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ABSTRACT

In order to alleviate the notorious mode collapse phenomenon in generative adver-
sarial networks (GANs), we propose a novel training method of GANs in which
certain fake samples can be reconsidered as real ones during the training pro-
cess. This strategy can reduce the gradient value that generator receives in the
region where gradient exploding happens. We show that the theoretical equilib-
rium between the generators and discriminations actually can be seldom realized
in practice. And this results in an unbalanced generated distribution that deviates
from the target one, when fake datepoints overfit to real ones, which explains the
non-stability of GANs. We also prove that, by penalizing the difference between
discriminator outputs and considering certain fake datapoints as real for adjacent
real and fake sample pairs, gradient exploding can be alleviated. Accordingly, a
modified GAN training method is proposed with a more stable training process
and a better generalization. Experiments on different datasets verify our theoreti-
cal analysis.

1 INTRODUCTION

In the past few years, Generative Adversarial Networks (GANs) Goodfellow et al. (2014) have been
one of the most popular topics in generative models and achieved great success in generating diverse
and high-quality images recently (Brock et al. (2019);Karras et al. (2019);Donahue & Simonyan
(2019)). GANs are powerful tools for learning generative models, which can be expressed as a
zero-sum game between two neural networks. The generator network produces samples from the
arbitrary given distribution, while the adversarial discriminator tries to distinguish between real data
and generated data. Meanwhile, the generator network tries to fool the discriminator network by
producing plausible samples which are close to real samples. When a final theoretical equilibrium is
achieved, discriminator can never distinguish between real and fake data. However, we show that a
theoretical equilibrium often can not be achieved with discrete finite samples in datasets during the
training process in practice.

Although GANs have achieved remarkable progress, numerous researchers have tried to improve the
performance of GANs from various aspects (Arjovsky et al. (2017);Nowozin et al. (2016);Gulrajani
et al. (2017); Miyato et al. (2018)) because of the inherent problem in GAN training, such as unsta-
bility and mode collapse. Arora et al. (2017) showed that a theoretical generalization guarantee does
not be provided with the original GAN objective and analyzed the generalization capacity of neural
network distance. The author argued that for a low capacity discriminator, it can not provide gener-
ator enough information to fit the target distribution owing to lack of ability to detect mode collapse.
Thanh-Tung et al. (2019) argued that poor generation capacity in GANs comes from discriminators
trained on discrete finite datasets resulting in overfitting to real data samples and gradient exploding
when generated datapoints approach real ones. As a result, Thanh-Tung et al. (2019) proposed a
zero-centered gradient penalty on linear interpolations between real and fake samples (GAN-0GP-
interpolation) to improve generalization capability and prevent mode collapse resulted from gradient
exploding. Recent work Wu et al. (2019) further studied generalization from a new perspective of
privacy protection.

In this paper, we focus on mode collapse resulted from gradient exploding studied in Thanh-Tung
et al. (2019) and achieve a better generalization with a much more stable training process. Our
contributions are as follows:
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Table 1: NOTATIONS

Symbol Meaning

pr the target dsitribution
pg the model distribution
dx the dimensionality of a data sample
D discriminator with sigmoid function in the last layer
D0 discriminator with sigmoid function in the last layer removed
Dr = {x1, · · · ,xn} the set of n real samples
Dg = {y1, · · · ,ym} the set of m generated samples
Df = {f1, · · · ,fm} the candidate set of M1 generated samples to be selected as real
DFAR ⊂ {f1, · · · ,fm} the set of M0 generated samples considered as real

1. We show that a theoretical equilibrium, when optimal discriminator outputs a constant for
both real and generated data, is unachievable for an empirical discriminator during the
training process. Due to this fact, it is possible that gradient exploding happens when
fake datapoints approach real ones, resulting in an unbalanced generated distribution that
deviates from the target one.

2. We show that when generated datapoints are very close to real ones in distance, penalizing
the difference between discriminator outputs and considering fake as real can alleviate
gradient exploding to prevent overfitting to certain real datapoints.

3. We show that when more fake datapoints are moved towards a single real datapoint, gra-
dients of the generator on fake datapoints very close to the real one can not be reduced,
which partly explains the reason of a more serious overfitting phenomenon and an increas-
ingly unbalanced generated distribution.

