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ABSTRACT

The increasing need for compact and low-power computing solutions for machine
learning applications has triggered significant interest in energy-efficient neuromor-
phic systems. However, most of these architectures rely on spiking neural networks,
which typically perform poorly compared to their non-spiking counterparts in terms
of accuracy. In this paper, we propose a new adaptive spiking neuron model that
can be abstracted as a low-pass filter. This abstraction enables faster and better
training of spiking networks using back-propagation, without simulating spikes.
We show that this model dramatically improves the inference performance of a re-
current neural network and validate it with three complex spatio-temporal learning
tasks: the temporal addition task, the temporal copying task, and a spoken-phrase
recognition task. We estimate at least 500x higher energy-efficiency using our
models on compatible neuromorphic chips in comparison to Cortex-M4, a popular
embedded microprocessor.

1 INTRODUCTION

Exponential growth in computational power and efficiency have played a vital role in the development
of neural networks and their training algorithms. However, it has also led to higher design complexity
and increasing difficulty to keep up with Moore’s law (Schaller} 1997} [Waldrop| [2016). Recent
years have also seen the movement of computation from data-centres to compact, distributed, and
portable embedded systems. These factors have created a demand for energy-efficient Al-capable
devices, leading to the development of dedicated and optimized von Neumann-style Artificial Neural
Network (ANN) accelerators (Aimar et al., 2018} [Cavigelli and Benini, 2016} (Chen et al., 2016) and
a renewed interest in neuromorphic systems (Chicca et al.,|2014; Frenkel et al.,[2019; Davies et al.,
2018; Moradi et al., [2018}; [Akopyan et al., 2015} |Qiao et al., 2015; Neckar et al., 2019).

A key difference between neural networks deployed on von Neumann systems and most neuromorphic
platforms is the use of spikes or train of pulses to represent signals in the latter. Such networks are
called Spiking Neural Networks (SNNs). Spiking neuromorphic systems have a number of features
that inhibit their use in real-world problems: (1) mixed-signal circuits suffer from Complementary
Metal-Oxide-Semiconductor (CMOS) mismatch (Pelgrom et al.| [1989)) that degrades performance;
(2) rate-based SNNs generate a large number of spikes to represent signals that reduces their energy
benefit; (3) complex spiking dynamics makes it difficult to train them using gradient-descent methods.
In this paper, we describe a new neuron model that addresses these problems and discuss how its
Low-Pass Filter (LPF) abstraction enables training spiking Recurrent Neural Networks (RNNs) using
the backpropagation algorithm (or Backprop). This is a significant breakthrough as it enables training
and deployment of energy-efficient spiking neural network devices without simulating complex
spiking dynamics.

2 PROCESSING-IN-MEMORY FOR RNNS

Consider an RNN layer with n nodes. At each time-step, the processor computes one or several
matrix products of the form y = W.x, where y and x are vectors of length n, and W is a 2-D matrix
of size n X n. When operating on a von Neumann system with batch-size 1, as is common in most
edge applications, the bottleneck in throughput and energy-efficiency is the O(n?) memory fetches
of W at every timestep. An in-memory matrix multiplier addresses this problem. It is a module
where a “read” from the memory location of the W matrix, using “X”" as the “address” gives out
“Y”, without ever moving W. This leads to a quadratic reduction in energy consumption. Processing
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in-memory systems have been implemented for various tasks such as DNA sequencing (Ghose et al.|
2018)), graph processing (Ahn et al.,[2015), etc and with dramatic reduction in energy consumption.

The energy reduction from in-memory computing is well established, but the key challenge with
deploying such systems is the absence of compatible algorithms. In this paper, we propose an RNN
model for such a system. The implementation of the in-memory module depends on how x and y are
encoded and transported. It can be synchronous or asynchronous and analogue or digital. We adopt an
asynchronous digital approach as it offers some implementation advantages. Encoding information in
binary digital format is less susceptible to noise in comparison to analogue. Asynchronous signalling
allows the energy-consumption to scale in proportion to chip activity, while also permitting low-
latency response. Chips implementing such schemes have been published in literature (Qiao et al.|
2015 Moradi et al.| [2018]). The model presented in this paper is designed to integrate on similar chips
(A reference framework is described in supplementary section D). However, most of the algorithmic
ideas presented in this paper are general and applicable to a range of compute systems.

3 THE SPIKING NEURON MODEL

Spiking neuron models for encoding signals typically use rate- or time-coded spike-generation
schemes (Diehl et al.| 2015; [Rueckauer et al.;, 2017} Bohtel 2012; Mostafal, 2017). In rate-coding, the
firing rate of the neuron is proportional to the input signal. Therefore, achieving high data-resolution
with rate-coding requires a large number of spikes, which is not energy-efficient (Nair and Indiveri,
2019)). To address this problem, several time-coding schemes have been proposed. In this work, we
build on existing models to propose an Adaptive Integrate and Fire (al&F) neuron model, which can
also be interpreted as an asynchronous XA circuit (Nair and Indiveri, [2019;[Bohtel 2012 [Yoonl 2016)).
This mechanism reduces the spike count by only transmitting the error between an internal state and
the input. The al&F neuron model implemented with current-mode neuromorphic circuits (Nair and
Indiveri, [2019) can be described by the following equations:

dlmem .
TmemT:aL(IL_Imem)_s—’_l (1)
d
Tw£ = as(Imem - IL) - S (2)
Lpem =0, when 1,0 > A 3)

where the currents I, and I, represent the “membrane potential” and “leak reversal potential”
variables. The term s represents the neuron adaptation current, ¢ the input current, 7,,,¢.,, the membrane
time constant, «ry, a gain factor, A the threshold, o, the adaptation coupling parameter and 7, is the
adaptation time constant. The al&F model is a feedback loop that tries to decrease the difference
between the i(¢) and s(¢). The difference, i(t) — s(t), is filtered with gain, 1, and time constant,
Tmem- When the output of this filter, I,,,¢,,, exceeds the spiking threshold, A, I,,,¢, is reset and a
spike is generated. The XA circuit model used in this work is different from the al&F model in the
computation of the feedback term. Instead of filtering I,,..,, we operate on the spike train generated
by the spiking neuron. This ensures that the noise inserted by the spike-generation mechanism is also
suppressed by the XA feedback. The modified feedback equation is as follows:

ds

Tk% = O‘s((;ilin - IL) - S “4)
Where, ¢; indicates the spike train and I;,, is a programmable maximum current value that the
analogue filter implementation can generate. The product §;1;, models the feedback filter that
integrates a current I;,, for the duration of the spikes. Figure[Ta]shows a block diagram of the circuit
implementation of the Equation 3] with the modification described by Equation[d] In this diagram,
F(s) is a first order LPF that receives inputs to the neuron. H (s) is a first-order low-pass filter that
produces s(t) in response to spikes generated by the neuron. F(s) is also a first-order low-pass
filter on the difference between the input current 4(¢) and the feedback signal s(¢). When the output
of E(8), Imem, exceeds the spiking threshold (A) of the neuron, a spike-event is produced. With
each spike-event, s(t) increases and i(t) — s(t) decreases. Figure[Ib|shows the asynchronous XA
feedback loop in action for a test-case. It can be shown that the Laplace domain representation of the
output spike train can be expressed by the equation:

Y(s) = X(s)F(s)E(s) N(s)
1+ H(s)E(s) 1+ H(s)E(s)

&)
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(a) Block diagram of a A neuron. (b) Transient behaviour of the XA neuron.

