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Abstract

The gradient noise (GN) in the stochastic gra-
dient descent (SGD) algorithm is often consid-
ered to be Gaussian in the large data regime by
assuming that the classical central limit theo-
rem (CLT) kicks in. This assumption is often
made for mathematical convenience, since it en-
ables SGD to be analyzed as a stochastic differ-
ential equation (SDE) driven by a Brownian mo-
tion. We argue that the Gaussianity assumption
might fail to hold in deep learning settings and
hence render the Brownian motion-based analy-
ses inappropriate. Inspired by non-Gaussian nat-
ural phenomena, we consider the GN in a more
general context and invoke the generalized CLT
(GCLT), which suggests that the GN converges
to a heavy-tailed α-stable random variable. Ac-
cordingly, we propose to analyze SGD as an SDE
driven by a Lévy motion. Such SDEs can in-
cur ‘jumps’, which force the SDE transition from
narrow minima to wider minima, as proven by
existing metastability theory. To validate the α-
stable assumption, we conduct extensive exper-
iments on common deep learning architectures
and show that in all settings, the GN is highly
non-Gaussian and admits heavy-tails. We fur-
ther investigate the tail behavior in varying net-
work architectures and sizes, loss functions, and
datasets. Our results open up a different perspec-
tive and shed more light on the belief that SGD
prefers wide minima.

1. Introduction
Context and motivation: Deep neural networks have rev-
olutionized machine learning and have ubiquitous use in
many application domains (LeCun et al., 2015; Krizhevsky
et al., 2012; Hinton et al., 2012). In full generality, many

1Anonymous Institution, Anonymous City, Anonymous Re-
gion, Anonymous Country. Correspondence to: Anonymous Au-
thor <anon.email@domain.com>.
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key tasks in deep learning reduces to solving the following
optimization problem:

w? = arg min
w∈Rp

{
f(w) ,

1

n

∑n

i=1
f (i)(w)

}
(1)

where w ∈ Rp denotes the weights of the neural net-
work, f : Rp → R denotes the loss function that is typ-
ically non-convex in w, each f (i) denotes the (instanta-
neous) loss function that is contributed by the data point
i ∈ {1, . . . , n}, and n denotes the total number of data
points. Stochastic gradient descent (SGD) is one the most
popular approaches for attacking this problem in practice
and is based on the following iterative updates:

wk+1 = wk − η∇f̃k(wk) (2)

where k ∈ {1, . . . ,K} denotes the iteration number and
∇f̃k denotes the stochastic gradient at iteration k, that is
defined as follows:

∇f̃k(w) , ∇f̃Ωk(w) ,
1

b

∑
i∈Ωk

∇f (i)(w). (3)

Here, Ωk ⊂ {1, . . . , n} is a random subset that is drawn
with or without replacement at iteration k, and b = |Ωk|
denotes the number of elements in Ωk.

SGD is widely used in deep learning with a great success
in its computational efficiency (Bottou, 2010; Bottou &
Bousquet, 2008). Beyond efficiency, understanding how
SGD performs better than its full batch counterpart in terms
of test accuracy remains a major challenge. Even though
SGD seems to find zero loss solutions on the training land-
scape (at least in certain regimes (Zhang et al., 2017a; Sa-
gun et al., 2015; Keskar et al., 2016; Geiger et al., 2018)),
it appears that the algorithm finds solutions with different
properties depending on how it is tuned (Sutskever et al.,
2013; Keskar et al., 2016; Jastrzebski et al., 2017; Hoffer
et al., 2017; Masters & Luschi, 2018; Smith et al., 2017).
Despite the fact that the impact of SGD on generalization
has been studied (Advani & Saxe, 2017; Wu et al., 2018;
Neyshabur et al., 2017), a satisfactory theory that can ex-
plain its success in a way that encompasses such peculiar
empirical properties is still lacking.

A popular approach for analyzing SGD is based on con-
sidering SGD as a discretization of a continuous-time pro-
cess (Mandt et al., 2016; Jastrzebski et al., 2017; Li et al.,
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2017; Hu et al., 2017; Zhu et al., 2018; Chaudhari &
Soatto, 2018). This approach mainly requires the follow-
ing assumption1 on the stochastic gradient noise Uk(w) ,
∇f̃k(w)−∇f(w):