4. Based on the zero-centered gradient penalty on data samples (GAN-0GP-sample) proposed
in Mescheder et al. (2018), we propose a novel GAN training method by considering some
fake samples as real ones according to the discriminator outputs in a training batch to
effectively prevent mode collapse. Experiments on synthetic and real world datasets verify
that our method can stabilize the training process and achieve a more faithful generated
distribution.

In the sequel, we use the terminologies of generated samples (datapoints) and fake samples (data-
points) indiscriminately. Tab. 1 lists some key notations used in the rest of the paper.

2 RELATED WORKS

Unstability. GANs have been considered difficult to train and often play an unstable role in training
process Salimans et al. (2016). Various methods have been proposed to improve the stability of
training. A lot of works stabilized training with well-designed structures (Radford et al. (2015);Kar-
ras et al. (2018); Zhang et al. (2019);Chen et al. (2019)) and utilizing better objectives (Nowozin
et al. (2016);Zhao et al. (2016);Arjovsky et al. (2017);Mao et al. (2017)). Gradient penalty to en-
force Lipschitz continuity is also a popular direction to improve the stability including Gulrajani
et al. (2017),Petzka et al. (2018),Roth et al. (2017),Qi (2017). From the theoretical aspect, Nagara-
jan & Kolter (2017) showed that GAN optimization based on gradient descent is locally stable and
Mescheder et al. (2018) proved local convergence for simplified zero-centered gradient penalties
under suitable assumptions. For a better convergence, a two time-scale update rule (TTUR) (Heusel
et al. (2017)) and exponential moving averaging (EMA) (Yazıcı et al. (2019)) have also been studied.

Mode collapse. Mode collapse is another persistent essential problem for the training of GANs,
which means lack of diversity in the generated samples. The generator may sometimes fool the
discriminator by producing a very small set of high-probability samples from the data distribution.
Recent work (Arora et al. (2017);Arora et al. (2018)) studied the generalization capacity of GANs
and showed that the model distributions learned by GANs do miss a significant number of modes.

2



Under review as a conference paper at ICLR 2020

A large number of ideas have been proposed to prevent mode collapse. Multiple generators are
applied in Arora et al. (2017),Ghosh et al. (2018),Hoang et al. (2018) to achieve a more faithful
distribution. Mixed samples are considered as the inputs of discriminator in Lin et al. (2018),Lucas
et al. (2018) to convey information on diversity. Recent work He et al. (2019) studied mode collapse
from probabilistic treatment and Yamaguchi & Koyama (2019) from entropy of distribution.

3 BACKGROUND

In the original GAN Goodfellow et al. (2014), the discriminator D maximizes the following objec-
tive:

L = Ex∼pr [log(D(x))] + Ey∼pg [log(1−D(y))]. (1)

The logistic sigmoid function σ(x) = 1
1+e−x is usually used in practice, leading to

L = Ex∼pr [log(σ(D0(x)))] + Ey∼pg [log(1− σ(D0(y)))], (2)

and to prevent gradient collapse, the generator G maximizes

LG = Ey∼pg [log(σ(D0(y)))], (3)

where D0 is usually represented by a neural network. Goodfellow et al. (2014) showed that the
optimal discriminator D in Eqn.1 is D∗(v) = pr(v)

pr(v)+pg(v)
for any v ∈ supp(pr) ∪ supp(pg). As

the training progresses, pg will be pushed closer to pr. If G and D are given enough capacity, a global
equilibrium is reached when pr = pg , in which case the best strategy for D on supp(pr)∪ supp(pg)
is just to output 1

2 and the optimal value for Eqn.1 is 2 log(12 ).

With finite training examples in training dataset Dr in practice, an empirical version is applied
to approximate Eqn.1, using 1

n

∑n
i=1 log(D(xi)) to estimate Ex∼pr [log(D(x))] and 1

m

∑m
i=1[1 −

log(D(yi))] to estimate Ey∼pg [log(1−D(y))], where xi is from the set Dr of n real samples and
yi is from the set Dg of m generated samples, respectively.

