure probability of the bound 1− P was linear in ζ0,
while T depended logarithmically on ζ0. This logarithmic dependence is due to a geometric
increase in the distance from the stable manifolds of the saddles during gradient descent,
which is a consequence of negative curvature. Note that the choice of ζ0 allows one to flexibly
trade off between T and 1− P. By decreasing ζ0, the bound holds with higher probability,
at the price of an increase in T . This is because the volume of acceptable initializations now
contains regions of smaller minimal gradient norm. In a sense, the result is an extrapolation
of works such as (23) that analyze the ζ0 = 0 case to finite ζ0.

Our analysis uses precise knowledge of the location of the stable manifolds of saddle points.
For less symmetric problems, including variants of sparse blind deconvolution (41) and
overcomplete tensor decomposition, there is no closed form expression for the stable manifolds.
However, it is still possible to coarsely localize them in regions containing negative curvature.
Understanding the implications of this geometric structure for randomly initialized first-order
methods is an important direction for future work.

One may hope that studying simple model problems and identifying structures (here, negative
curvature orthogonal to the stable manifold) that enable efficient optimization will inspire
approaches to broader classes of problems. One problem of obvious interest is the training
of deep neural networks for classification, which shares certain high-level features with the
problems discussed in this paper. The objective is also highly nonconvex and is conjectured
to contain a proliferation of saddle points (11), yet these appear to be avoided by first-order
methods (16) for reasons that are still quite poorly understood beyond the two-layer case
(39).
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A Proofs - Separable Objective

Proof of Lemma 1: (Critical point structure of
separable objective) . Denoting by tanh( qµ ) a vector in Rn

elements tanh( qµ )i = tanh( qiµ ) we have

grad[fSep](q)i = (I − qq∗) tanh(
q

µ
)

. Thus critical points are ones where either tanh( qµ ) = 0 (which cannot happen on Sn−1)
or tanh( qµ ) is in the nullspace of (I − qq∗), which implies tanh( qµ ) = cq for some constant
b. The equation tanh( xµ ) = bx has either a single solution at the origin or 3 solutions at
{0,±r(b)} for some r(b). Since this equation must be solves simultaneously for every element
of q, we obtain ∀i ∈ [n] : qi ∈ {0,±r(b)}. To obtain solutions on the sphere, one then uses
the freedom we have in choosing b (and thus r(b)) such that ‖q‖ = 1. The resulting set of
critical points is thus

A = PSn−1

[
{−1, 0, 1}n \ {0}

]
.

To prove the form of the stable manifolds, we first show that for qi such that |qi| = ‖q‖∞
and any qj such that |qj |+ ∆ = |qi| and sufficiently small ∆ > 0, we have

−grad[fSep](q)isign(qi) > −grad[fSep](q)isign(qj) (9)
For ease of notation we now assume qi, qj > 0 and hence ∆ = qi− qj , otherwise the argument
can be repeated exactly with absolute values instead. The above inequality can then be
written as

(qi − qj)
n∑
k=1

tanh(
qk
µ

)qk − tanh(
qi
µ

) + tanh(
qj
µ

)︸ ︷︷ ︸
≡h

> 0.

If we now define s2 =
n−1∑
k = 1
k 6= i, n

q2
k and qn =

√
1− s2 − (qj + ∆)2we have

h =
∆

(
tanh(

qj+∆
µ ) (qj + ∆) +

tanh(

√
1−s2−(qj+∆)2

µ )
√

1− s2 − (qj + ∆)2

)
+∆

∑
k 6=i,n

tanh( qkµ )qk − tanh(
qj+∆
µ ) + tanh(

qj
µ )

= ∆



∑
k 6=i,n

tanh( qkµ )qk + tanh(
qj
µ )qj

+ tanh(

√
1−s2−q2j
µ )

√
1− s2 − q2

j︸ ︷︷ ︸
≡h1

− sech2(
qj
µ

)
1

µ︸ ︷︷ ︸
≡h2


+O(∆2)

where the O(∆2) term is bounded. Defining a vector r ∈ Rn by

k 6= i, n : rk = qk, ri = tanh(
qj
µ

)qj , rn =
√

1− s2 − q2
j

12
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we have ‖r‖2 = 1. Since tanh(x) is concave for x > 0, and |ri| ≤ 1, we find

h1 =

n∑
k=1

tanh(
rk
µ

)rk ≥ tanh(
1

µ
)

n∑
k=1

r2
k = tanh(

1

µ
).

From |qi| = ‖q‖∞ it follows that qi ≥ 1√
n
and thus qj ≥ 1√

n
−∆. Using this inequality and

properties of the hyperbolic secant we obtain

h2 ≤ 4 exp(−2
qj
µ
− logµ) ≤ exp(

2∆

µ
− 2

µ
√
n
− logµ+ log 4)

and plugging in µ = c√
n logn

for some c < 1

≤ exp(
2∆

µ
− 2 log n

c
− log c+

1

2
log n+ log log n+ log 4).

We can bound this quantity by a constant, say h2 ≤ 1
2 , by requiring

A ≡ 2∆

µ
− log c+ (

1

2
− 2

c
) log n+ log log n ≤ − log 8

and for and c < 1, using − log n+ log log n < 0 we have

A <
2∆

µ
− log c− (

2

c
− 1) log n.

Since ∆ can be taken arbitrarily small, it is clear that c can be chosen in an n-independent
manner such that A ≤ − log 8. We then find

h1 − h2 ≥ tanh(
1

µ
)− 1

2
≥ tanh(

√
n log n)− 1

2
> 0

since this inequality is strict, ∆ can be chosen small enough such that
∣∣O(∆2)

∣∣ < ∆(h1 − h2)
and hence

h > 0,

proving 9.

It follows that under negative gradient flow, a point with |qj | < ||q||∞ cannot flow to a point
q′ such that |q′j | = ||q′||∞. From the form of the critical points, for every such j, q must
thus flow to a point such that q′j = 0 (the value of the j coordinate cannot pass through
0 to a point where |q′j | = ||q′||∞ since from smoothness of the objective this would require
passing some q′′ with q′′j = 0, at which point grad [fSep] (q′′)j = 0).

As for the maximal magnitude coordinates, if there is more than one coordinate satisfying
|qi1 | = |qi2 | = ‖q‖∞, it is clear from symmetry that at any subsequent point q′ along
the gradient flow line

∣∣q′i1 ∣∣ =
∣∣q′i2 ∣∣. These coordinates cannot change sign since from the

smoothness of the objective this would require that they pass through a point where they
have magnitude smaller than 1/

√
n, at which point some other coordinate must have a larger

magnitude (in order not to violate the spherical constraint), contradicting the above result for
non-maximal elements. It follows that the sign pattern of these elements is preserved during
the flow. Thus there is a single critical point to which any q can flow, and this is given by
setting all the coordinates with |qj | < ‖q‖∞ to 0 and multiplying the remaining coordinates
by a positive constant to ensure the resulting vector is on Sn. Denoting this critical point
by α, there is a vector b such that q = PSn−1 [a(α) + b] and supp(a(α)) ∩ supp(b) = ∅,

13
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‖b‖∞ < 1 with the form of a(α) given by 5 . The collection of all such points defines the
stable manifold of α.

Proof of Lemma 2: (Separable objective gradient projection). i) We consider the
sign(wi) = 1 case; the sign(wi) = −1 case follows directly. Recalling that
u(i)∗grad[fSep](q(w)) = tanh

(
wi
µ

)
− tanh

(
qn
µ

)
wi
qn
, we first prove

tanh

(
wi
µ

)
− tanh

(
qn
µ

)
wi
qn
≥ c(qn − wi) (10)

for some c > 0 whose form will be determined later. The inequality clearly holds for wi = qn.
To verify that it holds for smaller values of wi as well, we now show that

∂

∂wi

[
tanh

(
wi
µ

)
− tanh

(
qn
µ

)
wi
qn
− c(qn − wi)

]
< 0

which will ensure that it holds for all wi. We define s2 = 1 − ||w||2 + w2
i and denote

qn =
√
s2 − w2

i to extract the wi dependence, giving

∂

∂wi

[
tanh

(
wi
µ

)
− tanh

(
qn
µ

)
wi
qn
− c(qn − wi)

]

=

1
µ sech2

(
wi
µ

)
+ 1

µ sech2

(√
s2−w2

i

µ

)
w2
i

s2−w2
i

− tanh

(√
s2−w2

i

µ

)
s2

(s2−w2
i )3/2

+ c( wi√
s2−w2

i

+ 1)

≤
4
µ

(
e−2

wi
µ + e−2

√
s2−w2

i
µ

)
− tanh

(√
s2−w2

i

µ

)
s2

(s2−w2
i )3/2

+ 2c

Where in the last inequality we used properties of the sech function and qn ≥ wi. We thus
want to show

4

µ

(
e−2

wi
µ + e−2 qnµ

)
+ 2c ≤ tanh

(
qn
µ

)
q2
n + w2

i

q3
n

and using log( 1
µ )µ ≤ wi ≤ qn and c =

1−µ2

1+µ2
−8µ

2 we have

4

µ

(
e−2

wi
µ + e−2 qnµ

)
+ 2c

≤ 8e−2
wi
µ

µ
+ 2c ≤ 8µ+ 2c ≤ 1− µ2

1 + µ2

= tanh

(
log(

1

µ
)

)
≤ tanh

(
qn
µ

)
1

qn

< tanh

(
qn
µ

)
q2
n + w2

i

q3
n

and it follows that 10 holds. For µ < 1
16 we are guaranteed that c > 0.
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From examining the RHS of 10 (and plugging in qn =
√
s2 − w2

i ) we see that any lower
bound on the gradient of an element wj applies also to any element |wi| ≤ |wj |. Since for
|wj | = ||w||∞ we have qn − wj = wjζ, for every log( 1

µ )µ ≤ wi we obtain the bound

u(i)∗grad[fSep](q(w)) ≥ c ‖w‖∞ ζ

Proof of Theorem 1: (Gradient descent convergence rate for separable function).
We obtain a convergence rate by first bounding the number of iterations of Riemannian
gradient descent in Cζ0\C1, and then considering C1\B∞r .

