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Abstract

We propose a learning method well-suited to infer the presence of Tuberculosis (TB) mani-
festations on Computer Tomography (CT) scans mimicking the radiologist reports. Latent
features are extracted from the CT volumes employing the V-Net encoder and those are the
input to a Feed-Forward Neural Network (FNN) for multi-class classification. To overtake
the issues (e.g., exploding/vanishing gradients, lack of sensibility) that normally appear
when training deep 3D models with datasets of limited size and composed of large vol-
umes, our proposal employs: 1) At the network architecture level, the scaled exponential
linear unit (SELU) activation which allows the network self-normalization, and 2) at the
learning phase, multi-task learning with a loss function weighted by the task homoscedastic
uncertainty. The results achieve F1-scores close to or above 0.9 for the detection of TB
lesions and a Root Mean Square Error of 1.16 for the number of nodules.
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1. Introduction

Tuberculosis (TB) is an infectious disease which generally affects the lungs and has a high
incidence and mortality (World Health Organization and others, 2018). Due to the severity
of the pandemic, the World Health Organization (WHO) has launched an ambitious plan to
eradicate TB by 2030, for which, the extraction of sensitive radiological biomarkers (Nachi-
appan et al., 2017) is a clear need. Traditionally, radiologists through visual inspection of
x-ray Computed Tomography (CT) volumes generate reports summarizing the presence of
TB-related manifestations. However, using this approach for the extraction of robust TB
radiological biomarkers, it is unfeasible and automation required. In recent years, the in-
troduction of deep learning techniques has drastically contributed to this task (Wang et al.,
2017; Litjens et al., 2017; Hinton, 2018). For deep learning, knowledge is usually injected
into the model in the form of manually segmented masks of the lung lesions. Instead, our
proposal directly employs the expertise acquired by the radiologist through years of clinical
practice as synthesized in tabular reports.
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SNN, 3D-CNN & Multi-task loss for TB

2. Material and Methods

Chest CT scans (56) acquired from 14 male Cynomolgus macaques at 3, 7, 11 and 16 weeks
after TB aerosol exposure were employed. First, the CT volumes were cropped (Gordaliza
et al., 2018) and resampled to 1mm×1mm×2mm. During the training, data augmentation
is performed (elastic transformation, addition of Gaussian noise). As labelled data, we
employ the tabular reports elaborated by a radiologist (20 years experienced) that contain
the number of detected nodules (0 − 15) and binary annotations indicating the presence
per lung lobe of the most common TB manifestations (e.g., cavitations, conglomerations,
consolidations and trees in bud) (Nachiappan et al., 2017).

2.1. Model Architecture

Our implementation (Figure 1) extracts latent features from the volumes employing the
V-Net (Milletari et al., 2016) encoder. The extracted features are used as input of the
Feed-Forward Neural Networks (FNNs) for multi-class classification. The encoder generates
1, 376.256 features, which feed FNN1 (task-shared). The outputs of FNN1 are employed as
the input of two independent FNNs, FNNR and FNNB, corresponding with regression (nod-
ule counting) and binary tasks. Dropout or Batch Normalization (BN) (Ioffe and Szegedy,
2015) layers are included where is needed. When employing SNN, BN is unnecessary.

Figure 1: 3D-CNN + three FNNs (Feed Forward neural networks): FNN1 (tasks-shared parameters)
and, FNNR and FNNB for prediction of regression and binary tasks. BN is not present with SELU.

2.2. Self-Normalizing Neural Networks

For regularization and normalization purposes, we apply the Self-Normalizing Neural Net-
works (SNNs) strategy to our model (Klambauer et al., 2017) that preserves the activation
magnitude close to zero mean and unit variance. As activation function, we use the Scaled
Exponential Linear Unit (SELU) and as dropout, the α-dropout (Klambauer et al., 2017).

2.3. Learning Principle: Uncertainty Weighted Multi-task Loss

When working in multi-task classification, the decision on the influence of each task in the
final loss is non-trivial. Traditionally, the loss is computed as L =

∑
iwiLi, where the
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weights wi are selected either manually or after an exhaustive grid search. This approach
is highly influenced by the units and the scale of each task and extremely time-consuming.
Recently, (Kendall et al., 2018) et al. proposed a method to compute the weights guiding
each specific task loss by homoscedastic uncertainty of the predictions. In this work, we
adapt this approach to our multi-label classification problem and derive a loss function for
our model (Figure 1).

3. Experiments and Results

For the evaluation, we employed 5-fold Cross-Validation (CV): Validation set (4 CT volumes
of one subject); training set (remaining 13 subjects). We compared the proposed model
(SELU ) and a modified version which employs a Parametric Rectified Linear Unit (PReLU),
Batch Normalization and standard dropout (BN+PReLU ). The models are trained with
10.000 iterations of the ADAM optimizer (Kingma and Ba, 2014) (learning rate= 10−5,
mini-batch size= 15). For BN+PReLU, standard parameters were employed for the ADAM
optimizer and a dropout rate of 0.5. For SELU : β2 = 0.9, ε = 0.01 and alpha-dropout= 0.1
(Klambauer et al., 2017). Figure 2 shows for the validation data, the loss at each fold
for the BN+PReLU (in red) and the proposed model (in blue). It can be observed that
SELU presents improved convergence. The inference error is estimated by the Root Mean
Square Error (RMSE) for the nodules count tasks and the F1-score for the twenty binary
tasks. Table 1 presents the results per fold. No significant statistical differences were found
for paired t-test (p � 0.05). Nevertheless, the proposed model presents better RMSE and
F1-score results.

Table 1: Performance measure results the for BN+PReLU and the proposed model (SELU).
Manifestation/ Nodules [RMSE] Cavitations [F1] Conglomeration [F1] Consolidation [F1] Tree in bud [F1]

Fold BN+PReLU SELU BN+PReLU SELU BN+PReLU SELU BN+PReLU SELU BN+PReLU SELU
1 0.730.84 0.850.35 0.880.11 0.880.12 0.900.13 0.920.12 0.880.18 0.830.22 0.830.22 0.790.23
2 1.150.89 1.090.83 0.860.23 0.880.22 0.940.17 0.930.18 0.930.15 0.930.18 0.970.08 0.970.08
3 0.410.34 0.230.39 0.850.12 0.870.11 0.890.19 0.970.11 0.960.11 0.980.03 0.950.14 0.960.12
4 1.220.6 0.780.74 0.940.15 0.90.19 0.90.19 0.920.15 0.880.18 0.870.18 0.870.21 0.940.15
5 0.410.8 0.450.8 0.930.17 0.940.17 0.940.14 0.960.12 0.900.18 0.940.14 0.910.18 0.920.17

Total 0.780.69 0.680.62 0.890.16 0.900.17 0.910.16 0.940.16 0.910.16 0.910.15 0.910.17 0.920.15

Figure 2: Evolution of the validation loss for each fold of the Cross-Validation.

4. Conclusions

Although further validation on large datasets is needed, the work presents a promising in-
ference of the radiologist reports. This is achieved with a reduced computational complexity
by avoiding normalization layers and hyperparameter tuning of the loss weights.
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