Mode collapse in the generator is attributed to gradient exploding in discriminator, according to
Thanh-Tung et al. (2019). When a fake datapoint y0 is pushed to a real datapoint x0 and if |D(x0)−
D(y0)| ≥ ε, is satisfied, the absolute value of directional derivative of D in the direction µ =
x0 − y0 will approach infinity leading to gradient exploding:

|(∇µD)x0 | = lim
y0

µ→x0

|D(x0)−D(y0)|
||x0 − y0||

≥ lim
y0

µ→x0

ε

||x0 − y0||
=∞. (4)

Since the gradient ∇y0D(y0) at y0 outweights gradients towards other modes in a mini-batch,
gradient exploding at datapoint y0 will move multiple fake datapoints towards x0 resulting in mode
collapse.

4 OPTIMAL DISCRIMINATOR IN EMPIRICAL VERSION

4.1 OPTIMAL DISCRIMINATOR EMPIRICALLY DOES NOT HAVE A THEORETICAL
EQUILIBRIUM

Theoretically discriminator outputs a constant 1
2 when a global equilibrium is reached. However in

practice, discriminator can often easily distinguish between real samples and fake samples (Good-
fellow et al. (2014);Arjovsky et al. (2017)), making a theoretical equilibrium unachievable. Because
the distribution pr of real data is unknown for discriminator, discriminator will always consider dat-
apoints in the set Dr of real samples as real while Dg of generated samples as fake. Even when
generated distribution pg is equivalent to the target distribution pr, Dr and Dg is disjoint with prob-
ability 1 when they are sampled from two continuous distributions respectively (proposition 1 in
Thanh-Tung et al. (2019)). In this case, actually pg is pushed towards samples in Dr instead of the
target distribution. However, we show next because of the fact of an unachievable theoretical equi-
librium for empirical discriminator during the training process, an unbalanced distribution would be
generated that deviates from the target distribution.
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Figure 1: Results on finite samples from a Gaussian distribution of GANs trained with different gra-
dient penalties and our method. (blue datapoints represent real samples and red datapoints represent
generated samples) (a).(e) GAN with no GP, iter. 100,000 and 200,000. (b).(f) GAN-0Gp-sample,
iter. 100,000 and 200,000. (c).(g) GAN-0Gp-interpolation, iter. 100,000 and 200,000. (d).(h) GAN-
0Gp-sample with our method, iter. 100,000 and 200,000.

Proposition 1. For empirical discriminator in original GAN, unless pg is a discrete uniform distri-
bution on Dr, the optimal discriminator D output on Dr and Dg is not a constant 1

2 , since there
exists a more optimal discriminator which can be constructed as a MLP with O(2dx) parameters.

See Appendix A for the detailed proof. If all the samples inDr can be remembered by discriminator
and generator, and only if generated samples can cover Dr uniformly, which means Dg = Dr,
a theoretical equilibrium in discriminator can be achieved. However, before generator covers all
the samples in Dr uniformly during the training process, the fact of an unachievable theoretical
equilibrium makes it possible that there exists a real datapoint x0 with a higher discriminator output
than that of a generated datapoint y0. When y0 approaches x0 very closely, gradient exploding
and overfitting to a single datapoint happen, resulting an unbalanced distribution and visible mode
collapse. See the generated results on a Gaussian dataset of original GAN in Fig. 1a and 1e. The
generated distribution neither covers the target Gaussian distribution nor fits all the real samples in
Dr, making an unbalanced distribution visible. Furthermore, in practice discriminator and generator
are represented by a neural network with finite capacity and dataset Dr is relatively huge, generator
can never memorize every discrete sample resulting in a theoretical equilibrium unachievable. In
the following subsections, we are interested in the way of stabilizing the output of discriminator to
alleviate gradient exploding to achieve a more faithful generated distribution.