Uk(w) ∼ N (0, σ2I), (4)

whereN denotes the multivariate (Gaussian) normal distri-
bution and I denotes the identity matrix of appropriate size.
The rationale behind this assumption is that, if the size of
the minibatch b is large enough, then we can invoke the
Central Limit Theorem (CLT) and assume that the distri-
bution of Uk is approximately Gaussian. Then, under this
assumption, (2) can be written as follows:

wk+1 = wk − η∇f(wk) +
√
η
√
ησ2Zk, (5)

where Zk denotes a standard normal random variable in
Rp. If we further assume that the step-size η is small
enough, then the continuous-time analogue of the discrete-
time process (5) is the following stochastic differential
equation (SDE):2

dwt = −∇f(wt)dt+
√
ησ2dBt, (6)

where Bt denotes the standard Brownian motion. This
SDE is a variant of the well-known Langevin diffusion
and under mild regularity assumptions on f , one can
show that the Markov process (wt)t≥0 is ergodic with its
unique invariant measure, whose density is proportional to
exp(−f(x)/(ησ2)) for any η > 0. (Roberts & Stramer,
2002). From this perspective, the SGD recursion in (5) can
be seen as a first-order Euler-Maruyama discretization of
the Langevin dynamics (see also (Li et al., 2017; Jastrzeb-
ski et al., 2017; Hu et al., 2017)), which is often referred
to as the Unadjusted Langevin Algorithm (ULA) (Roberts
& Stramer, 2002; Lamberton & Pages, 2003; Durmus &
Moulines, 2015).

Based on this observation, Jastrzebski et al. (2017) focused
on the relation between this invariant measure and the al-
gorithm parameters, namely the step-size η and mini-batch
size, as a function of σ2. They concluded that the ratio of
learning rate divided by the batch size is the control pa-
rameter that determines the width of the minima found by
SGD. Furthermore, they revisit the famous wide minima

1We note that more sophisticated assumptions than (4) have
been made in terms of the covariance matrix of the Gaussian dis-
tribution (e.g. state dependent, anisotropic). However, in all these
cases, the resulting distribution is still a Gaussian, therefore the
same criticism holds.

2 In a recent work with a similar critic taken on the recent the-
ories on the SGD dynamics, some theoretical concerns have been
also raised about the SDE approximation of SGD (Yaida, 2019).
We believe that the SDE representation is sufficiently accurate for
small step-sizes and a good, if not the best, proxy for understand-
ing the behavior of SGD.

0 1000 2000
Noise norm

101

103

105

Co
un

t

(a) Real

0 1000 2000
Noise norm

100

101

102

Co
un

t

(b) Gaussian

0 1000 2000
Noise norm

100

101

102

103

104

Co
un

t

(c) α-stable

Figure 1. (a)The histogram of the norm of the gradient noises
computed with AlexNet on Cifar10. (b) and (c) the histograms of
the norms of (scaled) Guassian and α-stable random variables.

folklore (Hochreiter & Schmidhuber, 1997): Among the
minima found by SGD, the wider it is, the better it performs
on the test set. However, there are several fundamental is-
sues with this approach, which we will explain below.

We first illustrate a typical mismatch between the Gaus-
sianity assumption and the empirical behavior of the
stochastic gradient noise. In Figure 1, we plot the his-
togram of the norms of the stochastic gradient noise that
is computed using a convolutional neural network in a real
classification problem and compare it to the histogram of
the norms of Gaussian random variables. It can be clearly
observed that the shape of the real histogram is very differ-
ent than the Gaussian and shows a heavy-tailed behavior.

In addition to the empirical observations, the Gaussianity
assumption also yields some theoretical issues. The first
issue with this assumption is that the current SDE analy-
ses of SGD are based on the invariant measure of the SDE,
which implicitly assumes that sufficiently many iterations
have been taken to converge to that measure. Recent re-
sults on ULA (Raginsky et al., 2017; Xu et al., 2018) have
shown that, the required number of iterations to achieve
the invariant measure often grows exponentially with the
dimension p. This result contradicts with the current prac-
tice: considering the large size of the neural networks and
limited computational budget, only a limited number of it-
erations – which is much smaller than exp(O(p)) – can be
taken. This conflict becomes clearer in the light of the re-
cent works that studied the local behavior of ULA (Tzen
et al., 2018; Zhang et al., 2017b). These studies showed
that ULA will get close to the nearest local optimum in
polynomial time; however, the required amount of time for
escaping from that local optimum increases exponentially
with the dimension. Therefore, the phenomenon that SGD
prefers wide minima within a considerably small number
of iterations cannot be explained using the asymptotic dis-
tribution of the SDE given in (6).