Figure 1: The block marked pulse A encoder is similar to the al&F neuron model. The LPF stage
at the input makes it an asynchronous XA loop. [(b)| Evolution of the feedback signal, s(t), over time.
The sudden jumps in s(t) correspond to spike events, y(t).

where, N (s) indicates the Laplace-domain representation of the noise introduced into the loop, for
example by the spike generation mechanism. The XA loop described by Equation [5]is similar to
a continuous-time YA modulation loop (Pavan et al.,[2017) with the key difference being that the
output spikes are unipolar. This is valuable because the output of a conventional XA loop is always
active (41 or —1), whereas the asynchronous model is only active at the time of a spike event, making
the model more energy-efficient.

The input signals to the neuron may be encoded as spikes trains or as continuous analogue values
from a sensor. The transmitted analogue signal is reconstructed from a spike train by simply low-pass
filtering it. An advantage of the XA neuron model is that it comes with a low-pass filter in its
input stage. Therefore, a XA neuron is a “codec” - It can both encode an analogue signal into a
spike train and decode an incoming spike train back to the transmitted analogue signal. As the
low-pass filter at the input stage is agnostic of the type of input to it, a A can encode and decode
both types of signals - spike trains or continuous analogue ones. A description of the biological
motivation and noise-filtering properties of the model is provided in supplementary section[A] The
circuit implementing this model has been fully characterized in|Nair and Indiveri| (2019).

4  TRAINING A SPIKING RNN WITHOUT SIMULATING SPIKES

The neuron model introduced in the previous section allows us to train a recurrent SNN by treating
the spiking neurons as LPFs and modifying the recurrent ANN equations suitably. We will show
that the trained weight parameters of the recurrent ANN model can be mapped to a recurrent SNN,
without additional training. We measure the effectiveness of this mapping procedure by comparing
the temporal dynamics of the neurons in the recurrent ANN to the low-pass filtered spike trains
generated by the spiking neurons in the corresponding recurrent SNN. In this demonstration, we
use high precision synaptic weights. This is typically not available in most spiking neuromorphic
platforms. However, the same mapping procedure can be used for mapping ANNS trained with binary
or noisy weights. Before introducing the mapping procedure, we describe three operations that are
needed for it.

Input re-scaling: When implementing an SNN in mixed-signal neuromorphic systems, the state
variables of the neuron are represented by voltages or currents that are of the order of mV or nA. Using
such small values when training an ANN in software may lead to computational instability. To avoid
this we train the network with normalized input signals and re-scale the parameters and activation
functions after training. For example, if a single layer calculation is represented as y = o, (W - x),
where 0, is a non-linear activation function, 2, W and y are the inputs, weights, and outputs from
the layer, respectively, then, to re-scale the inputs by a factor -, the activation function used in the

ANN will be modified, during inference, as y = G,,;(W - v - x), where, 7,;(.) = oy ( ;)
Low-pass filtering: The input signal can be reconstructed from the spikes trains generated by the
S A neuron if s(t) tracks i(t) (Equation[d). This is because s(t) is obtained by filtering the neuron
spike train. This is why a XA neuron can be modelled as an LPF with time constant 7,,. The LPF
approximation ignores the high-frequency components injected by the spiking mechanism, as they
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are suppressed by feedback loop (the N (s) term in the transfer function of XA neuron, Equation .
We model this by using a discrete-time Euler approximation to incorporate a LPF-term at the output
of the RNN stage. This results in the Low-Pass Recurrent Neural Network (IpRNN) cell by a simple
tweak to the classical equation:

U=a0y-1+1—0a)Oc(Wree - Ye—1 + Wipn - 24 + b) (6)

where, o, ® and - denote non-linearity, element-wise Hadamard product and matrix multiplication
functions, respectively. The variables «, ¥y, Tn, Wiee, Win, and b represent the retention ratio vector,
input vector, output vector, recurrent connectivity weight matrix, input connectivity weight matrix,

and biases, respectively. The subscripts on variable y and x indicate the time step. o models the time
—Ts
constant of the recurrent ANN, and it is matched to the SNN time constant by setting itto o« = e s

where, T's is the time-step of the input data-stream fed to the recurrent ANN, and 75 is the feedback
time constant of the XA neurons used in the desiredSNN.

For example, if the recurrent ANN is being trained to detect speech from an audio-signal, then T's
should be set equal to the time difference between the consecutive samples. The value of 7, for the
ANN set to min (7, Tmem ) in the LA equations. 7, must therefore be chosen such that the signals
being transmitted lie well within the pass-band of the feedback filter. This ensures that all the in-band
components are transmitted well, even when different neurons in the systems have different values
of 75, for example, due to mismatch. This is an important observation for mixed-signal systems,
where mismatch effects may result in different neurons to have differing time-constants. We will
demonstrate that the effect of device mismatch is well-tolerated for most practical cases and leads to
gradual degradation in performance as it increases. It must be noted that while computing 7's or the
bandwidth of an audio or sensor measurement is easy, it is not trivial for data-sets such as text.

Saturating non-linearity: It has already been shown in the literature that the Rectified Linear
Unit (ReLU) non-linearity is a good non-linear model of the al&F neuron (Yoon, 2016; [Bohte, |2012).
However, the XA neuron also filters incoming spike trains using a low-pass filter which limits its
maximum output current to I;,, (see Equation E]) To model this effect we can either set [;,, in the
SNN to the largest activation output found in the ANN simulation or clamp the maximum output of
the activation function in the ANN simulation to [;,,. In our experiments, we do the latter.

4.1 THE MAPPING PROCEDURE

First, the recurrent ANN cell is modified by replacing the RNN units with the I]pRNN. The modified
network is then trained using Backprop with conventional Autograd tools provided by libraries such
as PyTorch or Tensorflow. This gives us the synaptic weights for the recurrent SNN. Then, the largest
value attained by the state variables in the trained network is mapped to I;,,. This ensures that the
spiking neurons do not saturate. Finally, the inputs to the SNN are re-scaled to suitable currents or
voltage values as described earlier.

Limitation: A recurrent SNN is a continuous-time system that spikes hundreds to thousands of
times per second to achieve the necessary transmission accuracy. Therefore, the time step of the
transient simulation needs to be made very fine. The mapping algorithm assumes that the mapped
SNN operates on the same sequence that the original ANN is trained on. This is a problem. Training
a recurrent ANN on a long sequence using back-propagation is computationally expensive and often
intractable because of vanishing and exploding gradients. For example, with speech signals sampled
at the standard rate of 44.1 kHz, even a short utterance is thousands of samples long. If we are unable
to train an ANN for the desired task, the mapping mechanism is useless. Our approach to addressing
this issue is to train the ANN with sub-sampled signals. After we compute the desired weights, we
rescale the time-constants of the network before mapping it to the SNN. If the simulation time-step

for the SNN is T and that of ANN is T, ,, » then the time constants of the two simulations are
T,

SSNN
. _Tsann _Tssnn . .
given by aayny =€ - and agyny = e - . We only rescale the time constants without

changing the weights of the mapped network, introducing inaccuracies in the mapped network. The

mismatch arises because a single time-step of the ANN corresponds to several simulation time-steps
T

in the mapped SNN ( = —222). The mapping is exact for a first-order LPF because of the Linear
SSNN