4.2 PENALIZING THE DIFFERENCE BETWEEN DISCRIMINATOR OUTPUTS ON CLOSE REAL
AND FAKE PAIRS

Let’s first consider a simplified scenario where a fake datapoint y0 is close to a real datapoint x0.
Generator updates y0 according to the gradient that the generator receives from the discriminator
with respect to the fake datapoint y0, which can be computed as:

∇y0LG(y0) =
∂ log(σ(D0(y0)))

∂D0(y0)
∇y0D0(y0) =

∇y0D0(y0)

1 + eD0(y0)
. (5)

When y0 approaches x0 very closely and a theoretical discriminator equilibrium is not achieved
here, namely D0(x0) −D0(y0) ≥ ε, the absolute value of directional derivative (∇µD0)y0 in the
direction µ = x0 − y0 at y0 tends to explode and will outweigh directional derivatives in other
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Table 2: Changes of different optimal values with variables discussed in Section 4. (↗ means
increasing and↘ means decreasing)

D0 output on real ε∗0 D0 output on fake ε∗ ε∗0−ε∗ gradient value ∇
k0 ↗ ↘ ↗ ↘ ↘
m0 ↗ ↘ ↘ ↗ ↗
p0 ↗ ↗ ↗ ↘ ↘

directions. Hence, the gradient ∇y0D0(y0) is equivalent to directional derivative (∇µD0)y0 here.
When y0 is very close to x0, the norm of the gradient generator receives from the discriminator
with respect to y0 can be computed as:

||∇y0LG(y0)|| ≈
|D0(x0)−D0(y0)|

(1 + eD0(y0))||x0 − y0||
. (6)

If y0 is in the neighborhood of x0, i.e., y0 ∈ N δ(x0) = {y0 : d(x0,y0) ≤ δ, δ > 0}, where δ
is a small positive value, we call {x0,y0} a close real and fake pair. We are interested in reducing
the approximated value of the gradient for a fixed pair {x0,y0} to prevent multiple fake datapoints
overfitting to a single real one. Note that the output of D0 for real datapoint x0 has a larger value
than that of fake datapoint y0. So for a fixed pair {x0,y0}, when D0(y0) increases and D0(x0)−
D0(y0) decreases, the target value decreases. And, when D0(y0) decreases and D0(x0)−D0(y0)
increases, the target value increases, according to Eqn. 6.

Now we consider a more general scenario where for a real datapoint x0, in a set of n real sam-
ples, there are m0 generated datapoints {y1,y2, · · · ,ym0} very close to x0 in the set of m
generated samples. We are specially interested in the optimal discriminator output at x0 and
{y1,y2, · · · ,ym0}. For simplicity, we make the assumption that discriminator outputs at these
interested points are not affected by other datapoints in Dr and Dg . We also assume discriminator
has enough capacity to achieve optimum in this local region.

However, without any constraint, discriminator will consistently enlarge the gap between outputs
for real datapoints and that for generated ones. Thus, an extra constraint is needed to alleviate the
difference between discriminator outputs on real and fake datapoints. It comes naturally to penalize
the L2 norm of D0(x0) − D0(yi). Denoting the discriminator output for x0, D0(x0) as ξ0 and
D0(yi) as ξi, i = 1, · · · ,m0, we have the following empirical discriminator objective:

L =
1

n
(log σ(ξ0) +

n∑
i=2

log σ(D0(xi)))

+
1

m
(

m0∑
i=1

log(1− σ(ξi)) +
m∑

i=m0+1

log(1− σ(D0(yi))))

− k0
m0

m0∑
i=1

(ξ0 − ξi)2

= C1 +
1

n
f(ξ0, ξ0, · · · , ξm0), (7)

where the interested term f(ξ0, ξ1, · · · , ξm0) is

f(ξ0, ξ1, · · · , ξm0
) = log σ(ξ0) +

n

m

m0∑
i=1

log(1− σ(ξi))−
nk0
m0

m0∑
i=1

(ξ0 − ξi)2. (8)

Proposition 2. Assume {ξ∗0 , · · · , ξ∗m0
} is an optimizer that achieves the maximum value of

f(ξ0, ξ1, · · · , ξm0
). Then with k0 increasing, ξ∗0 decreases, ξ∗i increases and ξ∗0 − ξ∗i decreases,

and, with m0 increasing, ξ∗0 decreases, ξ∗i decreases and ξ∗0 − ξ∗i increases, where i = 1, · · · ,m0.

Proof. See Appendix B.