From Lemma 16 we obtain Cζ0\C1 ⊆ Cζ0\B∞1/√n+3
. Choosing c2 so that µ < 1

2 , we can apply
Lemma 2, and for u defined in 7, we thus have

|wi| > µ log(
1

µ
)⇒ u(i)∗grad[fSep](q(w)) > c||w||∞ζ0.

Since from Lemma 7 the Riemannian gradient norm is bounded by
√
n, we can choose c1, c2

such that µ log( 1
µ ) < 1

2
√
n+3

, η < 1
6
√
n2+3n

. This choice of η then satisfies the conditions of
Lemma 17 with r = µ log( 1

µ ), b = 1√
n+3

,M =
√
n, which gives that after a gradient step

ζ ′ ≥ ζ
(

1 +
c

2

√
n

n+ 3
η

)
≥ ζ (1 + c̃η) (11)

for some suitably chosen c̃ > 0. If we now define by w(t) the t-th iterate of Riemannian
gradient descent and ζ(t) ≡ q(t)n

‖w(t)‖∞
− 1, ζ(0) ≡ ζ0, for iterations such that w(t) ∈ Cζ\C1 we

find
ζ(t) ≥ ζ(t−1) (1 + c̃η) ≥ ζ0 (1 + c̃η)

t

and the number of iterations required to exit Cζ0\C1 is

t1 =
log( 1

ζ0
)

log(1 + c̃η)
. (12)

To bound the remaining iterations, we use Lemma 2 to obtain that for every w ∈ Cζ0\B∞r ,

‖grad[fSep](q(w))‖2 ≥
∥∥u(i)∗grad[fSep](q(w))

∥∥2

||u(i)||2
≥ ζ2

0c
2r2

where we have used ||u(i)||2 = 1 +
w2
i

q2n
≤ 2. We thus have

T−1∑
i=0

∥∥∥grad[fSep](q(w)(i))
∥∥∥2

=

t1−1∑
i=0

∥∥∥grad[fSep](q(w)(i))
∥∥∥2

+

T−1∑
i=t1

∥∥∥grad[fSep](q(w)(i))
∥∥∥2

>
ζ2
0c

2

(n+ 3)
t1 + (T − t1)c2r2. (13)

Choosing η < 1
2L where L is the gradient Lipschitz constant of fs, from Lemma 5 we obtain

2
(
fSep(q(0))− f∗Sep

)
η

>

T−1∑
i=0

∥∥∥grad[fSep](q(i))
∥∥∥2

.

According to Lemma B, L = 1/µ and thus the above holds if we demand η < µ
2 . Combining

12 and 13 gives

15



Under review as a conference paper at ICLR 2019

T <
2
(
fSep(q(0))− f∗Sep

)
ηc2r2

+

(
1− ζ20

(n+3)r2

)
log( 1

ζ0
)

log(1 + c̃η)
.

To obtain the final rate, we use in g(w0)− g∗ ≤
√
n and c̃η < 1⇒ 1

log(1+c̃η) <
C̃
c̃η for some

C̃ > 0. Thus one can choose C > 0 such that

T <
C

η

(√
n

r2
+ log(

1

ζ0
)

)
. (14)

From Lemma 1 the ball B∞r contains a global minimizer of the objective, located at the
origin.

The probability of initializing in
⋃̆
A

Cζ0 is simply given from Lemma 3 and by summing over

the 2n possible choices of Cζ0 , one for each global minimizer (corresponding to a single signed
basis vector).

Lemma 5 (Riemannian gradient descent iterate bound). For a Riemannian gradient descent
algorithm on the sphere with step size tk < 1

2L , where L is a lipschitz constant for ∇f(q),
one has

f(q1)− f(q?) ≥ f(q1)− f(qT )

≥ tk
2
‖grad [f ] (qk)‖2.

Proof. Just as in the euclidean setting, we can obtain a lower bound on progress in function
values of iterates of the Riemannian gradient descent algorithm from a lower bound on the
Riemannian gradient. Consider f : Sn−1 → R, which has L-lipschitz gradient. Let qk denote
the current iterate of Riemannian gradient descent, and let tk > 0 denote the step size. Then
we can form the Taylor approximation to f ◦ Expqk(v) at 0qk :

f̂ : B1(0qk) ∩ TqkS
n−1 → R : v 7→ f(qk) + 〈v,∇f(qk)〉.

From Taylor’s theorem, we have for any v ∈ B1(0qk) ∩ TqkS
n−1

|f̂(v)− f ◦ Expqk(v)| ≤ 1

2
‖Hess[f ](qk)‖‖v − 0qk‖

2
,

where the matrix norm is the operator norm on Rn×n. Using the gradient-lipschitz property
of f , we readily compute

‖Hess[f ](qk)‖ ≤ ‖∇2f(qk)‖+ |〈∇f(qk), qk〉|
≤ 2L,

since ∇f(0) = 0 and qk ∈ Sn−1. We thus have

f ◦ Expqk(v) ≤ f(qk) + 〈v,∇f(qk)〉+ L‖v‖2.
If we put v = −tkgrad[f ](qk) and write qk+1 = Expqk(−tkgrad [f ] (qk)), the previous
expression becomes

f(qk+1) ≤ f(qk)− tk‖grad [f ] (qk)‖2 + t2kL‖grad [f ] (qk)‖2

≤ f(qk)− tk
2
‖grad [f ] (qk)‖2

if tk < 1
2L . Thus progress in objective value is guaranteed by lower-bounding the Riemannian

gradient.
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As in the euclidean setting, summing the previous expression over iterations k now yields
T−1∑
k=1

f(qk)− f(qk+1) = f(q1)− f(qT )

≥ tk
2

T−1∑
k=1

‖grad [f ] (qk)‖2;

in addition, it holds f(q1)− f(qT ) ≤ f(q1)− f(q?). Plugging in a constant step size gives
the desired result.

Lemma 6 (Lipschitz constant of ∇f). For any x1,x2 ∈ Rn, it holds

‖∇f(x1)−∇f(x2)‖ ≤ 1

µ
‖x1 − x2‖.

Proof. It will be enough to study a single coordinate function of ∇f . Using a derivative
given in section D.1, we have for x ∈ R

d

dx
tanh(x/µ) =

1

µ
sech2

(
x

µ

)
.

A bound on the magnitude of the derivative of this smooth function implies a lipschitz
constant for x 7→ tanh(x/µ). To find the bound, we differentiate again and find the critical
points of the function. We have, using the chain rule,

d

dx

(
1

µ
sech2

(
x

µ

))
=
−4

µ
sech

(
x

µ

)
· 1

(ex/µ + e−x/µ)2

·
(

1

µ
ex/µ − 1

µ
e−x/µ

)
= − 1

µ2

ex/µ − e−x/µ

(ex/µ + e−x/µ)3
.

The denominator of this final expression vanishes nowhere. Hence, the only critical point
satisfies x/µ = −x/µ, which implies x = 0. Therefore it holds

d

dx
tanh(x/µ) ≤ 1

µ
sech2(0) =

1

µ
,

which shows that tanh(x/µ) is (1/µ)-lipschitz.

Now let x1 and x2 be any two points of Rn. Then one has

‖∇f(x1)−∇f(x2)‖ =

(∑
i

(tanh(x1i/µ)− tanh(x2i/µ))
2

)1/2

=

(∑
i

|tanh(x1i/µ)− tanh(x2i/µ)|2
)1/2

≤

(∑
i

1

µ

∣∣∣∣x1i

µ
− x2i

µ

∣∣∣∣2
)1/2

=
1

µ
‖x1 − x2‖,

completing the proof.