The second issue is related to the local behavior of the pro-
cess and becomes clear when we consider the metastability
analysis of Brownian motion-driven SDEs. These studies
(Freidlin & Wentzell, 1998; Bovier et al., 2004; Imkeller
et al., 2010b) consider the case where w0 is initialized in a
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quadratic basin and then analyze the minimum time t such
that wt is outside that basin. They show that this so-called
first exit time depends exponentially on the height of the
basin; however, this dependency is only polynomial with
the width of the basin. These theoretical results directly
contradict with the the wide minima phenomenon: even if
the height of a basin is slightly larger, the exit-time from
this basin will be dominated by its height, which implies
that the process would stay longer in (or in other words,
‘prefer’) deeper minima as opposed to wider minima. The
reason why the exit-time is dominated by the height is due
to the continuity of the Brownian motion, which is in fact a
direct consequence of the Gaussian noise assumption.

A final remark on the issues of this approach is the ob-
servation that landscape is flat at the bottom regardless of
the batch size used in SGD (Sagun et al., 2017). In par-
ticular, the spectrum of the Hessian at a near critical point
with close to zero loss value has many near zero eigenval-
ues. Therefore, local curvature measures that are used as a
proxy for measuring the width of a basin correlates with the
magnitudes of large eigenvalues of the Hessian which are
few. Besides, during the dynamics of SGD it has been ob-
served that the algorithm does not cross barriers except per-
haps at the very initial phase (Xing et al., 2018; Baity-Jesi
et al., 2018). Such dependence of width on an essentially-
flat landscape combined with the lack of explicit barrier
crossing during the SGD descent forces us to rethink the
analysis of basin hopping under a noisy dynamics.

Proposed framework: In this study, we aim at addressing
these contradictions and come up with an arguably better-
suited hypothesis for the stochastic gradient noise that has
more pertinent theoretical implications for the phenomena
associated with SGD. In particular, we go back to (3) and
(4) and reconsider the application of CLT. This classical
CLT assumes that Uk is a sum of many independent and
identically distributed (i.i.d.) random variables, whose vari-
ance is finite, and then it states that the law of Uk converges
to a Gaussian distribution, which then paves the way for
(5). Even though the finite-variance assumption seems nat-
ural and intuitive at the first sight, it turns out that in many
domains, such as turbulent motions (Weeks et al., 1995),
oceanic fluid flows (Woyczyński, 2001), finance (Mandel-
brot, 2013), biological evolution (Jourdain et al., 2012),
audio signals (Liutkus & Badeau, 2015), the assumption
might fail to hold (see (Duan, 2015) for more examples).
In such cases, the classical CLT along with the Gaussian
approximation will no longer hold. While this might seem
daunting, fortunately, one can prove an extended CLT and
show that the law of the sum of these i.i.d. variables with
infinite variance still converges to a family of heavy-tailed
distributions that is called the α-stable distribution (Lévy,
1937). As we will detail in Section 2, these distributions
are parametrized by their tail-index α ∈ (0, 2] and they co-

incide with the Gaussian distribution when α = 2.

In this study, we relax the finite-variance assumption on
the stochastic gradient noise and by invoking the extended
CLT, we assume that Uk follows an α-stable distribution,
as hinted in Figure 1(c). By following a similar ratio-
nale to (5) and (6), we reformulate SGD with this new as-
sumption and consider its continuous-time limit for small
step-sizes. Since the noise might not be Gaussian anymore
(i.e. when α 6= 2), the use of the Brownian motion would
not be appropriate in this case and we need to replace it
with the α-stable Lévy motion, whose increments have an
α-stable distribution (Yanovsky et al., 2000). Due to the
heavy-tailed nature of α-stable distribution, the Lévy mo-
tion might incur large discontinuous jumps and therefore
exhibits a fundamentally different behavior than the Brow-
nian motion, whose paths are on the contrary almost surely
continuous. As we will describe in detail in Section 2,
the discontinuities also reflect in the metastability proper-
ties of Lévy-driven SDEs, which indicate that, as soon as
α < 2, the first exit time from a basin does not depend on
its height; on the contrary, it directly depends on its width
and the tail-index α. Informally, this implies that the pro-
cess will escape from narrow minima – no matter how deep
they are – and stay longer in wide minima. Besides, as α
get smaller, the probability for the dynamics to jump in a
wide basin will increase. Therefore, if the α-stable assump-
tion on the stochastic gradient noise holds, then the existing
metastability results automatically provide strong theoreti-
cal insights for illuminating the behavior of SGD.