Time-Invariant (LTT) property. However, even though an RNN is non-linear, by making the low-pass
filtering effect more dominant (for example, with & = 0.99), we observe that the mapped dynamics
match well.
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5 EXPERIMENTAL RESULTS

All the spiking simulations in the following sections are run on a custom transient mixed-signal
modeling library, called spiking simulator for systems of Ist-order LPFs (Spiker). The motivation for
design and operation of Spiker is described in supplementary section

5.1 ENCODING PERFORMANCE OF THE SIGMA—-DELTA NEURON MODEL

The XA neuron model used in the mapped SNN is not an ideal transmitter of information as the
spiking mechanism introduces error akin to quantization noise. This is analogous to use of low
bit-precision in conventional ANNSs. It is important to measure how much precision is available
using a metric that is meaningful for the proposed spiking architecture. We measure this using a
Signal-to-Distortion ratio (SDR) metric when encoding a sinusoidal input and reconstructing it with
an LPF. The SDR is the ratio between the energy contained in the transmitted signal and total energy
in all other frequency components generated by the distortions introduced in the signal chain. The
results of these experiments are shown in Figure 2] We note in Figure 2athat highest SDR of the XA
neuron is 55dB, with a 20 dB/decade roll-off as a function of frequency with a pole corresponding
tO Tynem. Figure 2blhighlights the input amplitude-dependence of the SDR. We note in Figure 2]
that the SDR improves as a logarithmic function of the input amplitude and then drops suddenly.
The logarithmic improvement in SDR is because the error component corresponding to the spiking
threshold, A, becomes a smaller fraction of the input amplitude. The sudden drop occurs when the
input amplitude approaches and exceeds I;,, in Equation[d] This is because the maximum attainable
value of the feedback term, s(t) in Equationis I;;,. Under these conditions, I, is always greater
than s(t), causing the neuron to fire at a very high rate. For the rest of the SNN simulations in this
paper, the A neuron settings listed in Figure 2] caption are used.
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(a) SDR vs input sinusoid frequency. (b) SDR vs input sinusoid amplitude.

Figure 2: SDR of the ¥ A neuron as a function of sinusoidal input parameters. The XA neuron
is fed a single-tone sinusoid riding on a DC bias to ensures that the input is non-negative. The
transient simulations are run with a simulation time step of 1us. This is the reason for the saturation
in the firing rate in[(b)] The SDR ratio is reported after subtracting the DC component. The neuron
parameters for the simulation are 7,,¢,, = 0.007s, 7, = 0.0014s, ap, = 5000, as = 1, A = 0.1nA,
I, = 40nA, I, = OnA.

5.2 DEMONSTRATION OF THE MAPPING MECHANISM

We demonstrate the mapping mechanism using multi-layer RNNs. The ANN dynamics are compared
against a signal obtained by low-pass filtering the spike trains generated by the A neuron. Our
assertion is that the mapping mechanism will map any recurrent ANN to an equivalent recurrent
SNN. Therefore, instead of demonstrating the mapping for a particular task, we set synaptic weights
to random samples from a Gaussian distribution. We then compare the dynamics of all the neuron
units in the mapped and original networks. To ensure that our nodes do not saturate, we constrain
the largest eigenvalue of the recurrent weight matrices to 1.4. The motivation for this trick was
from obtained from Echo-State Networks (ESNs)(Jaeger}, 2002 Jaeger et al.,|2007)). The quality or
goodness of fit is measured using an Normalized mean square error (NMSE) metric, which measures
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the mean square error normalized by the signal power. It is used to compare two time series signals
Zres and x using the following formulation:

02
NMSE =1— [#res = o]l _ (7

||Zrer — mean(zrey)||
where, ||.|| indicates the L2 norm. The N M S E metric lies between 1 and —oo, with 1 indicating a

perfect match and —oo indicating a very bad fit. If NAM SE = 0, then x is at least as good a fit as a
straight line at x,.. .. In our results, we report the mean and standard deviation in the NMSE scores
for all the units in a layer.

The effectiveness of the mapping mechanism is demonstrated using a four-layer RNN. The input and
output stages are implemented as fully-connected feed-forward layers, and the recurrent layers are also
interleaved with fully-connected layers. The input feature dimension was set to two and the output
to three. The input data was a weighted sum of sinusoidal signals that were band-limited to 50 Hz
and sampled at 1 MHz for 0.2 seconds. The high sampling rate is necessary to accurately capture
the dynamics of the SNN, whose neuron models are highly non-linear, in a transient simulation.
The length of the simulation is a key consideration as we want our mapped SNN implementation to
remain matched for arbitrarily long sequences. Computational considerations limited the duration of
our simulations, but this should be tested before large scale deployment in real-world use.

Fully-digital neuromorphic platforms, such as Intel Loihi, IBM TrueNorth, or SpinNaker, do not
suffer for mismatch issues. However, mixed-signal neuromorphic chips, such as|Qiao et al.[(2015);
Neckar et al.|(2019); Schemmel et al.|(2012), are potentially more energy-efficient than their digital
counterparts but suffer from device mismatch. A YA feedback loop naturally compensates for such
effects (Pavan et al.,[2017) but there are many components in the model that lies outside the feedback
loop. To study this, we add the effect of mismatch in our simulations by sampling the parameters, p
of the mapped SNN:

p=p-(1+cy, N(0,1)) (8)

where, Cy, is the coefficient of variation (= W) in the parameter, p. To understand
the statistics in the quality of the mapping mechanism, we generate multiple samples of network
parameters and measure the quality of fit. These results are tabulated in Tables [[|and [2] where we list
the measured mean of and standard deviation in N M SE values for a 4-layer RNN with 51 and 500
units per layer, respectively. With no mismatch effects, the reconstruction is very good to all layers,
in both cases. Furthermore, we observe nearly perfect reproduction of the network dynamics for up
to 2 layers, and a gradual degradation as the size, depth and mismatch of the network increases. We
note that the mapping mechanism is robust for c¢,,, < 0.2. Reduced mismatch sensitivity is useful for
design of neuromorphic chips because it simplifies the design, and that, in turn, reduces the energy
and area consumed by these chips. Visualization of the transient dynamics of all the nodes in the
original and mapped RNNs is provided in supplementary section [F} Finally, the performance of the
mapping algorithm comparing the dynamics of the ANN with sub-sampled data to that of the SNN is
shown in Table[3] The length of the SNN simulation is 0.2s, translating to input sequence lengths,
L. We note that the mapping technique works well for fairly high sub-sampling ratios and shows
significant degradation only for L = 20. Note that a near perfect match (NMSE > 0.5) is achieved
up for depth of two. This restricts the models used for benchmarking in Section[5.3]

5.3 LEARNING PERFORMANCE OF THE LPRNN CELL

The key idea behind enabling the mapping between an recurrent ANN to its spiking equivalent was
the addition of a low pass filter to the the state variables. It must be highlighted that the idea of using
a low-pass filter model for neurons is fairly old and has been studied in various contexts (Beer, [1995;
Mozer, |1992; Jaeger et al.,[2007). The novelty in this work is in identifying its use in the mapping
mechanism and in the study of its learning properties. The mapping procedure would be of no use if
the resulting ANN was unable to perform as well as their unfiltered counterparts in learning tasks,
and it is the focus of this section.

