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Abstract
We trained and evaluated a localization-based deep CNN for breast cancer screening exam
classification on over 200,000 exams (over 1,000,000 images). Our model achieves an AUC
of 0.919 in predicting malignancy in patients undergoing breast cancer screening, reducing
the error rate of the baseline (Wu et al., 2019a) by 23%. In addition, the models generates
bounding boxes for benign and malignant findings, providing interpretable predictions.

1. Introduction

Breast cancer is the second leading cause of cancer-related death among women in the United
States. Screening mammography has been highly effective in reducing mortality rate but
suffers from a high rate of false positive recalls, leading to added costs and stress. Better
computer-aided diagnostic tools could improve patient outcomes by helping radiologists. Our
goal is to build a system that provides highly accurate as well as interpretable predictions,
in order to assist radiologists in cancer detection. To this end, we train an object detection
network to predict the location of suspicious lesions and classify them.

2. Data

Our dataset (Wu et al., 2019b) comprises 229,426 screening mammography exams (1,001,093
images, with each exam containing the four standard views) from 141,473 unique patients.
Among these, 5,832 exams had at least one biopsy performed within 120 days of a screening
mammogram. Within this set of exams, 985 breasts had malignant findings, 5,556 had
benign findings and 234 had both. For these exams, radiologists retrospectively annotated
the locations of the biopsied lesions at a pixel level.

3. Methods

We used bounding boxes on the annotations of biopsied lesions to train a Feature-Pyramidal
Network (Lin et al., 2017)-based Faster-RCNN model (Ren et al., 2015). In most experi-
ments, we used a ResNet-50 (R-50; He et al., 2016) backbone pretrained on ImageNet (Deng
et al., 2009) to initialize our models. We also conducted experiments with ResNet-101 (R-
101) and ResNeXt-101 (X-101; Xie et al., 2017) backbones. The final classifier predicts
three classes: benign lesions, malignant lesions, or nothing. We used maskrcnn-benchmark
(Massa and Girshick, 2018) to train our models. We evaluated models after every 5,000
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mini-batches and select the best models according to the score computed on the validation
set. We used the standard setup of the framework, aside from the following exceptions.

Use of non-annotated images We used images without annotated lesions to train our
model. These are treated as negatives for both the region-proposal network (RPN) and the
classifier branch. The goal of this approach is to reduce overfitting on the comparatively
small set of annotations. For our base experiment, during training, half of the images are
sampled from an exam with a biopsy and half without.

Resolution We used a maximum resolution of 2200 × 3000 for the R-50 backbone, by
resizing the mammograms with bilinear interpolation (1700 × 2700 for R-101, 1300 × 2100
for X-101). Indeed, prior work (Geras et al., 2017) highlighted the importance of operating
at a high resolution. Consequently, we also reduced the batch size to 4 (2 per GPU) due to
our model’s large memory requirements.

IoU thresholds We also relaxed the IoU threshold for foreground objects in the RPN from
0.7 to 0.5, as in (Ribli et al., 2018; Morrell et al., 2018). Compared to natural images, our
data set has (i) noisier annotations with less precise boundaries, and (ii) fewer annotations
per image. To circumvent (i), we also tried isotropic bounding box rescaling by a factor
drawn uniformly at random in [0.8, 1.2]. We set the IoU threshold of the final non-maximum
suppression to 0.1, following the rationale of Ribli et al. (2018) that for mammograms,
“overlapping detections are expected to happen less often than in usual object detection".

Optimization We generally did not tune the learning rate schedules according to the
advice of Goyal et al. (2017) (“recommended lr schedule”) despite lowering the batch size.
Indeed, found that it did not strongly impact results while considerably increasing training
time. We used gradient clipping (for norm > 3) in all our experiments. We experimented
with using batch normalization but found it not to help in our experiments.

Inference During inference, we take the maximummalignant prediction among the bound-
ing boxes of each view and then average over both views to get the predicted probability for
the whole breast. We found this setup to perform better than others, including taking the
maximum over views or the mean over boxes. In addition, we found it useful to decrease the
score threshold at inference time from 0.05 to 0.001, as the tail-like behavior is important
when computing AUC.

4. Results

The results are shown in Table 1. Our methods compare favorably against the models of
Wu et al. (2019a). Indeed, we achieve a 23% relative error reduction in AUC on the test
set. Note that both models use pixel-level annotations. Due to high variance, we ensemble
all runs together for our "Ensemble" setup. On the subpopulation of the test set used for
the reader study in Wu et al. (2019a), our results also compare favorably to both earlier
models and radiologists in terms of ROC, although the improvements are smaller. The
reader study setup contains more exams from patients who underwent biopsy. Thus we
believe this model distinguishes better between negative cases and cases that need a biopsy
but is not as good in distinguishing between benign and malignant cases within the biopsied
population. Ensembling our method with Wu et al. (2019a) improves the reader study AUC
further to 0.895, compared to 0.778 for the average radiologist.

2



Improving localization-based approaches for breast cancer screening exam classification

model test set reader study

Wu et al. (2019a) single model 0.886 ± 0.003 -
Wu et al. (2019a) ensemble 0.895 0.876
Base setup 0.891 ± 0.005 0.845 ± 0.007
+ biopsy ratio 0.75 0.895 ± 0.004 0.855 ± 0.012
+ biopsy ratio 1 0.887 ± 0.011 0.855 ± 0.013
+ bounding box scaling 0.890 ± 0.006 0.841 ± 0.010
+ classifier*5 0.903 ± 0.007 0.859 ± 0.013
+ bb scaling, classifier*5, ratio 0.75 0.888 ± 0.006 0.855 ± 0.006
+ recommended lr schedule 0.897 ± 0.007 0.858 ± 0.007
+ R-101 backbone 0.887 ± 0.011 0.834 ± 0.011
+ X-101 backbone 0.908 ± 0.014 0.866 ± 0.020
Ensemble 0.919 0.879
Ensemble + Wu et al. (2019a) ensemble 0.930 0.895

Table 1: AUC comparison against earlier results on the test set and reader study. Means
and standard deviations for our models are computed over 3 random initializations. Base
refers to the R-50 setup. For biopsy ratio, we increased the proportion of images from exams
with biopsies in training. For classifier*5, we quintuple the weight on the classifier loss.

5. Analysis

Figure 1: An example of an annotation of a
malignant lesion (left) and predictions (right)
from a X-101 model on a test set breast.

Our validation metrics varied significantly
between checkpoints. We believe that this
is due to (i) the interaction of the compo-
nents of the training loss, (ii) components of
the training loss being only loosely related
to the final metric, (iii) a small batch size
rendering optimization unstable. This mo-
tivates ensembling all runs to produce our
final model.

We notice a clear trade-off between us-
ing larger networks and using a larger res-
olution, with the R-50, R-101 and X-101
setups performing competitively. Unfortu-
nately, due to computational constraints, we
were unable to test R-101 and X-101 on the
same resolution as R-50. Overall, our en-
semble combining different backbones and
resolutions performed best.

In Figure 1, we show an annotation and
the corresponding prediction using an X-101
model. The model accurately predicts a ma-
lignant lesion with high probability (0.99). It also predicts a benign lesion with low prob-
ability (0.36) for which there is no ground-truth annotation. These bounding boxes can
highlight suspicious regions and help radiologists understand predictions from our models.
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