Contributions: The main contributions of this paper are
twofold: (i) we perform an extensive empirical analysis of
the tail-index of the stochastic gradient noise in deep neural
networks and (ii) based on these empirical results, we bring
an alternative perspective to the existing approaches for an-
alyzing SGD and shed more light on the folklore that SGD
prefers wide minima by establishing a bridge between SGD
and the related theoretical results from statistical physics
and stochastic analysis.

We conduct experiments on the most common deep learn-
ing architectures. In particular, we investigate the tail be-
havior under fully-connected and convolutional models us-
ing negative log likelihood and linear hinge loss functions
on MNIST, CIFAR10, and CIFAR100 datasets. For each
configuration, we scale the size of the network and batch
size used in SGD and monitor the effect of each of these
settings on the tail index α.

Our experiments reveal several remarkable results:

• In all our configurations, the stochastic gradient noise
turns out to be highly non-Gaussian and possesses a
heavy-tailed behavior.

• Increasing the size of the minibatch has a very little im-
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Figure 2. Left: SαS densities, right: Lαt for p = 1. For α < 2,
SαS becomes heavier-tailed and Lαt incurs jumps.

pact on the tail-index, and as opposed to the common
belief that larger minibatches result in Gaussian gradient
noise, the noise is still far from being Gaussian.

• There is a strong interaction between the network archi-
tecture, network size, dataset, and the tail-index, which
ultimately determine the dynamics of SGD on the train-
ing surface. This observation supports the view that, the
geometry of the problem and the dynamics induced by
the algorithm cannot be separated from each other.

• In almost all configurations, we observe two distinct
phases of SGD throughout iterations. During the first
phase, the tail-index rapidly decreases and SGD pos-
sesses a clear jump when the tail-index is at its lowest
value and causes a sudden jump in the accuracy. This
behavior strengthens the view that SGD crosses barriers
at the very initial phase.

Our methodology also opens up several interesting future
directions and open questions, as we discuss in Section 5.

2. Stable distributions and SGD as a
Lévy-Driven SDE

The CLT states that the sum of i.i.d. random variables with
a finite second moment converges to a normal distribution
if the number of summands grow. However, if the variables
have heavy-tail, the second moment may not exist. For in-
stance, if their density p(x) has a power-law tail decreasing
as 1/|x|α+1 where 0 < α < 2; only α-th moment exist
with α < 2. In this case, generalized central limit theorem
(GCLT) says that the sum of such variables will converge
to a distribution called the α-stable distribution instead as
the number of summands grows (see e.g. (Fischer, 2010).
In this work, we focus on the centered symmetric α-stable
(SαS) distribution, which is a special case of α-stable dis-
tributions that are symmetric around the origin.

We can view the SαS distribution as a heavy-tailed gener-
alization of a centered Gaussian distribution. The SαS dis-
tributions are defined through their characteristic function
via X ∼ SαS(σ) ⇐⇒ E[exp(iωX)] = exp(−|σω|α).
Even though their probability density function does not
admit a closed-form formula in general except in spe-
cial cases, their density decays with a power law tail like
1/|x|α+1 where α ∈ (0, 2] is called the tail-index which de-

termines the behavior of the distribution: as α gets smaller;
the distribution has a heavier tail. In fact, the parameter α
also determines the moments: E[|X|r] < ∞ if and only if
r < α; implying X has infinite variance when α 6= 2. The
parameter σ ∈ R+ is known as the scale parameter and
controls the spread of X around 0. We recover the Gaus-
sian distribution N (0, 2σ2) as a special case of SαS when
α = 2.

In this study, we make the following assumption on the
stochastic gradient noise:

[Uk(w)]i ∼ SαS(σ(w)), ∀i = 1, . . . , n (7)

where [v]i denotes the i’th component of a vector v. In-
formally, we assume that each coordinate of Uk is SαS
distributed with the same α and the scale parameter σ de-
pends on the state w. Here, this dependency is not crucial
since we are mainly interested in the tail-index α, which
can be estimated independently from the scale parameter.
Therefore, we will simply denote σ(w) as σ for clarity.

By using the assumption (7), we can rewrite the SGD re-
cursion as follows:

wk+1 = wk − η∇f(wk) + η1/α
(
η
α−1
α σ

)
Sk, (8)

where Sk ∈ Rp is a random vector such that [Sk]i ∼
SαS(1). If the step-size η is small enough, then we can
consider the continuous-time limit of this discrete-time
process, which is expressed in the following SDE driven
by an α-stable Lévy process:

dwt = −∇f(wt)dt+ η(α−1)/ασ dLαt , (9)

where Lαt denotes the p-dimensional α-stable Lévy motion
with independent components. In other words, each com-
ponent of Lαt is an independent α-stable Lévy motion in R.
For the scalar case it is defined as follows for α ∈ (0, 2]
(Duan, 2015):

(i) Lα0 = 0 almost surely.