In our experiments, we set « in Equation [6|by sampling from a distribution with a common mean
value shared by all the neuron units in the network. This simplifies the design of the neuromorphic
system by eliminating the need to create precise tunable time constants in the neuron implementations.
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Layer HNMSE ONMSE
Co, =0 ¢, =02 ¢, =1 ¢,=2]¢,=0 ¢,=02 ¢, =1 ¢, =2
Rec. layer 1 1.0 0.9 -5.1 -4.0 0.1 0.3 55.1 15.5
Rec. layer 2 1.0 0.5 -8.8 -17.5 0.1 1.1 54.4 414
Rec. layer 3 0.9 -1.5 -36.8 -100.2 0.1 6.4 117.1 300.0
Rec. layer 4 0.9 -3.7  -107.5 -2789 0.2 8.2 202.4 535.9

Table 1: Mapping a four layer network with 51 units per layer for different mismatch values.

Layer HNMSE ONMSE
Co, =0 ¢, =02 ¢, =1 ¢, =2]¢,=0 ¢,=02 c,,=1 ¢, =2
Rec. layer 1 1.0 1.0 0.4 0.6 0.1 0.1 1.8 1.3
Rec. layer 2 0.9 -1.0 -48.9 -132.0 0.1 1.6 52.1 143.7
Rec. layer 3 0.8 -6.8 -185.1 -683.6 0.2 29 73.2 295.9
Rec. layer 4 0.2 -6.3 -133.7 -4163 0.9 3.5 64.0 203.6

Table 2: Mapping a four layer network with 500 units per layer for different mismatch values.

Layer KUNMSE ONMSE
Toonn=10pus 100pus  1ms 10ms | 10pus  100pus 1ms  10ms
L = 20000 2000 200 20 | 20000 2000 200 20
Rec. layer 1 1.0 1.0 0.8 -04 0.0 0.0 0.1 04
Rec. layer 2 0.9 1.0 0.7 -1.7 0.8 00 02 5.2
Rec. layer 3 0.9 09 04 -1.6 0.5 0.1 1.0 2.2
Rec. layer 4 0.9 09 0.1 -2.0 0.3 0.3 1.2 2.2
Table 3: Performance when mapping resampled data for a four layer network with 128 units per layer.
Results in this work Reference
Task literat
SimpleRNN  IpRNN  LSTM tierature
Temporal addition 40 steps 642 steps 00 5000 steps (Li et al., 2018))
Temporal copy 30 steps 120 steps 200 steps 500 steps (Arjovsky et al.,[2016)
Spoken phrase (acc.) 27% 93% 92% 90% (Sainath and Parada, [2015)

Table 4: The performance of the IpRNN cell on three benchmarks. The reference literature column
reports the best results (to our knowledge) with neural networks with less than 100K parameters.
IpRNN and SimpleRNN networks for the add and copy tasks used a single layer with 128 hidden
units. |Arjovsky et al.| (2016) use unitary recurrent weight matrices and [Li et al.| (2018)) use two
layers of 128-unit IndRNN layers. The spoken phrase task reference is a CNN model released as a
Tensorflow example (Google, [2019)).

First, we study the short-term memory capabilities of the IpRNNs using the synthetic addition and
copying tasks (Hochreiter and Schmidhuber, 1997} |Arjovsky et al.,[2016; [Le et al.|[2015). Next, we
compare the performance of the IpRNN cell vs a SimpleRNN cell in a speech recognition task. We
summarize the key observations in this section and details are in the supplementary material.

Temporal addition task: The addition task (Le et al.,[2015)) involves processing two parallel input
data streams of equal length. The first stream comprises random numbers € (0, 1) and the second is
full of zeros except at two time steps. The network is trained to generate the sum of the two numbers
in the first data stream corresponding to the time-steps when the second stream had non-zero entries.
The baseline to beat is a mean square error (mse) of 0.1767, corresponding to a network that always
generates 1. We adopt a curriculum learning (Bengio et al.| 2009) procedure for this task, by first
training the RNN cell on a short sequence and progressively increasing the number of time steps.
Each curriculum used 10,000 training and 1000 test samples. The length of the task was incremented
when the mse went below 0.001. The SimpleRNN cell failed to converge beyond sequences of length
40, while the IpRNN cell converged to mse < 0.001 for sequences up to 642 steps. Interestingly, the
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Long Short-Term Memory (LSTM) cell learnt a general solution when trained by this procedure and
could solve arbitrarily long sequences, even with just two hidden units in the cell!

Temporal copying task: We train the RNN cells on a varying length copying task as defined
in (Graves et al.}[2014) instead of the original definition (Hochreiter and Schmidhuber} (1997} |Arjovsky
et al.} 2016). This problem is harder to solve than the temporal addition task. The network receives a
sequence of up to S symbols (in the original definition, S is fixed) drawn from an alphabet of size
K. At the end of S symbols, a sequence of T blank symbols ending with a trigger symbol is passed.
The trigger symbol indicates that the network should reproduce the first S symbols in the same order.
We adopt a curriculum learning procedure here too and first train the network on a short sequence
(T=3) and gradually increase it (T<200). The sequence length is incremented when the categorical
accuracy is better than 99%. The SimpleRNN cell failed at this task even for T=30. The IpRNN cell
was able to achieve 99% accuracy for up to 120 time steps. After that, it generates T blank entries
accurately but the accuracy of the last S symbols drops (For T=200, it was 96%).

Spoken phrase classification: The target for the ]pRNN cell are neuromorphic platforms that are
typically resource-constrained, due to power, memory, and area restrictions. Therefore, we test the
performance of the IpRNN cell on a problem that is compatible with such systems (see supplementary
section [D). We chose a limited vocabulary spoken commands detection task using the Google
commands dataset (Warden) 2018)), which comprises 36 classes of short-length spoken commands
such as “left”, “up”, or “go”. The dataset was created for hardware and algorithm developers to
evaluate their low footprint neural network models in limited dictionary speech recognition tasks.
The neural network receives a Mel-spectrogram as inputs, and comprises, from input to output, two
fully-connected dense layers with 128 and 32 units with batch normalization, two RNN layers with
128 units, two fully-connected dense layers, topped by a softmax readout. In total, the network has
about 80K trainable parameters. We use Adam optimizer (Kingma and Bal 2014), with a learning
rate of 0.001 for training. We note that all I]pRNN variants massively outperform the SimpleRNN and
slightly outperform the LSTM variants, all with the same number of parameters. We further note that
the performance of the network peaks for certain values of « and the random sampling case. The high
performance of the IpRNN cell is a crucial result because not only did the addition of the low-pass
filter enable mapping of the recurrent ANN model to neuromorphic platforms, it also resulted in a
much-improved performance.

o [0.1,1] 0 0.1 05 08 09 09 1
Accuracy 93% 26% 25% 69% 92% 93% 90% 4%

Table 5: Performance of the IpRNN cell on the Google commands classification task with different
filtering coefficients, a. o = 0 is equivalent to a SimpleRNN and o = 1 is an MLP.

Energy-efficiency estimation: We compare the energy cost of computing a two-layer RNN with
128 hidden units (used in the audio task) for an in-memory IpRNN system with ¥ A neurons against
Cortex-M4, a popular low-power microprocessor used in milliWatt-range applications. We conserva-
tively estimate that our implementation yields 500 better energy-efficiency in this instance. Larger
networks will see a dramatic increase in this difference. (see supplementary section [J}).