Lemma 7 (Separable objective gradient bound). The separable objective gradient obeys

‖∇wg(w)‖ ≤
√

2n

‖grad[f ](q)‖ ≤
√
n

17
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Proof. Recalling that the Euclidean gradient is given by ∇fSep(q)i = tanh
(
qi
µ

)
we use

Jensen’s inequality, convexity of the L2 norm and the triangle inequality to obtain

‖∇gs(w)‖2 ≤ ‖∇fSep(q)‖2 +

∣∣∣∣tanh

(
qn
µ

)∣∣∣∣2 ‖w‖2q2
n

≤ 2n

while
‖grad[fSep](q)‖ = ‖(I − qq∗)∇fSep(q)‖ ≤ ‖∇fSep(q)‖ =

√
n

B Proofs - Dictionary Learning

Proof of Lemma 4:(Dictionary learning population gradient). For simplicity we
consider the case sign(wi) = 1. The converse follows by a similar argument. We have

u(i)∗grad[fpopDL ](q(w)) =

Ex
[
tanh

(
q∗(w)x

µ

)(
−xn

wi
qn

+ xi

)]
(15)

Following the notation of (38), we write xj = bjvj where bj ∼ Bern(θ), vj ∼ N (0, 1) and de-
note the vectors of these variables by J , v respectively. Defining Y (n) =

∑
j 6=n

q(w)jxj , X
(n) =

qnvn, Y is Gaussian conditioned on a certain setting of J . Using Lemma 40 in (38) the first
term in 15 is

−wiθ
q2
n

Ev,J |bn=1

[
tanh

(
Y (n) +X(n)

µ

)
X(n)

]
= −wi

µ
θEv,J |bn=1

[
sech2

(
Y (n) +X(n)

µ

)]
and similarly the second term in 15 is, with X(i) = wivi, Y

(i) =
∑
j 6=i
q(w)jxj

θ

wi
Ev,J |bi=1

[
tanh

(
Y (i) +X(i)

µ

)
X(i)

]
=
wiθ

µ
Ev,J |bi=1

[
sech2

(
q∗(w)x

µ

)]
if we now define X =

∑
j 6=n,i

q∗(w)jxj we have

u(i)∗grad[fpopDL ](q(w)) =

=
wiθ

µ

 Ev,J |bi=1

[
sech2

(
q∗(w)x

µ

)]
−Ev,J |bn=1

[
sech2

(
q∗(w)x

µ

)] 

=
wiθ

µ
Ev,J

 sech2
(
X+bnqnvn+wivi

µ

)
−sech2

(
X+qnvn+wibivi

µ

) 

=
wiθ(1− θ)

µ
Ev,J\{n,i}

 sech2
(
X+wivi

µ

)
−sech2

(
X+qnvn

µ

)  (16)
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B.1 Bounds for E
[
sech2(Y )

]
We already have a lower bound in Lemma 20 of (38) that we can use for the second term, so
we need an upper bound for the first term. Following from p. 865, we define Y ∼ N (0, σ2

Y ) ,
Z = exp

(
−2Y
µ

)
, and defining β = 1− 1√

T
for some T > 1 we have

sech2(Y/µ) =
4Z

(1 + Z)2
≤ 4Z

(1 + βZ)2
=

∞∑
k=0

bkZ
k+1

Where bk = (−β)k(k + 1). Using B.3 from Lemma 40 in (38) we have

E

[ ∞∑
k=0

bkZ
k+1

1Y >0

]
=

∞∑
k=0

bkE
[
e−2(k+1)Y/µ

1Y >0

]

=

∞∑
k=0

bk exp

(
1

2

(
2(k + 1)

µ

)2

σ2
Y

)
Φc
(

2(k + 1)

µ
σY

)

Where Φc(x) is the complementary Gaussian CDF (The exchange of summation and expec-
tation is justified since Y > 0 implies Z ∈ [0, 1], see proof of Lemma 18 in (38) for details).
Using the following bounds 1√

2π

(
1
x −

1
x3

)
e−x

2/2 ≤ Φc(x) ≤ 1√
2π

(
1
x −

1
x3 + 3

x5

)
e−x

2/2 by
applying the upper (lower) bound to the even (odd) terms in the sum, and then adding a
non-negative quantity, we obtain

≤ 1√
2π

∞∑
k=0

(−β)k(k + 1)

 1
2(k+1)
µ σY

− 1(
2(k+1)
µ σY

)3



+
1√
2π

∞∑
k=0

βk(k + 1)

 3(
2(k+1)
µ σY

)5


and using

∞∑
k=0

(−β)k = 1
1+β ,

∞∑
k=0

bk
(k+1)3 ≥ 0,

∞∑
k=0

|bk|
(k+1)5 ≤ 2 (from Lemma 17 in (38)) and

taking T →∞ so that β → 1 we have

∞∑
k=0

bkE
[
Zk+1

1Y >0

]
≤ 1

2
√

2π

1
2
µσY

+
1√
2π

6(
2
µσY

)5

giving the upper bound

E
[
sech2(Y/µ)

]
= E

[
1− tanh2(Y/µ)

]
≤ 8

∞∑
k=0

bkE
[
Zk+1

1Y >0

]
≤
√

2

π

µ

σY
+

3µ5

2
√

2πσ5
Y

while the lower bound (Lemma 20 in (38)) is√
2

π

µ

σY
− 2µ3

√
2πσ3

Y

− 3µ5

2
√

2πσ5
Y

≤ E
[
sech2(Y )

]
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B.2 Gradient bounds

After conditioning on J \{n, i} the variables X + qnvn, X + qivi are Gaussian. We can thus
plug the bounds into 16 to obtain

u(i)∗grad[fpopDL ](q(w)) ≥
√

2

π
wiθ(1− θ)

∗EJ\{n,i}

 1√
σ2
X+w2

i

− µ2

(σ2
X+w2

i )
3/2 − 3µ4

4(σ2
X+w2

i )
5/2

− 1√
σ2
X+q2n

− 3µ4

4(σ2
X+q2n)

5/2



≥
√

2

π
wiθ(1− θ)

 EJ\{n,i}
[√

σ2
X+q2n−

√
σ2
X+w2

i√
σ2
X+q2n

√
σ2
X+w2

i

]
− µ2

w3
i
− 3µ4

2w5
i


the term in the expectation is positive since qn > ||w||∞ (1 + ζ) > wi giving

≥
√

2

π
wiθ(1− θ)

 EJ\{n,i}
[ √

σ2
X + q2

n

−
√
σ2
X + w2

i

]
− µ2

w3
i
− 3µ4

2w5
i


. To extract the ζ dependence we plug in qn > wi (1 + ζ) and develop to first order in ζ
(since the resulting function of ζ is convex) giving

≥
√

2

π
wiθ(1− θ)

 EJ\{n,i}
[

w2
i ζ√

σ2
X+w2

i

]
− µ2

w3
i
− 3µ4

2w5
i



≥
√

2

π
θ(1− θ)

(
w3
i ζ −

µ2

w2
i

− 3µ4

2w4
i

)

Given some ζ and r such that wi > r, if we now choose µ such that µ <
√√

1+ 3
4 r

3ζ−1

3 r

we have the desired result. This can be achieved by requiring µ < c1r
5/2
√
ζ for a suitably

chosen c1 > 0.

Lemma 8 (Point-wise concentration of projected gradient). For u(i) defined in 7, the
gradient of the objective 1 obeys

P
[∣∣∣u(i)∗grad[fDL](q)− E

[
u(i)∗grad[fDL](q)

]∣∣∣ ≥ t]
≤ 2 exp

(
− pt2

4 + 2
√

2t

)

Proof of Lemma 8: (Point-wise concentration of projected gradient). If we de-
note by xi a column of the data matrix with entries xij ∼ BG(θ), we have

u(i)∗grad[fDL](q(w))

=
1

p

p∑
k=1

tanh

(
q∗(w)xk

µ

)(
xki − xkn

wi
qn

)
≡ 1

p

p∑
k=1

Zk
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. Since tanh(x) is bounded by 1,

|Zk| ≤
∣∣∣∣(xki − xknwiqn

)∣∣∣∣ ≡ ∣∣uTxk∣∣
. Invoking Lemma 21 from (38) and ‖u‖2 = 1 +

w2
i

q2n
≤ 2 we obtain

E [|Zk|m] ≤ EZ∼N (0,2) [|Z|m] ≤
√

2
m

(m− 1)!!

≤ 2
√

2
m−2m!

2

and using Lemma 36 in (38) with R =
√

2, σ =
√

2 we have

P [|∇gDL(w)i − E [∇gDL(w)i]| ≥ t]

≤ 2 exp

(
− pt2

4 + 2
√

2t

)

Lemma 9 (Projection Lipschitz Constant). The Lipschitz constant for u(i)∗grad[fDL](q(w))
is

L = 2
√
n ‖X‖∞

(
‖X‖∞
µ

+ 1

)

Proof of Lemma 9: (Projection Lipschitz Constant). We have

|u(j)∗grad[fDL](q(w))− u(j)∗grad[fDL](q(w′))|

=

∣∣∣∣∣∣1p
p∑
i=1

 tanh(q
∗(w)xi

µ )
(
xij −

xin
qn(w)wj

)
−tanh(q

∗(w′)xi

µ )
(
xij −

xin
qn(w′)w

′
j

) ∣∣∣∣∣∣
≡

∣∣∣∣∣1p
p∑
i=1

[
tanh(

q∗(w)xi

µ
)s(w)− tanh(

q∗(w′)xi

µ
)s(w′)

]∣∣∣∣∣
where we have defined s(w) = xij− xn

qn(w)wj . Using q(w), q(w′) ∈ C ⇒ qn(w), qn(w′) ≥ 1
2
√
n

we have

|s(w)− s(w′)| =
∣∣xin∣∣ ∣∣∣∣ wj

qn(w)
−

w′j
qn(w′)

∥∥∥∥
≤ |xn| 2

√
n ‖w −w′‖

Lemma 25 in (38) gives

∣∣∣∣tanh(
q∗(w)x

µ
)− tanh(

q∗(w′)x

µ
)

∣∣∣∣ ≤ 2
√
n

µ
‖x‖ ‖w −w′‖

We also use the fact that tanh is bounded by 1 and s(w) is bounded by ‖X‖∞. We can
then use Lemma 23 in (38) to obtain

|u(j)∗grad[fDL](q(w))− u(j)∗grad[fDL](q(w′))|

≤ 2
√
n

p

p∑
i=1

(
1

µ

∥∥xi∥∥2

∞ +
∥∥xi∥∥∞) ‖w −w′‖
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≤ 2
√
n ‖X‖∞

(
‖X‖∞
µ

+ 1

)
‖w −w′‖

we thus have L = 2
√
n ‖X‖∞

(
‖X‖∞
µ + 1

)
.