(ii) For t0 < t1 < · · · < tN , the increments (Lαti−Lαti−1
)

are independent (i = 1, . . . , N ).

(iii) The difference (Lαt − Lαs ) and Lαt−s have the same
distribution: SαS((t− s)1/α) for s < t.

(iv) Lαt is continuous in probability (i.e. it has stochas-
tically continuous sample paths): for all δ > 0 and
s ≥ 0, p(|Lαt − Lαs | > δ)→ 0 as t→ s.

When α = 2, Lαt coincides with a scaled version of Brown-
ian motion,

√
2Bt. SαS and Lαt are illustrated in Figure 2.

The SDE in (9) exhibits a fundamentally different behavior
than the one in (6) does. This is mostly due to the stochas-
tic continuity property of Lαt , which enables Lαt to have a
countable number of discontinuities, which are sometimes
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called ‘jumps’. In the rest of this section, we will recall im-
portant theoretical results about this SDE and discuss their
implications on SGD.

For clarity of the presentation and notational simplicity
we focus on the scalar case and consider the SDE (9) in
R (i.e. p = 1). Multidimensional generalizations of the
metastability results presented in this paper can be found in
(Imkeller et al., 2010a). We rewrite (9) as follows:

dwεt = −∇f(wεt )dt+ εdLαt (10)

for t ≥ 0, started from the initial point w0 ∈ R, where Lαt
is the α-stable Lévy process, ε ≥ 0 is a parameter and f is
a non-convex objective with r ≥ 2 local minima.

When ε = 0, we recover the gradient descent dynamics
in continuous time: dw0

t = −∇f(w0
t )dt, where the lo-

cal minima are the stable points of this differential equa-
tion. However, as soon as ε > 0, these states become
‘metastable’, meaning that there is a positive probability
forwεt to transition from one basin to another. However, the
time required for transitioning to another basin strongly de-
pends on the characteristics of the injected noise. The two
most important cases are α = 2 and α < 2. When α = 2,
(i.e. the Gaussianity assumption) the process (wεt )t≥0 is
continuous, which requires it to ‘climb’ the basin all the
way up, in order to be able to transition to another basin.
This fact makes the transition-time depend on the height of
the basin. On the contrary, when α < 2, the process can
incur discontinuities and do not need to cross the bound-
aries of the basin in order to transition to another one since
it can directly jump. This property is called the ‘transition
phenomenon’ (Duan, 2015) and makes the transition-time
mostly depend on the width of the basin. In the rest of the
section, we will formalize these explanations.

Under some assumptions on the objective f , it is known
that the process (10) admits a stationary density (Samorod-
nitsky & Grigoriu, 2003). For a general f , an explicit for-
mula for the equilibrium distribution is not known, how-
ever when the noise level ε is small enough, finer char-
acterizations of the structure of the equilibrium density in
dimension one is known. We next summarize known re-
sults in this area, which show that Lévy-driven dynamics
spends more time in ‘wide valleys’ in the sense of (Chaud-
hari et al., 2017) when ε goes to zero.

Assume that f is smooth with r local minima {mi}ri=1 sep-
arated by r − 1 local maxima {si}r−1

i=1 , i.e.

−∞ := s0 < m1 < s1 < · · · < sr−1 < mr < sr :=∞.

Furthermore, assume that the local minima and maxima
are not degenerate, i.e. f ′′(mi) > 0 and f ′′(si) < 0
for every i. We also assume the objective gradient has
a growth condition f ′(w) > |w|1+c for some constant

c > 0 and when |w| is large enough. Each local minima
mi lies in the (interval) valley Si = (si−1, si) of (width)
length Li = |si − si−1|. Consider also a δ-neighborhood
Bi := {|x − mi| ≤ δ} around the local minimum with
δ > 0 small enough so that the neighborhood is contained
in the valley Si for every i. We are interested in the first
exit time from Bi starting from a point w0 ∈ Bi and the
transition time T iw0

(ε) := inf{t ≥ 0 : wεt 6∈ ∪j 6=iBj} to
a neighborhood of another local minimum, we will remove
the dependency to w0 of the transition time in our discus-
sions as it is clear from the context. The following result
shows that the transition times are asymptotically exponen-
tially distributed in the limit of small noise and scales like
1
εα with ε.