6 CONCLUSION AND OUTLOOK

We presented a novel al&F spiking neuron model and discussed its spike-coding and noise-tolerance
benefits. Then, we discussed how the LPF abstraction of the al&F neuron model enables training
of recurrent SNN's without having to simulate the complex dynamics of a large network of spiking
neurons. This strategy enables training a recurrent SNN using standard optimization algorithms such
as backpropagation. The mapping technique that allowed us to achieve this result is studied in detail,
including its limitations.. We observe a dramatic improvement in the performance of the RNN cell
with the addition of the low-pass filtering term. We think that this improvement is because the LPF
acts as a temporal regularizer (see supplementary section|C). Current spiking RNNs are benchmarked
on much simpler tasks than presented in this paper, often due to the computational cost and lack of
algorithms for training them. The importance of this work lies in proposing algorithmic solutions to
address this key problem, to enable a new generation of ultra-low-power neuromorphic chips.
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A MOTIVATION FOR THE USE OF THE SIGMA-DELTA NEURON MODEL

A.1 CODING MECHANISM

A neuron in deep learning has one primary function - the non-linear transformation of its input.
However, a biological neuron and its neuromorphic counterpart have the added job of encoding
information in spike trains. The most popular model for this encoding mechanism is rate coding,
where the neuron fires at a rate proportional to the incoming signal. This mechanism is not efficient for
transmitting high-resolution data. For example, to transmit a signal at 8-bit resolution, it will require
0(256) spikes for each sample. An improvement to this coding mechanism is theal&F model (Brette
and Gerstner, 2005)), which can be interpreted as an asynchronous delta-sigma (AX) loop (Yoon,
2016; [Bohte, 2012; Nair and Indiveri,2019). The AY. mechanism is a time-coding model that is more
efficient in its use of spike trains (Nair and Indiveril [2019)) than rate-coding models. Other time-coding
schemes have also been proposed in literature (Rueckauer et al.,|2017; |Gerstner and Kistler}, [2002).
However, the advantage of the AY interpretation is that it leads to highly power-efficient circuit
implementations (Nair and Indiveri, | 2019) that is tolerant to mismatch and noise effects. Furthermore,
the model allows us to treat the neuron state as an analogue variable and ignoring the specific timing
details of the encoding spike trains (Nair and Indiveri, 2019). The independence from the monitoring
precise spike-times is beneficial because state-dependency, noise and device mismatch cause different
neurons to generate spikes at different times for the same input. Modelling it is computationally
expensive. The AY feedback loop ensures that they all represent the same signal with the same
accuracy in spite of their differences (Nair and Indiveri, 2019). This abstraction enables the network
designer to only look at the internal state of the neuron when optimizing the network weights for
an SNN. It is a crucial enabler for this paper as simulating and training mismatch-prone SNNs is
computationally much more expensive than ANNSs.

A.2 BIOLOGICAL NEURAL NETWORKS ARE LOW PASS FILTERING

Activation functions used in neural networks and apply a non-linearity to a weighted sum of input
signals. However, ANNs assume that when the input changes, the internal state of the neuron or
dendrites can also change immediately to reflect the new input. This behaviour ignores the fact that
biological neuronal channels are LPFs (Gerstner and Kistler,2002). Modelling the inertial or low-pass
filtering property is essential to implement and study recurrent neural networks in any neuromorphic
system as the transitional dynamics deviate completely in its absence. The AY. neuron models the
filtering behaviour with a first-order low pass filter. We argue that not only is this modelling essential,
it is also a useful constraint to impose on RNNs.

A.3 CHANNEL NOISE AND RECONSTRUCTION ACCURACY IN A SPIKING NEURON

The XA scheme encodes the information in the relative timing of the spikes. This implies that
any noise in the spike timing, i.e. jitter, introduced during transmission of the spikes will result in
distortion of the reconstructed signal, for example, in situations when the transmitting and receiving
neurons are on separate chips. The distortions are modelled by a random variable A;, which is
sampled from a normal random distribution, A; ~ N(0, j2) with probability distribution function
Pr(A;). Note that a fixed delay does not contribute to distortion and is ignored. To compute the effect
of spike timing noise, we calculate the Laplace domain representation of the transmitted signal as
follows. If Ip(t) is the Dirac delta function, the transmitted spike train y(t), jitter-affected spike train,
y'(t), the desired filtered spike train, s(¢), and the filtered version of the jitter-affected spike-train,
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Figure A.1: The different transfer function of the ¥ A neuron model. Red: Signal transfer function,
Blue: noise transfer function, Green: Signal transfer function with spike timing noise.

r(t) can be expressed as,

N
y(t) = Ip(t— 1) ©
k=0
N
Y ()= It —tx — A) (10)
k;o
s(t) = y(t) « h(t) = > h(t — tx) (11
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The mean value of r(¢) can then be computed as
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where, P(s) = Z{Pr(t)} =e el R(s) is plotted in Figure as the recovery transfer function
(RTF) with j, = 1ms. We see that for sufficiently band-limited signal, the channel noise does not
affect the signal transmission accuracy.

B COMPARISON TO OTHER RNN MODELS

The low pass filtering behaviour of neurons is well-known in neuro-scientific literature (and in other
fields) and has been studied in the past with RNNs as well(Beer, |1995; Mozer, 1992} Jaeger et al.,
2007). For example, ESNs as proposed by Herbert Jaeger (Jaeger et al., 2007) has an identical
formulation to the IpDRNN where the recurrent layer uses leaky integration units. In ESNs, the spectral
radius of the initialization values of the recurrent kernel is constrained to confers an “echo-state
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property” to the network. The recurrent or input connectivity weights are not trained during the
learning process. Instead, only the read-out linear classifier is trained. In the IpRNN model, the
spectral radius of the recurrent kernel is not constrained and all the weight matrices, including
the retention ratios if required, are trained. IpRNN also shares similarities with recurrent residual
networks proposed by Yiren Wang (Wang and Tian, [2016), which are described by the following
equations

yr = f(9(Y-1)) + o(ye—1, 26, W) (16)
where TV denotes input and recurrent kernels, and other symbols have the same meaning as equation|6]
In equation[I6} g and f are identity and a hyperbolic tangent functions, respectively. A comparison
can also be made with the LT-RNN model proposed by Mikael Henaff (Henaff et al., 2016), whose
update equations are:

htZU(Wm'Z‘—Fb)-FV'ht_l (17)
y =W hy (18)

where W and V are 2-D transition matrices that are learned during the training process. In this
case, it is possible that the LT-RNN cell reduces to an IpRNN, but is unlikely to occur in practice.
Similar analogies can also be made to the IndRNN model (Li et al.} [2018) and recurrent identity
networks (Hu et al.|,2018). Generally speaking, the main difference between the IpRNN cells and
popular RNN models in use today is the(re)indroduction of the filtering term into the RNN model
with impositions on boundary and train-ability conditions. We see that in addition to enabling their
use in neuromorphic platforms, this results in more stable convergence properties due to a temporal
regularization effect, as described in the Section E}

C MEMORY IN AN LPRNN

We can analyze the evolution of an IpRNN cell by using an approach similar to the power iteration
method, described by Razvan Pascanu (Pascanu et al.;[2013). To do this analysis, we approximate the
IpRNN update equation as:

Yy =0 O Y—1 + (1 — @) © Wyee - yt—1 + Wip, - ¢ + b) (19)

where, for simplicity, we also make the added assumption that all units of the IpRNN layer have
the same retention factor, . The gradient terms during back-propagation through time can now be
expressed as a product of several terms that have the form:

(1= )WL+ ol 0)

where, ¢t and k, are time step indices with ¢ > k and [ = ¢ — k. If an eigenvalue of the WZ;C matrix is

), then the corresponding eigenvalue of the matrix [(1 — o)W1, + a] can be written as

lI-a)A+a (1)

Looking at the eigenvalue of the gradient terms as computed in equation[21] we note that « acts like a
temporal regularizer on the eigenvalues of the recurrent network. It can also be seen that by scaling
« to lie between O and 1, the operation of the network shifts between that of purely non-inertial
recurrent to a completely inertial network stuck in its initial state, respectively. This insight helps us
understand why IpRNNs perform well in long memory tasks.