Lemma 10 (Uniformized gradient fluctuations). For all w ∈ Cζ , i ∈ [n], with probability
P > Py
we have ∣∣∣∣ u(i)∗grad[fDL](q(w))

−E
[
u(i)∗grad[fDL](q(w))

] ∣∣∣∣ ≤ y(θ, ζ)

where

Py ≡ 2 exp

 − 1
4

py(θ,ζ)2

4+
√

2y(θ,ζ)
+ log(n)

+n log

(
48
√
n
(

4 log(np)
µ +

√
log(np)

)
y(θ,ζ)

) 
Proof: B

Proof of Lemma 10:(Uniformized gradient fluctuations). For X ∈ Rn×p with i.i.d.
BG(θ) entries, we define the event E∞ ≡ {1 ≤ ‖X‖∞ ≤ 4

√
log(np)}. We have

P[Ec∞] ≤ θ(np)−7 + e−0.3θnp

For any ε ∈ (0, 1) we can construct an ε-net N for Cζ\B2

1/20
√

5(n−1)
(0) with at most (3/ε)n

points. Using Lemma 9, on E∞, grad[fDL](q)i is L-Lipschitz with

L = 8
√
n

(
4 log(np)

µ
+
√

log(np)

)
. If we choose ε = y(θ,ζ)

2L we have

|N | ≤ (
6L

y(θ, ζ)
)n

. We then denote by Eg the event

max
w∈N,i∈[n]

∣∣∣∣ u(i)∗grad[fDL](q(w))
−E

[
u(i)∗grad[fDL](q(w))

] ∣∣∣∣ ≤ y(θ, ζ)

2

and obtain that on Eg ∩ E∞
sup

w∈Cζ ,i∈[n]

|∇gDL(w)i − E [∇gDL(w)i]| ≤ y(θ, ζ)

. Setting t = b(θ)
2 in the result of Lemma 8 gives that for all w ∈ Cζ , i ∈ [n],

P
[∣∣∣∣ u(i)∗grad[fDL](q(w))
−E

[
u(i)∗grad[fDL](q(w))

] ∣∣∣∣ ≥ y(θ, ζ)

2

]
≤ 2 exp

(
−1

4

py(θ, ζ)2

4 + 2
√

2y(θ, ζ)

)
and thus

P
[
Ecg
]
≤ 2 exp

 − 1
4

py(θ,ζ)2

4+
√

2y(θ,ζ)2

+n log
(

6L
b(θ)

)
+ log(n)


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Lemma 11 (Gradient descent convergence rate for dictionary learning - population). For
any 1 > ζ0 > 0 and s > µ

4
√

2
, Riemannian gradient descent with step size η < c2s

n on the

dictionary learning population objective 8 with µ < c4
√
ζ0

n5/4 , θ ∈ (0, 1
2 ), enters a ball of radius

c3s from a target solution in

T <
C1

ηθ

(
1

s
+ n log

1

ζ0

)
iterations with probability

P ≥ 1− 2 log(n)ζ0

where the ci, Ci are positive constants.

Proof of Lemma 11: (Gradient descent convergence rate for dictionary learning - population).
The rate will be obtained by splitting Cζ0 into three regions. We consider convergence to
B2
s (0) since this set contains a global minimizer. Note that the balls in the proof are defined

with respect to w.

B.3 Cζ0\B2
1/20

√
5
(0)

The analysis in this region is completely analogous to that in the first part of the proof of
Lemma 1. For every point in this set we have

‖w‖∞ >
1

20
√

5(n− 1)

. From Lemma 16 we know that
√

n−1
(2+ζ(t))ζ(t)+n

< 1
20
√

5
⇒ w(t) ∈ B2

1/20
√

5
(0) hence in this

set ζ < 8. If we choose r = 1

40
√

5(n−1)
, since for every point in this region r3ζ < 1, we have

r5/2
√
ζ

2
√

3
<

√√
1+ 3

4 r
3ζ−1

3 r = z(r, ζ) and we thus demand µ <
√
ζ0(

40
√

5(n−1)
)5/2

2
√

3
≤ r5/2

√
ζ

2
√

3
and

obtain from Lemma 4 that for |wi| > r

u(i)∗grad[fpopDL ](q(w)) ≥ cDL
(8000(n− 1))3/2

. We now require η < 1

360
√

5θn(n−1)
= b−r

3M we can apply Lemma 17 with b = 1

20
√

5(n−1)
, r =

1

40
√

5(n−1)
,M =

√
θn (since the maximal norm of the Riemannian gradient is

√
θn from

Lemma 12), obtaining that at every iteration in this region

ζ ′ ≥ ζ
(

1 +

√
ncDL

2(8000(n− 1))3/2
η

)
and the maximal number of iterations required to obtain ζ > 8 and exit this region is given
by

t1 =
log(8/ζ0)

log
(

1 +
√
ncDL

2(8000(n−1))3/2
η
) (17)

B.4 B2
1/20

√
5
(0)\B2

s (0)

According to Proposition 7 in (38), which we can apply since s ≥ µ

4
√

2
, µ < 9

50 , in this region
we have

w∗∇wgpopDL(w)

‖w‖
≥ cθ

A simple calculation shows that ∇wgpopDL(w) =
(
∂ϕ
∂w

)∗
grad[fpopDL ](q(w)) where ϕ is the map

defined in 3, and thus
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w∗
(
∂ϕ
∂w

)∗
grad[fpopDL ](q(w))

‖w‖
=

(
w∗

−‖w‖
2

qn

)
grad[fpopDL ](q(w))

‖w‖

> θc (18)

. Defining h(q) = ‖w‖2
2 , and denoting by q′ an update of Riemannian gradient descent with

step size η, we have (using a Lagrange remainder term)

h(q′) = h(q) +
∂h(q′)

∂η
η +

η∫
0

dt
∂2h(q′)

∂η2
η=t

(η − t)

︸ ︷︷ ︸
≡R

=
‖w‖2

2
−
〈

grad[fpopDL ](q),
∂h(q)

∂q

〉
+R

where in the last line we used q′ = cos(gη)q− sin(gη)
grad[fpopDL ](q)

g where g ≡ ‖grad[fpopDL ](q)‖.

Since
〈

grad[fpopDL ](q), ∂h(q)
∂q

〉
=
〈

grad[fpopDL ](q), (I − qq∗) ∂h(q)
∂q

〉
and

(I − qq∗) ∂h(q)

∂q
= (I − qq∗)

(
w
−qn

)
=

(
w
−qn

)
− (‖w‖2 − q2

n)q = 2(1− ‖w‖2)

(
w

−‖w‖
2

qn

)

we obtain (using 18)

‖w′‖2

2
=
‖w‖2

2
+ 2(1− ‖w‖2)η

〈
grad[fpopDL ](q),

(
w

−‖w‖
2

qn

)〉
+R

<
‖w‖2

2
− 2(1− ‖w‖2) ‖w‖ θcη +R

It remains to bound R. Denoting r =

(
w
−qn

)∗
grad[f ](q) we have

∂2h(q′)

∂η2
η=t

=

(
∂q′

∂η

)∗
∂2h(q)

∂q∂q

∂q′

∂η
η=t +

∂h(q)

∂q

∗
∂2q′

∂η2 η=t

=

cos2(gt)
(
grad[fpopDL ](q)2 − grad[fpopDL ](q)2

n

)
+g2

(
sin2(gt)− cos(gt)

) (
‖w‖2 − q2

n

)
+g sin(gt)r(1 + 2 cos(gt))

hence for some C > 0, if ‖grad[fpopDL ](q)‖ < M we have

R < CM2η2

and thus choosing η < (1−‖w‖2)‖w‖θc
CM2 we find

‖w′‖2 < ‖w‖2 − 2(1− ‖w‖2) ‖w‖ cθη

24



Under review as a conference paper at ICLR 2019

and in our region of interest ‖w′‖2 < ‖w‖2 − c̃sθη for some c̃ > 0 and thus summing over
iterations, we obtain for some C̃2 > 0

t2 =
C̃2

sθη
. (19)

From Lemma 12, M =
√
θn and thus with a suitably chosen c2 > 0, η < c2s

n satisfies the
above requirement on η as well as the previous requirements, since θ < 1.

B.5 Final rate and distance to minimizer

Combining these results gives, we find that when initializing in Cζ0 , the maximal number of
iterations required for Riemannian gradient descent to enter B2

s (0) is

T ≤ t1 + t2 <
C1

ηθ

(
n log

1

ζ0
+

1

s

)
for some suitably chosen C1, where t1, t2 are given in 17,19. The probability of such an
initialization is given by the probability of initializing in one of the 2n possible choices of Cζ ,
which is bounded in Lemma 3.

Once w ∈ B2
s (0), the distance in Rn−1 between w and a solution to the problem (which is a

signed basis vector, given by the point w = 0 or an analog on a different symmetric section of
the sphere) is no larger than s, which in turn implies that the Riemannian distance between
ϕ(w) and a solution is no larger than c3s for some c3 > 0. We note that the conditions on µ
can be satisfied by requiring µ < c4

√
ζ0

n5/4 .

Lemma 12 (Dictionary learning gradient upper bound). The dictionary learning population
gradient obeys

‖∇wgpopDL(w)‖ ≤
√

2θn

‖grad[fpopDL ](q)‖ ≤
√
θn

while in the finite sample case

‖∇wgDL(w)‖2 ≤
√

2n ‖X‖∞
‖grad[fDL](q)‖ ≤

√
n ‖X‖∞

where X is the data matrix with i.i.d. BG(θ) entries.