Theorem 1 ((Pavlyukevich, 2007)). For an initial point
w0 ∈ Bi, in the limit ε→ 0, the following statements hold
regarding the transition time:

Pw0
(T i(ε) ∈ Bj) → qijq

−1
i if i 6= j,

Pw0(εαT i(ε) ≥ u) ≤ e−qiu for any u ≥ 0.

where

qij =
1

α

∣∣∣∣ 1

|sj−1 −mi|α
− 1

|sj −mi|α

∣∣∣∣ , (11)

qi =
∑
j 6=i

qij . (12)

If the SDE (10) would be driven by the Brownian motion
instead, then an analogous theorem to Theorem 2 holds
saying that the transition times are still exponentially dis-
tributed but the scaling εα needs to be replaced by e2H/ε2

where H is the maximal depth of the basins to be traversed
between the two local minima (Day, 1983; Bovier et al.,
2005). This means that in the small noise limit, Brownian-
motion driven gradient descent dynamics need exponential
time to transit to another minimum whereas Levy-driven
gradient descent dynamics need only polynomial time. We
also note from Theorem 2 that the mean transition time be-
tween valleys for Lévy SDE does not depend on the depth
H of the valleys they reside in which is an advantage over
Brownian motion driven SDE in the existence of deep val-
leys. Informally, this difference is due to the fact that Brow-
nian motion driven SDE has to typically climb up a valley
to exit it, whereas Lévy-driven SDE could jump out.

The following theorem says that as ε → 0, up to a nor-
malization in time, the process wεt behaves like a finite
state-space Markov process that has support over the set
of local minima {mi}ri=1 admitting a stationary density
π = (πi)

r
i=1 with an infinitesimal generator Q. The pro-

cess jumps between the valleys Si, spending time propor-
tional to probability pi amount of time in each valley in the
equilibrium where the probabilities π = (πi)

r
i=1 are given

by the solution to the linear system Qπ = 0.
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(a) (b)

Figure 3. (a) An objective with two local minima m1,m2 seper-
ated by a local maxima at s1 = 0. (b) Illustration of the tail-index
estimator α̂.

Theorem 2 ((Pavlyukevich, 2007)). Let w0 ∈ Si, for some
1 ≤ i ≤ r. For t ≥ 0, wεtε−α → Ymi(t), as ε → 0,
in the sense of finite-dimensional distributions, where Y =
(Yy(t))t≥0 is a continuous-time Markov chain on a state
space {m1,m2, . . . ,mr} with the infinitesimal generator
Q = (qij)

r
i,j=1 with

qij =
1

α

∣∣∣∣ 1

|sj−1 −mi|α
− 1

|sj −mi|α

∣∣∣∣ , (13)

qii = −
∑

j 6=i
qij . (14)

This process admits a density π satisfying QTπ = 0.

A consequence of this theorem is that equilibrium proba-
bilities pi are typically larger for “wide valleys”. To see
this consider the special case illustrated in Figure 3(a) with
r = 2 local minima m1 < s1 = 0 < m2 separated by a lo-
cal maximum at s1 = 0. For this example, m2 > |m1|, and
the second local minimum lies in a wider valley. A simple
computation reveals

π1 =
|m1|α

|m1|α +mα
2

, π2 =
|m2|α

|m1|α + |m2|α

We see that π2 > π1, that is in the equilibrium the process
spends more time on the wider walley. In particular, the

ratio π2

π1
=
(
m2

|m1|

)α
grows with an exponent α when the

ratio m2

|m1| of the width of the valleys grows. Consequently,
if the gradient noise is indeed α-stable distributed, these
results directly provide theoretical evidence for the wide-
minima behavior of SGD.

3. Experimental Setup and Methodology
Experimental setup: We investigate the tail behavior
of the stochastic gradient noise in a variety of scenarios.
We first consider a fully-connected network (FCN) on the
MNIST and CIFAR10 datasets. For this model, we vary the
depth (i.e. the number of layers) in the set {2, 3, . . . , 10},

the width (i.e. the number of neurons per layer) in the set
{2, 4, 8, . . . , 1024}, and the minibatch size ranging from 1
to full batch. We then consider a convolutional neural net-
work (CNN) architecture (AlexNet) on the CIFAR10 and
CIFAR100 datasets. We scale the number of filters in each
convolutional layer in range {2, 4, . . . , 512}. We randomly
split the MNIST dataset into train and test parts of sizes
60K and 10K, and CIFAR10 and CIFAR100 datasets into
train and test parts of sizes 50K and 10K, respectively. The
order of the total number of parameters p range from sev-
eral thousands to tens of millions.