Hochreiter (Hochreiter and Schmidhuber, (1997 defined the constant error carousel (CEC) as a
central feature of the LSTM networks that allowed it to remember past events. In a crude sense, this
corresponds to setting the retention ratio, « = 1. Forget gates were subsequently added by Felix
A. Gers (Gers et al., 2000) to the original LSTM structure, that allowed the network to also erase
unnecessary events that were potentially trapped in the CEC. This means that the average effective
weight of the self-connection in the CEC was made < 1. A randomly initialized set of o values
with a reasonably large number of cells appears to have similar functionality. By setting o < 1, the
network is guaranteed to lose memory over time, but if some of the as are close to 1, it may retain
the information for a longer time frame. Moreover, the regularization effect of as also prevents the
eigenvalues of the recurrent network from becoming too small, ensuring that memory is never lost
immediately. We expect that the [IpRNN model has a reduced representational power than gated RNN
cells, not simply because it has 4x fewer parameters, but because the IpRNN state is guaranteed to
fade with time whereas a gated cell can potentially store a state indefinitely.
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D THE NEUROMORPHIC SIGNAL CHAIN

The AY. mapping mechanism requires defining suitable time constants for the IpDRNN cell being
trained by backprop. This can be derived for continuous-time signals from sensors or real-world
signals such as an audio input by taking into account the bandwidth of the incoming signals as
described earlier. We illustrate a reference neuromorphic signal chain for processing audio input
in Figure[D.2] The data received from the audio sensor is first filtered by an audio filtering stage
such as the cochlea chips (Chan et al., 2007; [Sarpeshkarj, |1998}; |[Hamilton et al., [2008)). These
systems typically implement mel-spaced filter banks. A neural network processes the filter outputs
and drives an actuator system. A minimal configuration of weights and connectivity required to
implement the IpRNN cell in a neuromorphic platform is illustrated in Figure[D.2] It is a memory
array with spiking neurons attached to the periphery of the system. Each memory cell acts as a
transconductance stage - it receives voltage spikes and generates a scaled output current. These
currents are summed by the Kirchoff’s current law and integrated by the neurons. Readers familiar
with memory design and computer architecture may identify this as an in-memory computational
unit. An in-memory neural network accelerator is energy-efficient, primarily because it eliminates
movement of synaptic weights (Ghose et al.,[2018};|Qiao et al.,2015) from the memory to a far-away
processing module. Instead, the activations of the neurons are transmitted to the other nodes in the
network. The computation is no longer memory-bound unlike RNN computation on von Neumann
style architecture. Figure[D.2]implements a single spiking RNN stage (equivalent to an IpRNN), with
green and red boxes highlighting the input and recurrent kernels, respectively. The architecture can
be modified to implement a fully connected layer by eliminating recurrent connections. Note that an
equivalent configuration can be also set up in fully-digital neuromorphic systems such as (Frenkel
et al., | 2019; Davies et al., [2018; |/Akopyan et al., [2015) that do not suffer from noise and mismatch
issues, but may consume more area and power.

Sensor Filtering Spiking NN Actuator//
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Figure D.2: Top: A neuromorphic signal chain. Bottom: Architecture of an SNN accelerator
implementing an [pRNN.

E SPIKER : A SYSTEM-LEVEL SPIKING SIMULATOR

Spiker is a transient-simulator for simulating large networks of spiking neurons and synapses us-
ing the Basic Linear Algebra Subprogams (BLAS) libraries. It is written in Python and uses the
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Numpy (Oliphant, [20006) library. There is also a PyTorch (Paszke et al.,|2017) version that supports
Graphical Processing Unit (GPU)-acceleration. Unlike spiking simulation tools like Brian2 (Stimberg
et al.,|2019) or NEST (Gewaltig and Diesmann, 2007), which are general-purpose solvers of Ordnary
Differential Equations (ODEs), Spiker is a highly-specific simulator for systems where the only
differential equation implemented is that of a first-order LPFs. The simulator is not designed to
solve any differential equation. Instead, it allows us to run massive simulations of large networks
comprising neuron and synapse models whose building blocks include first-order LPFs.

E.1 How DOES SPIKER WORK?

Key idea #1 Constraining the support to first-order LPFs has the advantage that it allows us to
create closed-form solutions to the differential equations at all time-step resolutions without loss of
accuracy. The differential equation corresponding to a first-order LPF is the following:

dx

kel 22
T x (22)

The closed-form solution to this, ignoring the initial conditions takes the form

T=xp-€7 (23)

t1+4+t2 tl

A useful property of the exponential function is that e~ = e~ . ¢7*2, Therefore, we have
a simple closed-form method to compute the state of a LPF at any arbitrary time, given an initial
condition. This implies that if all the building blocks of a system are made of modules which have an
exponential solution, then, given their initial state, it is possible to compute the state of the entire
system at some arbitrary time in the future, precisely. This is a well-known property of all LTI
systems.

Key idea #2 However, a spiking system is not LTI. Therefore, it is not possible to predict the
state of a spiking neural network at an arbitrary time in the future. Instead, the Spiker simulator
takes tiny temporal steps and computes the state of the network variables at each step using the
closed-form solution. At the end of each time-step, the neuron models check if it should spike and
then resets the corresponding variable to zero. The spiking input to the synapses is a train of 1-bit
values corresponding to the presence or absence of an incident spike from an upstream neuron. This
implies that the precision of the spike-event is limited to the resolution of the simulation time-step.
However, the key insight here is that, if the signals being transmitted have a bandwidth much smaller
than the simulation time-step, the higher-order effects can be safely assumed to be gone.

Moreover, in spiking neurons, small amounts of jitter in the spike-timing is well-tolerated. This is
because of the noise-cancelling property of the feedback loop. Therefore, the Spiker simulator allows
the user to set the simulation time-step to a large value that offers fast transient simulations — a
fast-simulation trades-off against the precision of the simulated spike-timing.

Finally, the simulator also allows us to program and simulate noise and mismatch effects in the neuron
parameters, such as mismatch in the spiking threshold and time-constants. The Spiker simulator was
used to run all the SNN simulations in this paper.

F VISUALIZING MAPPING OF A RECURRENT SNN

The top row of Figure 3| shows the mapping mechanism in action for a single test case. We note
that as the depth of the network increases, the quality of fit degrades, but is still close to perfect as
measured by the NMSE metric. The bottom row of Figure shows the mapping mechanism in
action for devices with a very large c,, = 1. We note that even in such cases, the performance in
lower layers remains fairly stable and only gradually degrades as the depth increases.