Proof. Denoting x ≡ (x, xn) we have

‖∇wgpopDL(w)‖2 =

∥∥∥∥E [tanh

(
q∗x

µ

)(
x− xn

w

qn

)]∥∥∥∥2

and using Jensen’s inequality, convexity of the L2 norm and the triangle inequality to obtain

≤ E

[∥∥∥∥tanh

(
q∗x

µ

)
x

∥∥∥∥2

+

∥∥∥∥tanh

(
q∗x

µ

)(
xn
w

qn

)∥∥∥∥2
]

≤ E

[
‖x‖2 +

∥∥∥∥xnwqn
∥∥∥∥2
]
≤ 2θn

while
‖grad[fpopDL ](q)‖ ≤ ‖∇fpopDL (q)‖

=

∥∥∥∥E [tanh

(
q∗x

µ

)
x

]∥∥∥∥ ≤ √θn
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Similarly, in the finite sample size case one obtains

‖∇wgDL(w)‖2 ≤ 1

p

p∑
i=1

∥∥xi∥∥2
+

∥∥∥∥xinwqn
∥∥∥∥2

≤ 2n ‖X‖2∞

‖grad[fDL](q)‖ ≤ 1

p

p∑
i=1

∥∥∥∥tanh

(
q∗xi

µ

)
xi
∥∥∥∥

≤
√
n ‖X‖∞

Proof of Theorem 2: (Gradient descent convergence rate for dictionary learning).
The proof will follow exactly that of Lemma 11, with the finite sample size fluctuations
decreasing the guaranteed change in ζ or ||w|| at every iteration (for the initial and final
stages respectively) which will adversely affect the bounds.

B.6 Cζ0\B2
1/20

√
5
(0)

To control the fluctuations in the gradient projection, we choose

y(θ, ζ0) =
ζ0cDL

2(8000(n− 1))3/2

which can be satisfied by choosing y(θ, ζ0) = c7θ(1−θ)ζ0
n3/2 for an appropriate c7 > 0 . According

to Lemma 10, with probability greater than Py we then have∣∣∣∣ u(i)∗grad[fDL](q(w))
−E

[
u(i)∗grad[fDL](q(w))

] ∣∣∣∣ ≤ y(θ, ζ)

With the same condition on µ as in Lemma 11, combined with the uniformized bound on
finite sample fluctuations, we have that at every point in this set

u(i)∗grad[fpopDL ](q(w)) ≥ cDL
2(8000(n− 1))3/2

. According to Lemma 12 the Riemannian gradient norm is bounded by M =
√
n ‖X‖∞.

Choosing r, b as in Lemma 11, we require η < 1

360‖X‖∞
√

5n(n−1)
= b−r

3M and obtain from

Lemma 17

ζ ′ ≥ ζ
(

1 +

√
ncDL

4(8000(n− 1))3/2
η

)
t1 =

log(8/ζ0)

log
(

1 +
√
ncDL

4(8000(n−1))3/2
η
) (20)

B.7 B2
1/20

√
5
(0)\B2

s (0)

From Theorem 2 in (38) there are numerical constants cb, c? such that in this region

w∗∇wgDL(w)

‖w‖
=
w∗
(
∂ϕ
∂w

)∗
grad[f ](q(w))

‖w‖
≥ c?θ

with probability P > 1 − cbp
−6. Following the same analysis as in Lemma 11, since

from Lemma 12 the norm of the gradient gradient is bounded by
√
n||X||∞ we require

η < (1−‖w‖2)‖w‖θc?
Cn||X||2∞

which is satisfied by requiring η < c̃θs
n||X||2∞

for some chosen c̃ > 0. We
then obtain

t3 =
C2

sθη
(21)
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for a suitably chosen C2 > 0.

B.8 Final rate and distance to minimizer

The final bound on the rate is obtained by summing over the terms for the three regions as
in the population case, and convergence is again to a distance of less than c3s from a local
minimizer. The probability of achieving this rate is obtained by taking a union bound over
the probability of initialization in Cζ0 (given in Lemma 3) and the probabilities of the bounds
on the gradient fluctuations holding (from Lemma 10 and (38)). Note that the fluctuation
bound events imply by construction the event E∞ = {1 ≤ ‖X‖∞ ≤ 4

√
log(np)} hence we

can replace ‖X‖∞ in the conditions on η above by 4
√

log(np). The conditions on η, µ can
be satisfied by requiring η < c5θs

n lognp , µ <
c6
√
ζ0

n5/4 for suitably chosen c5, c6 > 0. The bound on
the number of iterations can be simplified to the form in the theorem statement as in the
population case.

C Generalized Phase Retrieval

We show below that negative curvature normal to stable manifolds of saddle points in strict
saddle functions is a feature that is found not only in dictionary learning, and can be used
to obtain efficient convergence rates for other nonconvex problems as well, by presenting an
analysis of generalized phase retrieval that is along similar lines to the dictionary learning
analysis. We stress that this contribution is not novel since a more thorough analysis was
carried out by (8). The resulting rates are also suboptimal, and pertain only to the population
objective.

Generalized phase retrieval is the problem of recovering a vector x ∈ Cn given a set of
magnitudes of projections yk = |x∗ak| onto a known set of vectors ak ∈ Cn. It arises in
numerous domains including microscopy (27), acoustics (2), and quantum mechanics (10)
(see (33) for a review). Clearly x can only be recovered up to a global phase. We consider the
setting where the elements of every ak are i.i.d. complex Gaussian, (meaning (ak)j = u+ iv

for u, v ∼ N (0, 1/
√

2)). We analyze the least squares formulation of the problem (7) given
by

min
z∈Cn

f(z) =
1

2p

p∑
k=1

(
y2
k − |z∗ak|

2
)2

.

Taking the expectation (large p limit) of the above objective and organizing its derivatives
using Wirtinger calculus (22), we obtain

E[f ] = ‖x‖4 + ‖z‖4 − ‖x‖2 ‖z‖2 − |x∗z|2 (22)

∇E[f ] =

[
∇zE[f ]
∇zE[f ]

]

=

 (
(2 ‖z‖2 − ‖x‖2)I − xx∗

)
z(

(2 ‖z‖2 − ‖x‖2)I − xxT
)
z

 .
For the remainder of this section, we analyze this objective, leaving the consideration of
finite sample size effects to future work.

C.1 The geometry of the objective

In (37) it was shown that aside from the manifold of minima

Ă ≡ xeiθ,

the only critical points of E[f ] are a maximum at z = 0 and a manifold of saddle points
given by

“A \ {0} ≡
{
z

∣∣∣∣ z ∈W, ‖z‖ =
‖x‖√

2

}
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where W ≡ {z|z∗x = 0}. We decompose z as

z = w + ζeiφ
x

‖x‖
, (23)

where ζ > 0,w ∈ W . This gives ‖z‖2 = ‖w‖2 + ζ2. The choice of w, ζ, φ is unique up to
factors of 2π in φ, as can be seen by taking an inner product with x. Since the gradient
decomposes as follows:

∇zE[f ] =
(

2 ‖z‖2 I − ‖x‖2 I − xx∗
)

(w + ζeiφ
x

‖x‖
)

=
(

2 ‖z‖2 − ‖x‖2
)
w + 2ζeiφ

(
‖z‖2 − ‖x‖2

) x

‖x‖
(24)

the directions eiφ x
‖x‖ ,

w
‖w‖ are unaffected by gradient descent and thus the problem reduces

to a two-dimensional one in the space (ζ, ‖w‖). Note also that the objective for this two-
dimensional problem is a Morse function, despite the fact that in the original space there
was a manifold of saddle points. It is also clear from this decomposition of the gradient that
the stable manifolds of the saddles are precisely the set W .

It is evident from 24 that the dispersive property does not hold globally in this case. For
z /∈ B||x|| we see that gradient descent will cause ζ to decrease, implying positive curvature
normal to the stable manifolds of the saddles. This is a consequence of the global geometry
of the objective. Despite this, in the region of the space that is more "interesting", namely
B||x||, we do observe the dispersive property, and can use it to obtain a convergence rate for
gradient descent.

We define a set that contains the regions that feeds into small gradient regions around saddle
points within B||x|| by

Qζ0 ≡ {z(ζ, ‖w‖)|ζ ≤ ζ0}.

We will show that, as in the case of orthogonal dictionary learning, we can both bound
the probability of initializing in (a subset of) the complement of Qζ0 and obtain a rate for
convergence of gradient descent in the case of such an initialization. 9

We now define four regions of the space which will be used in the analysis of gradient descent:

S1 ≡
{
z
∣∣∣ ‖z‖2 ≤ 1

2 ‖x‖
2
}

S2 ≡
{
z
∣∣∣ 1

2 ‖x‖
2
< ‖z‖2 ≤ (1− c) ‖x‖2

}
S3 ≡

{
z
∣∣∣ (1− c) ‖x‖2 < ‖z‖2 ≤ ‖x‖2

}
S4 ≡

{
z
∣∣∣ ‖x‖2 < ‖z‖2 ≤ (1 + c) ‖x‖2

}
defined for some c < 1

4 . These are shown in Figure 4.

We now define

z′ ≡ z − η∇zE[f ] ≡ w′ + ζ ′eiφ
x

‖x‖
(25)

and using 24 obtain

ζ ′ =
(

1− 2η(‖z‖2 − ‖x‖2)
)
ζ (26a)

‖w′‖ =
(

1− η
(

2 ‖z‖2 − ‖x‖2
))
‖w‖ . (26b)

9Qζ0 is equivalent to the complement of the set Cζ used in the analysis of the separable objective
and dictionary learning.
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Figure 4: The projection of the objective of generalized phase retrieval on the ( ζ
‖x‖ ,

‖w‖
‖x‖ )

plane. The full red curves are the boundaries between the sets S1, S2, S3, S4 used in the
analysis. The dashed red line is the boundary of the set Qζ0 that contains small gradient
regions around critical points that are not minima. The maximizer and saddle point are
shown in dark green, while the minimizer is in pink.