For both fully connected and convolutional settings, we run
each configuration with the negative-log-likelihood (i.e.
cross entropy) and with the linear hinge loss, and we re-
peat each experiment with three different random seeds.
The training algorithm is SGD with no explicit modifica-
tion such as momentum or weight decay. The training runs
until 100% training accuracy is achieved or until maximum
number of iterations limit is reached (the latter limit is ef-
fective in the under-parametrized models). At every 100th
iteration, we log the full training and test accuracies, and
the tail estimate of the gradients that are sampled using
the corresponding mini-batch size. The codebase is im-
plemented in python using pytorch and provided it in the
supplementary material. Total runtime is ∼3 weeks on 8
relatively modern GPUs.

Method for tail-index estimation: Estimating the tail-
index of an extreme-value distribution is a long-standing
topic. Some of the well-known estimators for this task are
(Hill, 1975; Pickands, 1975; Dekkers et al., 1989; De Haan
& Peng, 1998). Despite their popularity, these methods are
not specifically developed for α-stable distributions and it
has been shown that they might fail for estimating the tail-
index for α-stable distributions (Mittnik & Rachev, 1996;
Paulauskas & Vaičiulis, 2011).

In this study, we use a relatively recent estimator proposed
in (Mohammadi et al., 2015) for α-stable distributions. It
is given in the following theorem.

Theorem 3 (Mohammadi et al. (2015)). Let {Xi}Ki=1 be
a collection of random variables with Xi ∼ SαS(σ) and
K = K1 × K2. Define Yi ,

∑K1

j=1Xj+(i−1)K1
for i ∈

J1,K2K. Then, the estimator

1̂

α
,

1

logK1

( 1

K2

K2∑
i=1

log |Yi| −
1

K

K∑
i=1

log |Xi|
)
. (15)

converges to 1/α almost surely, as K2 →∞.

As shown in Theorem 2.3 of (Mohammadi et al., 2015),
this estimator admits a provably faster convergence rate and
smaller asymptotic variance than all the aforementioned
methods.
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In order to verify the accuracy of this estimator, we conduct
a preliminary experiment, where we first generate K =
K1 ×K2 many SαS(1) distributed random variables with
K1 = 100,K2 = 1000 for 100 different values of α. Then,
we estimate α by using α̂ , ( 1̂

α )−1. We repeat this
experiment 100 times for each α. As shown in Figure 3(b),
the estimator is very accurate for a large range of α. Due to
its favorable theoretical properties such as independence of
the scale parameter σ, combined with its empirical stability,
we choose this estimator in our experiments.

In order to estimate the tail-index α at iteration k, we first
partition the set of data points D , {1, . . . , n} into many
disjoint sets Ωik ⊂ D of size b, such that the union of
these subsets give all the data points. Formally, for all
i, j = 1, . . . , n/b, |Ωik| = b, ∪iΩik = D, and Ωik ∩ Ωjk = ∅
for i 6= j. This approach is similar to sampling without
replacement. We then compute the full gradient ∇f(wk)
and the stochastic gradients∇f̃Ωik

(wk) for each minibatch
Ωik. We finally compute the stochastic gradient noises
U ik(wk) = ∇f̃Ωik

(wk)−∇f(wk), vectorize each U ik(wk)
and concatenate them to obtain a single vector, and com-
pute the reciprocal of the estimator (15). In this case, we
have K = pn/b and we set K1 to the divisor of K that is
the closest to

√
K.

4. Results
In this section we present the most important and represen-
tative results. We have observed that, in all configurations,
the choice of the two loss functions and the three different
initializations yield no significant difference. Therefore,
throughout this section, we will focus on the negative-log-
likelihood loss. Unless stated otherwise, we set the mini-
batch size b = 500 and the step-size η = 0.1.

Effect of varying network size: In our first set of experi-
ments, we measure the tail-index for varying the widths and
depths for the FCN, and varying widths (i.e. the number of
filters) for the CNN. For very small sizes, the networks per-
form poorly, therefore, we only illustrate sufficiently large
network sizes, which yield similar accuracies. For these ex-
periments, we compute the average of the tail-index mea-
surements for the last 10K iterations (i.e. when α̂ becomes
stationary) to focus on the late stage dynamics.