G CONVERGENCE PLOTS FOR THE GOOGLE SPOKEN COMMANDS TASK

Figure[G.4]shows the convergence plots for various values of c.
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Recurrent layer 1. ¢, = 0. NMSE = 0.971. Recurrent layer 2. ¢, = 0. NMSE = 0.951. Output feed-forward layer. c,, = 0. NMSE = 0.969.
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Figure F.3: Dynamics in a two-layer RNN with 51 units per layer. The SNN output shown in the
figures is the trace obtain by filtering the spike trains. The NMSE measures the quality of fit with 1
indicating a perfect match and —oo a very bad fit as described in Equationm
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Figure G.4: Performance of the ]pRNN cell on the Google commands detection task: Categorical
accuracy (Left) and Cross entropy loss (Right). We note that as higher values of o and random
sampling results in faster convergence and better accuracy.

H MAPPING THE GOOGLE SPOKEN COMMANDS NETWORK

Each 1-second recording from the dataset is transformed using the Mel-spectrogram into 25 frequency
and 128 temporal bins. This sequence represents a single speech command for the ANN. Mapping
the trained ANN to an SNN is challenging because of the limitation described earlier; A short length
sequence does not give the SNN enough time to generate the spikes required to transmit information.
On the other hand, it is too difficult to train a longer length sequence that is several thousand samples
long. To address this issue, we train the ANN using the short sequence with 128 bins and demonstrate
the mapped SNN by feeding it the same spectrogram data that is up-sampled to 1 MHz. The quality
of the mapped recurrent SNN is demonstrated using the weights from the trained recurrent ANN for
a single case in Figure[H.3] The bottom row of Figure [H.5]also shows the mapping mechanism in
action for RNN layers that are affected by mismatch with ¢, = 0.2. The results indicate an excellent
fit between the mapped and the original networks, even with mismatch. The prediction made by the
SNN also matched that of the ANN. Unfortunately, it is computationally prohibitive to compare the
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Recurrent layer 1. ¢, =0. NMSE = 0.9095. Recurrent layer 2. ¢, = 0. NMSE = 0.6469. Output dense layer. ¢, =0. NMSE = 0.6647.
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Figure H.5: Mapping a 2-layer 128 unit recurrent ANN trained to discriminate commands from the
Google speech dataset to an equivalent recurrent SNN. The top row shows the mapping in action for
neuron models unaffected by mismatch and the bottom row demonstrates it for mismatched units.
The IpRNN cells have o« = 0.99.

accuracy results of the SNN to the reference model on the full dataset. We only demonstrate the
mapping accuracy for the two recurrent layers of the network in Figure [H.3]for a single command in
this paper. A complete analysis of the accuracy performance will require testing on a neuromorphic
system and will be the focus of a follow-up work.

I EXTENDING THE LOW-PASS FILTERING IDEA TO OTHER RNN MODELS

Our goal with introducing IpRNN cell was to enable faster and better training of SNNs. However,
the analysis performed here indicates that low pass filtering also provides temporal regularization
features which can benefit ANN-RNNs such as LSTMs. Therefore, we propose to extend the LSTM
formulation by applying a low pass filter at the output (h), and call it an IpLSTM cell:

Forget gate: f; = Sigmoid(Wyxy + Wiee,hi—1 + by)
Input gate: i = Sigmoid(W;zs + Wiee, he—1 + b;)
Output gate: o; = Sigmoid(Woxs + Wiee, ht—1 + bo)
State : Ct = ft ®c—1 + it ® Relu(cht + Wreccht—l + bc)
Output : h; = 0; ® Relu(cy)
Filtered Output : by = a ® hy_1 + (1 — a) © hy (24)

where, Wi, , W, b, indicate the recurrent kernel, input kernel, and bias for the corresponding gate
or state. Similar formulations for other RNN cells such as GRU (Chung et al.},[2014), IndRNN

[2018)), Phased-LSTMs 2016), Convolutional LSTMs (Xingjian et al.l 2015)), etc

can be easily made.

I.1 EXPERIMENTAL RESULTS FOR THE LPLSTM CELL

In this section, we benchmark the Low-Pass Long Short-Term Memory (IpLSTM) cells to their
unfiltered variants. In our experiments, the learning rate was set to 0.005 and normalized gradient
was clipped to 1. Current works describe use of various task-specific initialization constraints to solve
the addition and copying tasks better (Henaff et al., 2016} [Le et al} 2015). Instead of that, we use a
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data-driven curriculum learning protocol in our experiments and are able to obtain dramatically
improved performance on these tasks. The networks used for the copying and addition tasks are
fairly small. We also test it on a character-level language modelling task with the Penn Treebank
dataset (Marcus et al.||1994) using a large network with roughly 19M parameters(Kim et al.,[2016).
We swap the IpLSTM cells with an LSTM cells in our experiments and the network architecture
and hyper-parameter settings were left unchanged from the values reported by the original authors.
A summary of our observations are as follows: The IpRNN cell exhibits a dramatically improved
performance over the SimpleRNN cell. The low pass filter appears to have a temporal stabilization
effect even for LSTM cells. However, when other regularization and stabilization techniques such as
Dropout(Srivastava et al.}[2014) are introduced, the benefit appears muted. It is possible that the large
networks with low-pass RNN layers require network architecture tweaks to benefit from the filtering
property, but it was not investigated in this work.

1.1.1 TEMPORAL ADDITION TASK

The addition task (Le et al., 2015)) involves processing two parallel input data streams of equal length.
The first stream comprises random numbers € (0, 1) and the second is full of zeros except at 2 time
steps. At the end of the sequence, the network should output the sum of the two numbers in the
first data stream corresponding to the time-steps when the second stream had non-zero entries. The
baseline to beat is a mean square error (mse) of 0.1767, corresponding to a network that always
generates 1.

We first train the RNN cell being tested on a short sequence and progressively increase the length.
Each curriculum used 10,000 training and 1000 test samples. The results are shown in Figures
where each stage of the curriculum learning process is marked with bands of different colours. The
width of the band indicates the number of epochs taken for convergence. The length of the task was
incremented when the mse went below 0.001. With random initialization, the SimpleRNN cell failed
to converge beyond sequence length 40, even with curriculum learning. On the other hand, both the
IpRNN and LSTM cells benefit from the curriculum learning protocol. The IpRNN cell was able to
transfer learning for sequences shorter than 150 steps. While, the benefits of curriculum learning
appears to have reduced beyond that, the IpRNN cells were able to achieve better than 0.001 mse
for sequences up to 642. The performance of the IpRNN cell is at par or slightly inferior to other
works in literature (Hochreiter and Schmidhuber, [1997; |Arjovsky et al., 2016} [Le et al.,[2015} [Hu
et al.| [2018)), we achieved this result purely by random initialization. Another interesting outcome of
this experiment was the effectiveness of a 2-unit LSTM cell in solving this task. It was was able to
add sequences much longer(we tested up to 100K) than any reported work (where the networks are
only able to solve the task for about 1/100th of the sequence length).

Given the effectiveness of the training protocol, we made the task more complex by allowing the
second stream to have up to 10 unmasked entries during training. The trained cell was tested with
a data stream having more than 10 masked entries. The LSTM cell was successful in solving this
problem a mse less than le-3, indicating that it learnt a general add and accumulate operation.
Figure[[.6¢|shows the evolution of the gating functions, internal state, and the state variables of an
LSTM cell that was trained only on a fixed length sequence of 100 with mse less than 0.001. Contrast
this against the stable dynamics of the network trained by curriculum learning in Figure [.6din a
100K sequence with mse less than le-3 (Figure[[.6) indicating almost perfect long-term memory and
addition. To our knowledge, this kind of generalized learning by an LSTM cell has not been shown
before.