These are used to find the change in ζ, ‖w‖ at every iteration in each region:

On S1: ζ ′ ≥ (1 + η ‖x‖2)ζ (27a)
‖w′‖ ≥ ‖w‖ (27b)

On S2: ζ ′ ≥ (1 + 2cη ‖x‖2)ζ (27c)
‖w′‖ ≤ ‖w‖ (27d)

On S3:
(

1− η ‖x‖2
)
‖w‖ ≤ ‖w′‖

≤
(

1− (1− 2c)η ‖x‖2
)
‖w‖ (27e)

ζ ≤ ζ ′ ≤ (1 + 2cη ‖x‖2)ζ (27f)

On S4:
(

1− (1 + 2c)η ‖x‖2
)
‖w‖ ≤ ‖w′‖

≤
(

1− η ‖x‖2
)
‖w‖ (27g)

(1− 2cη ‖x‖2)ζ ≤ ζ ′ ≤ ζ (27h)

C.2 Behavior of gradient descent in ∪4
i=1Si

We now show that gradient descent initialized in S1\Qζ0 cannot exit ∪4
i=1Si or enter Qζ0 .

Lemma 14 guarantees that gradient descent initialized in ∪4
i=1Si remains in this set. From

equation 27 we see that a gradient descent step can only decrease ζ if z ∈ S4. Under the
mild assumption ζ2

0 <
7
16 ‖x‖

2 we are guaranteed from Lemma 13 that at every iteration
ζ ≥ ζ0. Thus the region with ζ < ζ0 can only be entered if gradient descent is initialized in
it. It follows that initialization in S1\Qζ0 rules out entering Qζ0 at any future iteration of
gradient descent. Since this guarantees that regions that feed into small gradient regions are
avoided, an efficient convergence rate can again be obtained.

C.3 Convergence rate

Theorem 3 (Gradient descent convergence rate for generalized phase retrieval). Gradient
descent on 22 with step size η <

√
c

4‖x‖2 , c <
1
4 , initialized uniformly in S1 converges to a point
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z such that dist(z, Ă) <
√

5c ‖x‖ in

T <
log
(
‖x‖
ζ
√

2

)
log(1+η‖x‖2)

+ log(2)

2 log(1+2cη‖x‖2)

+
log(2c) log( 4√

7
)

log(1−(1−2c)η‖x‖2) log(1+2cη‖x‖2)

iterations with probability

P ≥ 1−
√

8

π
erf

(√
2n

‖x‖
ζ

)
,

Proof. Please see Appendix C.3.

We find that in order to prevent the failure probability from approaching 1 in a high
dimensional setting, if we assume that ‖x‖ does not depend on n we require that ζ scale
like 1√

n
. This is simply the consequence of the well-known concentration of volume of a

hypersphere around the equator. Even with this dependence the convergence rate itself
depends only logarithmically on dimension, and this again is a consequence of the logarithmic
dependence of ζ due to the curvature properties of the objective.

Lemma 13. For any iterate z of gradient descent on 22, assuming η <
√
c

4‖x‖2 , c <
1
4 and

defining ζ ′ as in 25, we have i)

z ∈
4⋃
i=1

Si ⇒ ‖w‖2 ≤
‖x‖2

2

ii)

z ∈ S4 ⇒ ζ ′2 ≥ 7

16
‖x‖2

Proof of Lemma 13. i) From 27 we see that in
4⋃
i=2

Si the quantity ‖w‖2 cannot increase,

hence this can only happen in S1. We show that for some z ∈ S1, a point with ‖w‖ =

(1 − ε)‖x‖√
2
, ε < 1 cannot reach a point with ‖w‖′ = ‖x‖√

2
by a gradient descent step. This

would mean (
1− η

(
2 ‖w‖2 + 2ζ2 − ‖x‖2

))
‖w‖

=
(

1− η
(

(1− ε)2 ‖x‖2 + 2ζ2 − ‖x‖2
))

(1− ε)‖x‖√
2

=
‖x‖√

2

and since ζ2 ≥ 0 this implies (
1 + εη ‖x‖2 (2− ε)

)
(1− ε) ≥ 1

by considering the product of these two factors, this in turn implies

1

2b
(2− ε) ≥ η ‖x‖2 (2− ε) ≥ 1

where we have used η <
√
c

b‖x‖2 , c <
1
4 . Thus if we choose b = 4 this inequality cannot be

satisfied.

Additionally, if we initialize in S1∩Qζ0 then we cannot initialize at a point where ‖w‖′ = ‖x‖√
2

and hence the inequality is strict.
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ii) Since only a step from S4 can decrease ζ, we have that for the initial point ‖z‖2 > ‖x‖2.
Combined with ‖w‖2 ≤ ‖x‖

2

2 this gives

ζ2 ≥ ‖x‖
2

2

and using the lower bound (1− 2η ‖x‖2 c)ζ ≤ ζ ′ we obtain

ζ ′2 ≥ ‖x‖
2

2
(1− 2η ‖x‖2 c)2 ≥ ‖x‖

2

2
(1− 4η ‖x‖2 c)

≥ (1− 1

2b
)
‖x‖2

2

where in the last inequality we used c < 1
4 , η <

√
c

b‖x‖2 . Choosing b = 4 gives

ζ ′2 ≥ 7

16
‖x‖2

If we require ζ2
0 < 7

16 ‖x‖
2 this also ensures that the next iterate cannot lie in the small

gradient regions around the stable manifolds of the saddles.

Lemma 14. Defining z′ as in 25, under the conditions of Lemma 13 and we have

i)

z ∈
4⋃
i=2

Si ⇒ z′ ∈
4⋃
i=2

Si

ii)
z ∈ S1 ⇒ z′ ∈ S1 ∪ S2

Proof of Lemma 14. We use the fact that for the next iterate we have

‖z′‖2 =
(

1− η(2 ‖z‖2 − ‖x‖2)
)2

‖w‖2

+
(

1− 2η(‖z‖2 − ‖x‖2)
)2

ζ2
(28)

We will also repeatedly use η <
√
c

b‖x‖2 , c <
1
4 and z ∈

4⋃
i=1

Si ⇒ ‖w‖2 ≤ ‖x‖
2

2 which is a shown

in Lemma 13.

C.4 z ∈ S3 ⇒ z′ ∈
4⋃
i=2

Si

We want to show ‖x‖2
2 <

(1)
‖z′‖2 ≤

(2)
(1 + c) ‖x‖2.

1) We have z ∈ S3 ⇒ ‖z‖2 = (1− ε) ‖x‖2 for some ε ≤ c and using 28 we must show

‖x‖2

2
≤

(
1− η ‖x‖2 (1− 2ε)

)2

‖w‖2

+
(

1 + 2η ‖x‖2 ε
)2

ζ2

or equivalently

A ≡ ε− ‖x‖
2

2
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≤ η ‖x‖2
 (−2(1− 2ε) + (1− 2ε)2η ‖x‖2

)
‖w‖2

+4
(
ε+ ε2η ‖x‖2

)
ζ2

 ≡ B
and using η <

√
c

b‖x‖2 , c <
1
4

−‖x‖2

b
<
−2 ‖x‖

√
c

b
< −2η ‖x‖4 ≤ B

while on the other hand

A ≤ c− ‖x‖
2

2
< −‖x‖

2

4

thus picking b = 4 guarantees the desired result.

2) By a similar argument, ‖z′‖2 ≤ (1 + c) ‖x‖2 is equivalent to

A ≡ η ‖x‖2
 (−2(1− 2ε) + η ‖x‖2 (1− 2ε)2

)
‖w‖2

+4
(
ε+ η ‖x‖2 ε2

)
ζ2


≤ ‖x‖2 (c+ ε) ≡ B

. Since ‖w‖2 ≤ ‖x‖
2

2 and ‖z‖2 ≤ ‖x‖2 ⇒ ζ2 ≤ ‖x‖
2

2 we obtain

A ≤ η
[
η ‖x‖4 + 4

(
‖x‖2 ε+ η ‖x‖4 ε2

)] ‖x‖2
2

<
1

2b

[
1

b
+ 2

(
1 +

1

8b

)]
c ‖x‖2

. If we choose b = 4 we thus have A < B which implies

‖z′‖2 < (1 + c) ‖x‖2

C.5 z ∈ S4 ⇒ z′ ∈
4⋃
i=2

Si

We have z ∈ S4 ⇒ ‖z‖2 = ‖w‖2 + ζ2 = (1 + ε) ‖x‖2 for some ε ≤ c .

1) ‖x‖
2

2 < ‖z′‖2 is equivalent to

A ≡ −(ε+
1

2
) ‖x‖2

≤ η ‖x‖2
 (−4(1 + 2ε) + η ‖x‖2 (1 + 2ε)2

)
‖w‖2

+4
(
−ε+ η ‖x‖2 ε2

)
ζ2

 ≡ B
. We have

B ≥ −4η ‖x‖2
(

(1 + 2ε) ‖w‖2 + εζ2
)
≥ −15

8b
‖x‖2

where the last inequality used ‖w‖2 ≤ ‖x‖
2

2 and ‖z‖2 ≤ ‖x‖2 (1 + c)⇒ ζ2 ≤ ‖x‖2 ( 1
2 + c).