Figure 4 shows the results for the FCN. The first striking
observation is that in all the cases, the estimated tail-index
is far from 2 with a very high confidence (the variance of
the estimates were around 0.001), meaning that the distri-
bution of the gradient noise is highly non-Gaussian. For the
MNIST dataset, we observe that α systematically decreases
for increasing network size, where this behavior becomes
more prominent with the depth. This result shows that, for
MNIST, increasing the dimension of the network results in
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Figure 4. Estimation of α for varying widths and depths in FCN.
The curves in the left figures correspond to different depths, and
the ones on the right figures correspond to widths.
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Figure 5. The accuracy and α̂ of the CNN for varying widths.

a gradient noise with heavier tails and therefore increases
the probability to end up in a wider basin.

For the CIFAR10 dataset, we still observe that α is far from
2; however, in this case, increasing the network size does
not have a clear effect on α: in all cases, we observe that α
is in the range 1.1–1.2.

Figure 5 shows the results for the CNN. In this figure, we
also depict the train and test accuracy, as well as the tail-
index that is estimated on the test set. These results show
that, for both CIFAR10 and CIFAR100, the tail-index is
extremely low for the under-parametrized regime (e.g. the
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Figure 6. Estimation of α for varying minibatch size.

case when the width is 2, 4, or 8 for CIFAR10). As we
increase the size of the network the value of α increases
until the network performs reasonably well and stabilizes in
the range 1.0–1.1. We also observe that α behaves similarly
for both train and test sets3.

These results show that there is strong interplay between
the network architecture, dataset, and the algorithm dynam-
ics: (i) we see that the size of the network can strongly in-
fluence α, (ii) for the exact same network architecture, the
choice of the dataset has a significant impact on not only
the landscape of the problem, but also the noise character-
istics, hence on the algorithm dynamics.

Effect of the minibatch size: In our second set of ex-
periments, we investigate the effect of the size of the mini-
batch on α. We focus on the FCN and monitor the behav-
ior of α for different network and minibatch sizes b. Fig-
ure 6 illustrates the results. These rather remarkable results
show that, as opposed to the common belief that the gra-
dient noise behaves similar to a Gaussian for large b, the
tail-index does not increase at all with the increasing b. We
observe that α stays almost the same when the depth is 2
and it moves in a small interval when the depth is set to
4. We note that we obtained the same the train and test
accuracies for different minibatch sizes.

Tail behavior throughout iterations: So far, we have
focused on the last iterations of SGD, where α is in a sta-
tionary regime. In our last set of experiments, we shift our
focus on the first iterations and report an interesting behav-
ior that we observed in almost all our experiments. As a
representative, in Figure 7, we show the temporal evolution
of SGD for the FCN with 9 layers and 512 neurons/layer.

The results clearly show that there are two distinct phases
of SGD (in this configuration before and after iteration
1000). In the first phase, the loss decreases very slowly,
the accuracy slightly increases, and more interestingly α
rapidly decreases. When α reaches its lowest level, the pro-
cess possesses a jump, which causes a sudden decrease in
the accuracy. After this point the process recovers again

3We observed a similar behavior in under-parametrized FCN;
however, did not plot those results to avoid clutter.
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Figure 7. The iteration-wise behavior of of α for the FCN.

and we see a stationary behavior in α and an increasing
behavior in the accuracy.

The fact that the process has a jump when α is at its small-
est value provides a strong support to our assumptions and
the metastability theory that we discussed in the previous
section. Furthermore, these results further strengthen the
view that SGD crosses barriers at the very initial phase. On
the other hand, our current analysis is not able to determine
whether the process jumps in a different basin or a ‘better’
part of the same basin and we leave it as a future work.

5. Conclusion and Open Problems
We investigated the tail behavior of the gradient noise in
deep neural networks and empirically showed that the gra-
dient noise is highly non-Gaussian. This outcome enabled
us to analyze SGD as an SDE driven by a Lévy motion and
establish a bridge between SGD and existing theoretical re-
sults, which provides more illumination on the behavior of
SGD, especially in terms of choosing wide minima.

This study also brings up interesting open questions and
future directions: (i) While the current metastability the-
ory applies for the continuous-time processes, the behavior
of the discretized process and its dependence on the algo-
rithm parameters (e.g., the step-size, minibatch size) are
not clear and yet to be investigated. (ii) We observe that,
especially during the first iterations, the tail-index depends
on the current state wk, which suggests analyzing SGD as
a stable-like process (Bass, 1988) where the tail-index can
depend on time. However, the metastability behavior of
these processes are not clear at the moment and its theory
is still in an early phase (Kuhwald & Pavlyukevich, 2016).
(iii) Furthermore, an extension of the current metastability
theory that includes minima with zero modes is also miss-
ing and appears to be challenging yet crucial direction of
future research.
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