1.1.2 TEMPORAL COPYING TASK

We train the RNN cells on a varying length copying task as defined in (Graves et al,[2014) instead
of the original definition (Hochreiter and Schmidhuber, |1997} |Arjovsky et al.,|2016). This problem
is harder to solve than the temporal addition task. The network receives a sequence of up to S
symbols (in the original definition, S is fixed) drawn from an alphabet of size K. At the end of S
symbols, a sequence of T blank symbols ending with a trigger symbol is passed. The trigger symbol
indicates that the network should reproduce the first S symbols in the same order. We first train
the network on a short sequence (T=3) and gradually increase it (T<200). The sequence length is
incremented when the categorical accuracy is better than 99%.

20



Under review as a conference paper at ICLR 2020

Length of the masked addition task Length of the masked addition task
MO 1N o o~ o n (] QHNSNOO O
OCCIIMINTS N — ~ < m < MTOONOONOVINNOTOMO =N
—AONTYHEse+HH— N (N m m < n © o O OO NOONTSHNHANT M SN MO NNN
[ N 1 1 1 L HINIM?, - |||:\r|n
0.04
0.03
0
s 0.02
0.01 4
0.00
T T T T T T T T T T T T T T T T
0 250 500 750 1000 1250 1500 1750 0 20 40 60 80 100 120 140 160
Epoch Epoch

(a) Curriculum learning with a 128 unit ]pRNN (b) Curriculum learning in a 2 hidden unit LSTM

1.0 —— Forget gate \/"\f\w_\f\f —— Forget gate
—— Input gate 5 = —— Input gate
—— Output gate —— Output gate
0.8 — Internal state — Internal state
—— Output 4 H—0n Output
Mrm —
0.6 =
[ [
3 3°
o o
> >
0.4 5
0.2 1
) ) m L [
0.0 : 0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Time step le2 Time step le5
(c) Plain LSTM without curriculum learning (d) Plain LSTM with curriculum learning

Figure 1.6: Curriculum learning on the masked addition task. LSTM cell trained without curriculum
learning results in unstable state variables[(c)] When trained with curriculum learning it looks much
more stable[(d)] Stars in [(c)]and [(d)|indicate value of the add mask.
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Figure 1.7: Curriculum learning on the variable length copying task for a 256 unit IpRNN (top left)
and a 128 unit LSTM cell (top right) and a 128 unit IpLSTM cell(bottom left and right).

The SimpleRNN cell failed at this task even for T=30 with categorical accuracy dropping to 84%
when it predicted only S + T blank symbols. The IpRNN cell was able to achieve 99% accuracy for
up to 120 time steps. After that, it generates T blank entries accurately but the accuracy of the last
S symbols drops (For T=200, it was 96%). However, the LSTM cell achieves more than 99.5+%
accuracy for all tested sequence lengths, highlighting the advantage of curriculum learning. This is a
big improvement over reported results (Arjovsky et al.,|2016; |Graves et al.,[2014; Bai et al., 2018)
where LSTM cells solved the task for much smaller values of S and 7T'.

We observed stability issues when training an LSTM cell for sequences longer than 30, even if it
eventually converged by using smaller learning rates and gradient norm scaling. This makes a good
test case to validate the temporal regularization property of the [pLSTM cell. In our tests, the [pLSTM
cell converged without instability with categorical accuracy higher than 99.5% for all tested values of
T(€ [3,500]). It also to generalized larger values of S than the other cells (< 25). The IpLSTM cell
exhibited a gradual degradation in performance for larger values of S. We stop our simulations when
the categorical accuracy fell below 96%. These results are summarized in Figure[[.7]

1.1.3 PENN TREEBANK (PTB) CHARACTER MODEL

We studied temporal regularization in a network trained on the PTB dataset (Marcus et al.,|1994) by
replacing the LSTM cells by its low pass variants. We choose a model with 19M parameters (Kim
et al.,|2016) and trained all variants using the same settings as described in (Kim et al., 2016) for 25
epochs. We note that both IpLSTM cells converge to a better score on the training set and a marginally
poorer score on the train/validation set (refer Table [6). The IpLSTM cell with relu activation also
converges unlike the plain relu LSTM cell validating our claim on temporal regularization.
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Table 6: Impact of temporal regularization on the Penn Treebank model.

Activation Train perplexity Validation Perplexity  Test Perplexity

LSTM relu approx. 641 approx. 641 Fails to converge
tanh 46.0948 83.9807 80.0873
IpLSTM tanh 41.0545 84.6127 81.7519
relu 43.0602 84.1484 80.6946

J ENERGY CONSUMPTION ESTIMATION

In this section, we describe the procedure used for comparing the power consumption of the in-
memory architecture against a Cortex-M4 processor. This processor was chosen as it is one of the
most common low-power MCU platforms in use today.

In our analysis, we make a highly-optimistic estimate for the performance of the Cortex-M4
[2019). We assume that there are no cache misses, that multiply and add operations take one clock
cycle, the read from DRAM only consumes 6 pl/bit, and also assume that the MCU is fully available
for RNN computation. In particular, note that the memory cost per DRAM access should also include
the address and data bus power consumption. This has been completely ignored in this analysis to
keep things highly optimal on the Cortex-M4 side. We see that in such a configuration, the Cortex-M4
consumes only a few mW of power. In practice, the active power consumption of such processors

tend to be in hundreds of mW (Rethinagiri et al.l 2014).

We estimate the performance of the in-memory unit (also in 180nm technology for the known neuron
implementation 2019)). These results are then tabulated and system activity is
modelled for two RNN models in Filgu%[@ (2 layer RNN with 128 units/layer) and Figure [J.8b] (4
layer RNN with 500 units/layer).

The energy cost for the Cortex-M4 is modelled by the following equation:
Etot - (Clkmul . Nmul + C'lkadd . Nadd) . Eclk + M - Emem (25)

where

e [, Total power consumed

o (Clky,y;: Number of clocks for multiply

e N,,.,i: Number of multiply operations in the task.
Clkyqq: Number of clocks for addition.

Ngqq: Number of add operations in the task.

FE.i: Energy consumed by the processor per clock.

e )M : Number of memory bit accesses

FErem: Energy cost of a accessing a single bit.

The energy cost for the in-memory architecture is modelled by the following equation:
Etot = (N . Espike + M) . Nspik’es (26)
where

N: Number of neurons

o [Ispire: Energy per spike

® Ngpikes: Total number of spikes. This is computed for the XA model by computing the
average firing rate as a function of the desired bit precision. This is approximating by
equating the desired firing rate of the XA neuron to that of an oversampled clock necessary
to achieve a desired Signal to Noise Ratio (SNR) (Pavan et al.},[2017).

e M: Memory access cost. This is modelled by the the product of the read current while a
spike is active.
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Each of the terms in the computation of the power consumption of the Cortex and in-memory systems
are in turn calculated based on a number of hardware and operational assumptions that are listed in
the tables. We note an improved energy-efficiency of several hundred times across the board in both
configurations. We also note that the energy-savings is much higher for the larger network. This is
simply because the number of sequential compute operations increases quadratically.
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Figure J.8: Energy consumption comparison between an in-memory RNN accelerator implementing
the IpRNN model against a Cortex M4.
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