The choice b = 4 gaurantees A ≤ B which ensures the desired result.

2) This is trivial since ‖z‖2 ≤ (1 + c) ‖x‖2 and in S4 both ζ and ‖w‖decay at every iteration
(ref eq).
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C.6 z ∈ S2 ⇒ z′ ∈
4⋃
i=2

Si

1) We use z ∈ S2 ⇒ ‖z‖2 = ‖w‖2 + ζ2 = (1
2 + ε) ‖x‖2 for some ε ≤ 1

2 − c . Using a similar
argument as in the previous section, we are required to show

−ε ‖x‖2 < η ‖x‖2
 4

(
−ε+ ε2η ‖x‖2

)
‖w‖2

+
(

2(1− 2ε) + (1− 2ε)2η ‖x‖2
)
ζ2


≡ B

where B ≥ −ε‖x‖
2

b implies that b = 4 gives the desired result.

2) The condition is equivalent to

A ≡ η ‖x‖2
 4

(
−ε+ ε2η ‖x‖2

)
‖w‖2

+
(

2(1− 2ε) + (1− 2ε)2η ‖x‖2
)
ζ2

+ ε ‖x‖2

≤ (
1

2
+ c) ‖x‖2 ≡ B

One can show by looking for critical points of A(ε) in the range 0 ≤ ε ≤ 1
2 that A is

maximized at ε = 0, since there is only one critical point at ε∗ =
4− b√

c
+2
√
c
b

8
√
c
b

and A(ε∗) < 0,

while

A(
1

2
) ≤

[(
−2

√
c

b
+

c

b2

)
‖w‖2

]
+

1

2
‖x‖2

A(0) ≤ 1

2b

(
2 +

1

2b

)
‖x‖2

2

and in both cases b = 4 ensures A ≤ B.

C.7 z ∈ S1 ⇒ z′ ∈ S1 ∪ S2

We must show ‖z′‖ ≤ (1− c) ‖x‖2 using ‖z‖2 = (1− ε)‖x‖
2

2 for 0 ≤ ε ≤ 1.

‖z′‖2 =
(

1 + εη ‖x‖2
)2

‖w‖2 +

(
1 + 2(ε+ 1)η

‖x‖2

2

)2

ζ2

A ≡ η ‖x‖2
 (

2ε+ ε2η ‖x‖2
)
‖w‖2

+
(

2(ε+ 1) + (ε+ 1)2η ‖x‖
2

4

)
ζ2

− ε ‖x‖2
≤ (

1

2
− c) ‖x‖2 ≡ B

and since A ≤ 1
2b

[
2 + 1

b

] ‖x‖2
2 and B ≥ ‖x‖

2

4 once again b = 4 suffices to obtain the desired
result.

Lemma 15. For z parametrized as in 23,

‖w‖2 < c ‖x‖2 ∨ ζ2 > (1− c) ‖x‖2

⇒ dist(z, Ă) <
√

5c ‖x‖
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Proof of Lemma 15. Once ‖w‖2 < c ‖x‖2 for some z ∈ S3 ∪ S4 we have

‖z‖2 = ζ2 + ‖w‖2 ≥ (1− c) ‖x‖2

ζ2 ≥ (1− c) ‖x‖2 − ‖w‖2 > (1− 2c) ‖x‖2 (29)

For some z = w + ζeiφ x
‖x‖ we have

dist2(z, Ă) = min
θ

∥∥∥eiθx−w − ζeiφ x
‖x‖

∥∥∥2

= ‖w‖2 + min
θ

∥∥∥eiθx− ζeiφ x
‖x‖

∥∥∥2

= ‖w‖2 + (1− ζ

‖x‖
)2 ‖x‖2 = ‖z‖2 + ‖x‖2 − 2ζ ‖x‖

if we assume ‖z‖2 ≤ (1 + c) ‖x‖2

dist2(z, Ă) ≤ (c+ 2) ‖x‖2 − 2ζ ‖x‖ (30)

plugging in the value of ζ from 29 and using fact that −
√

1− x ≤ −1 + x for x < 1 we have

dist2(z, Ă) < (c+ 2) ‖x‖2 − 2
√

1− 2c ‖x‖2 ≤ 5c ‖x‖2

Alternatively, if ζ2 > (1− c) ‖x‖2 we have from 30

dist2(z, Ă) ≤ (c+ 2) ‖x‖2 − 2ζ ‖x‖
< (c+ 2) ‖x‖2 − 2

√
1− c ‖x‖2 ≤ 3c ‖x‖2

which gives the desired result. In particular, if we choose c = 1
35 we converge to dist2(z, Ă) <

‖x‖2
7 , a region which is strongly convex according to (38).

Proof of Theorem 3: (Gradient descent conver-
gence rate for generalized phase retrieval) . We now bound the number of iter-

ations that gradient descent, after random initialization in S1, requires to reach a point
where one of the convergence criteria detailed in Lemma 15 is fulfilled. From Lemma 14, we

know that after initialization in S1 we need to consider only the set
4⋃
i=1

Si. The number of

iterations in each set will be determined by the bounds on the change in ζ, ||w|| detailed in
27.

C.7.1 Iterations in S1

Assuming we initialize with some ζ = ζ0. Then the maximal number of iterations in this
region is

ζ0(1 + η ‖x‖2)t1 =
‖x‖√

2

t1 =
log
(
‖x‖
ζ0
√

2

)
log(1 + η ‖x‖2)

since after this many iterations ‖z‖2 ≥ ζ2 ≥ ‖x‖
2

2 .
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C.7.2 Iterations in
4⋃
i=2

Si

The convergence criteria are ‖w‖2 < c ‖x‖2 or ζ2 > (1− c) ‖x‖2.
After exiting S1 and assuming the next iteration is in S2, the maximal number of iterations
required to reach S3 ∪ S4 is obtained using

ζ ′ ≥ (1 + 2η ‖x‖2 c)ζ

and is given by

‖x‖√
2

(1 + 2η ‖x‖2 c)t2 = (1− c) ‖x‖2

t2 =
log
(√

2(1− c)
)

log(1 + 2η ‖x‖2 c)
≤ log(2)

2 log(1 + 2η ‖x‖2 c)

since after this many iterations ‖z‖2 ≥ ζ2 ≥ (1− c) ‖x‖2.
For every iteration in S3 ∪ S4 we are guaranteed

‖w′‖ ≤
(

1− (1− 2c)η ‖x‖2
)
‖w‖

thus using Lemmas 13.i and 15 the number of iterations in S3 ∪ S4 required for convergence
is given by

‖x‖2

2

(
1− (1− 2c)η ‖x‖2

)t3+4

= c ‖x‖2

t3+4 =
log(2c)

log
(

1− (1− 2c)η ‖x‖2
)

The only concern is that after an iteration in S3 ∪ S4 the next iteration might be in S2.
To account for this situation, we find the maximal number of iterations required to reach
S3 ∪ S4 again. This is obtained from the bound on ζ in Lemma 13.

Using this result, and the fact that for every iteration in S2 we are guaranteed ζ ′ ≥
(1 + 2η ‖x‖2 c)ζ the number of iterations required to reach S3 ∪ S4 again is given by

√
7

4
‖x‖ (1 + 2η ‖x‖2 c)tr =

√
1− c ‖x‖

tr =
log
(

4
√

1−c√
7

)
log(1 + 2η ‖x‖2 c)

≤
log( 4√

7
)

log(1 + 2η ‖x‖2 c)

C.8 Final rate

The final rate to convergence is
T < t1 + t2 + t3+4tr

=
log
(
‖x‖
ζ
√

2

)
log(1+η‖x‖2)

+ log(2)

2 log(1+2cη‖x‖2)

+
log(2c) log( 4√

7
)

log(1−(1−2c)η‖x‖2) log(1+2cη‖x‖2)

C.9 Probability of the bound holding

The bound applies to an initialization with ζ ≥ ζ0, hence in S1\Qζ0 . Assuming uniform
initialization in S1, the set Qζ0 is simply a band of width 2ζ0 around the equator of the
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ball B‖x‖/√2 (in R2n, using the natural identification of Cn with R2n). This volume can be
calculated by integrating over 2n− 1 dimensional balls of varying radius.

Denoting r = ζ0
√

2
‖x‖ and by V (n) = πn/2

n
2 Γ(n2 ) the hypersphere volume, the probability of

initializing in S1 ∩Qζ0 (and thus in a region that feeds into small gradient regions around
saddle points) is

P(fail) =
Vol(Qζ0)

Vol(B‖x‖/
√

2)

=

V (2n− 1)
r∫
−r

(1− x2)
2n−1

2 dx

V (2n)

≤
V (2n− 1)

r∫
−r
e−

2n−1
2 x2

dx

V (2n)

=
1√
n− 1

2

n

n− 1
2

Γ(n)

Γ( 2n−1
2 )

erf(

√
2n− 1

2
r)

≤
√

8

π
erf(
√
nr)

. For small ζ we again find that P(fail) scales linearly with ζ, as was the case for the previous
problems considered.

D Auxiliary Lemmas

D.1 Separable objective

∂gs(w)

∂wi
= tanh

(
wi
µ

)
− tanh

(
qn
µ

)
wi
qn

∂2gs(w)

∂wi∂wj
=

[
1

µ
sech2

(
wi
µ

)
− tanh

(
qn
µ

)
1

qn

]
δij

+

[
1

µ
sech2

(
qn
µ

)
1

q2
n

− tanh

(
qn
µ

)
1

q3
n

]
wiwj

D.2 Dictionary Learning

∇wgpopDL(w) = E
[
tanh

(
q∗(w)x

µ

)(
x− xn

qn(w)
w

)]
D.3 Properties of Cζ

Proof of Lemma 3: (Volume of Cζ). We are interested in the relative volume
Vol(Cζ)

Vol(Sn−1) ≡ Vζ . Using the standard solid angle formula, it is given by

Vζ = lim
ε→0

1

εn/2

∞∫
0

e−
π
ε x

2
1

n

Π
i=2

x1/(1+ζ)∫
−x1/(1+ζ)

e−
π
ε x

2
i dxidx1

= lim
ε→0

1√
ε

∞∫
0

e−
π
ε x

2

[
erf(

x

(1 + ζ)

√
π

ε
)

]n−1

dx
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changing variables to x̃ =
√

π
ε

x
(1+ζ)

Vζ =
(1 + ζ)√

π

∞∫
0

e−(1+ζ)2x2

erfn−1(x)dx

This integral admits no closed form solution but one can construct a linear approximation
around small ζ and show that it is convex. Thus the approximation provides a lower bound
for Vζ and an upper bound on the failure probability.

From symmetry considerations the zero-order term is V0 = 1
2n . The first-order term is given

by

∂Vζ
∂ζ ζ=0

=
1

n
− 2√

π

∞∫
0

x2e−x
2

erfn−1(x)dx

We now require an upper bound for the second integral since we are interested in a lower
bound for Vζ . We can express it in terms of the second moment of the L∞ norm of a
Gaussian vector as follows:

1√
π

∞∫
0

x2e−x
2

erfn−1(x) =
1√
π

∞∫
0

x2e−x
2

Π
i

1√
π

x∫
−x

e−t
2
i dtidx

=
1√
2π

∞∫
0

x2

2
e−x

2/2Π
i

1√
2π

x∫
−x

e−t
2
i /2dtidx

=
1

4n

∫
‖X‖2∞ dµ(X)

=
1

4n

(
Var [‖X‖∞] + (E [‖X‖∞])

2
)

where µ(X) is the Gaussian measure on the vector X ∈ Rn. We can bound the first term
using

Var [‖X‖∞] ≤ max
i

Var [|Xi|] = Var [|Xi|] < Var [Xi] = 1

To bound the second term, we use the fact that for a standard Gaussian vector X (Xi ∼
N (0, 1)) and any λ > 0 we have

exp (λE [‖X‖∞]) ≤ E
[
exp

(
λmax

i
|Xi|

)]
≤ E

[∑
i

exp (λ |Xi|)

]
= nE [exp (λ |Xi|)]

(using convexity and non-negativity of the exponent respectively)

nE [exp (λ |Xi|)] = 2n

∞∫
0

exp (λXi) dµ(Xi)

≤ 2nE [exp (λXi)] = 2n exp

(
λ2

2

)
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taking the log of both sides gives

E
[
max
i
|Xi|

]
≤ log(2n)

λ
+
λ

2

and the bound is minimized for λ =
√

2 log(2n) giving

E
[
max
i
|Xi|

]
≤
√

2 log(2n) ∼
√

2 log(n)

Combining these bounds, the leading order behavior of the gradient is

∂Vζ
∂ζ ζ=0

≥ 3− 4 log(2n)

4n
≥ − log(n)

n
.

This linear approximation is indeed a lower bound, since using integration by parts twice we
have

∂2Vζ
∂ζ2

=
1√
π

∞∫
0

e−(1+ζ)2x2

(
−6(1 + ζ)x2

+4(1 + ζ)3x4

)
erfn−1(x)dx

= −2(n− 1)

π

∞∫
0

e−(1+ζ)2x2 (
1− 2(1 + ζ)2x2

)
e−x

2

erfn−2(x)dx

=
4(n− 1)(n− 2)(1 + ζ)

π3/2

∞∫
0

e−((1+ζ)2+2)x2

erfn−3(x)dx > 0

where the last inequality holds for any n > 2 since the integrand is non-negative everywhere.
This gives

Vζ ≥
1

2n
− log(n)

n
ζ

Lemma 16. B∞s(ζ)(0) ⊆ Cζ ⊆ B2√
n−1s(ζ)

(0) where s(ζ) = 1√
(2+ζ)ζ+n

. B∞s(ζ)(0) is the largest

L∞ ball contained in Cζ , and B2√
n−1s(ζ)

(0) is the smallest L2 ball containing Cζ (where these
balls are defined in terms of the w vector). All three intersect only at the points where all
the coordinates of w have equal magnitude. Additionally, Cζ ⊆ B∞1/√2+ζ

(0) and this is the
smallest L∞ ball containing Cζ .

Proof. Given the surface of some L∞ ball for w , we can ask what is the minimal ζ such
that ∂Cζm intersects this surface. This amounts to finding the minimal qn given some ‖w‖∞.
Yet this is clearly obtained by setting all the coordinates of w to be equal to ‖w‖∞ (this is
possible since we are guaranteed qn ≥ ‖w‖∞ ⇒ ‖w‖∞ ≤

1√
n
), giving

√
1− (n− 1) ‖w‖2∞
‖w‖∞

= 1 + ζm

‖w‖∞ =
1√

(1 + ζm)2 + n− 1
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thus, given some ζ, the maximal L∞ ball that is contained in Cζ has radius 1√
(2+ζ)ζ+n

. The

minimal L∞ norm containing Cζ can be shown by a similar argument to be B∞
1/
√

1+(1+ζ)2
(0),

where one instead maximizes qn with some fixed ‖w‖∞.

Given some surface of an L2 ball, we can ask what is the minimal Cζ such that Cζ ⊆ B2
r (0).

This is equivalent to finding the maximal ζM such that ∂CζM intersects the surface of the
L2 ball. Since qn is fixed, maximizing ζ is equivalent to minimizing ‖w‖∞. This is done by
setting ‖w‖∞ = ‖w‖√

n−1
, which gives

√
1− ‖w‖2

‖w‖
√
n− 1 = 1 + ζM

√
n− 1

(2 + ζM )ζM + n
= ‖w‖

The statement in the lemma follows from combining these results.

Lemma 17 (Geometric Increase in ζ). For w ∈ Cζ0\B∞b (where ζ ≡ qn
‖w‖∞

− 1), assume
|wi| > r ⇒ u(i)∗grad[f ](q(w)) ≥ c(w)ζ where u(i) is defined in 7 and 1 > b > r. Then if
‖grad[f ](q(w))‖ < M and we define

q′ ≡ expq(−ηgrad[f ](q))

for η < b−r
3M , defining ζ ′ in an analogous way to ζ we have

ζ ′ ≥ ζ
(

1 +

√
n

2
ηc(w)

)
Proof: D.3

Proof of Lemma 17:(Geometric Increase in ζ). Denoting g ≡ ‖grad[f ](q)‖, we have

q′ = cos(gη)q − sin(gη)
grad[f ](q)

g

hence, using Lagrange remainder terms,

q′n
w′i

=

qn − ηgrad[f ](q)n −
gη∫
0

cos(t)(gη − t)dtqn

+
gη∫
0

sin(t)(gη − t)dt grad[f ](q)n
g

wi − ηgrad[f ](q)i −
gη∫
0

cos(t)(gη − t)dtwi

+
gη∫
0

sin(t)(gη − t)dt grad[f ](q)i
g

. We assume wi > 0, and the converse case is analogous. From convexity of 1
1+x

q′n
w′i
≥

qn
wi

+

 η
wi
−

gη∫
0

sin(t)(gη−t)dt

wig


∗
(

grad[f ](q)i − wi
qn

grad[f ](q)n

)
=
qn
wi

+
sin(gη)

wig

(
grad[f ](q)i −

wi
qn

grad[f ](q)n

)
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=
qn
wi

+
sin(gη)

wig
u(i)∗grad[f ](q(w))

We now use η < b−r
3M < π

2M ⇒ gη < π
2 ⇒ sin(gη) ≥ gη

2 and consider two cases. If |wi| > r
we use the bound on the gradient projection in the lemma statement to obtain

q′n
w′i
≥ qn
wi

+
η

2wi
c(w)ζ ≥ qn

wi
+

√
n

2
ηc(w)ζ

hence

q′n
w′i
− 1 ≥ qn

‖w‖∞
− 1 +

√
n

2
ηc(w)ζ = ζ

(
1 +

√
n

2
ηc(w)

)
(31)

If |wi| < r we rule out the possibility that |w′i| = ‖w′‖∞ by demanding η < b−r
3M . Since

b(b− r) < 1 we have 1 + 1
3b(b− r) <

√
1 + b(b− r) hence the requirement on η implies

η <

√
1 + b(b− r)− 1

gb
=
−2g +

√
4g2 + 4g2b(b− r)

2g2b

. If we now combine this with the fact that after a Riemannian gradient step cos(gη)qi −
sin(gη) ≤ q′i ≤ cos(gη)qi + sin(gη), the above condition on η implies the inequality (∗), which
in turn ensures that |wi| < r ⇒ |w′i| < ‖w′‖∞:

|w′i| < |wi|+ sin(gη) < r + gη <
(∗)

(1− g2η2)b− gη

< cos(gη) ‖w‖∞ − sin(gη) ≤ ‖w′‖∞

Due to the above analysis, it is evident that any w′i such that |w′i| = ‖w′‖∞ obeys |wi| > r,
from which it follows that we can use 31 to obtain

q′n
‖w′‖∞

− 1 = ζ ′ ≥ ζ
(

1 +

√
n

2
ηc(w)

)
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