Based on Proposition 2, penalizing the difference between discriminator outputs on close real and
fake pairs {x0,yi} can reduce the norm of∇yiLG(yi) from Eqn.6, making it possible to move fake

5



Under review as a conference paper at ICLR 2020

datapoints to other real datapoints instead of only being trapped at x0. However in practice, it is hard
to find the close real and fake pairs to penalize the corresponding difference between discriminator
outputs. If we directly penalize the L2 norm of D0(xi) − D0(yi) when {xi,yi} are not a pair of
close datapoints, ||∇yiLG(yi)|| for yi may even get larger. Consider D0(yi) has a higher value
than D0(xi), which could happen when xi has more corresponding close fake datapoints than the
real datapoint xyi corresponding to yi from Proposition 2. Direct penalization will make D0(yi)
lower, then D0(xyi) − D0(yi) gets higher and ||∇yiLG(yi)|| higher. Thus in practice we could
enforce a zero-centered gradient penalty of the form ||(∇D0)v||2 to stabilize discriminator output,
where v can be real datapoints or fake datapoints. Although Thanh-Tung et al. (2019) thought that
discriminator can have zero gradient on the training dataset and may still have gradient exploding
outside the training dataset, we believe a zero-centered gradient penalty can make it harder for
discriminator to distinguish between real and fake datapoints and fill the gap between discriminator
outputs on close real and fake pairs to prevent overfitting to some extent. Fig. 1b and 1f alleviate
overfitting phenomenon compared with no gradient penalty in Fig. 1a and 1e.

Thanh-Tung et al. (2019) proposed another zero-centered gradient penalty of the form ||(∇D0)v||2,
where v is a linear interpolation between real and fake datapoints, to prevent gradient exploding.
However, we consider it’s not a very efficient method to fill the gap between discriminator outputs
on close real and fake pairs. To begin with, the results of direct linear interpolation between real
and fake datapoints may not lie in supp(pr) ∪ supp(pg). Although the author also considered the
interpolation on latent codes, it needs an extra encoder which increases operational complexity.
Furthermore, for arbitrary pair of real and fake datapoints, the probability that linear interpolation
between them lie where gradient exploding happens is close to 0, because large gradient happens
when a fake datapoint approaches closely a real datapoint, resulting in the gap between discriminator
outputs on close real and fake pairs hard to fill.

Based on Proposition 2, we also find that when more fake datapoints are moved to the corresponding
real datapoint, ||∇yiLG(yi)|| for a fake datpoint yi only to increase from Eqn.6. It means with the
training process going on, more fake datapoints tend to be attracted to one single real datapoint and
it gets easier to attract much more fake datapoints to the real one. It partly explains the unstability
of GAN training process that especially during the later stage of training, similar generated samples
are seen. Compared with Fig. 1a, 1b and 1c at iter.100,000, Fig. 1e, 1f and 1g at iter.200,000 have a
worse generalization and much more similar samples are generated with the training process going
on.

4.3 CONSIDERING FAKE AS REAL ON CLOSE REAL AND FAKE PAIRS

In this subsection, we aim to make ||∇yiLG(yi)||, i = 1, · · · ,m0 smaller for optimal empirical
discriminator by considering some fake as real on close real and fake pairs based on the above
discussions. Suppose for each fake datapoint, it’s considered as real datapoint with probability p0
when training real datapoints, resulting in the following empirical discriminator objective:

L =
1

n
(log σ(ξ0) + E[A

m0∑
i=1

log σ(ξi)] +

n∑
i=2

log σ(D0(xi)))

+
1

m
(

m0∑
i=1

log(1− σ(ξi)) +
m∑

i=m0+1

log(1− σ(D0(yi))))

− k0
m0

m0∑
i=1

(ξ0 − ξi)2

= C2 +
1

n
h(ξ0, ξ0, · · · , ξm0

), (9)

where A is a binary random variable taking values in {0, 1} with Pr(A = 1) = p0 and the interested
term h(ξ0, ξ1, · · · , ξm0) is

h(ξ0, ξ1, · · · , ξm0
) = log σ(ξ0)+p0

m0∑
i=1

log σ(ξi)+
n

m

m0∑
i=1

log(1−σ(ξi))−
nk0
m0

m0∑
i=1

(ξ0−ξi)2. (10)
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Proposition 3. Assume {ξ∗0 , · · · , ξ∗m0
} is an optimizer that achieves the maximum value of

h(ξ0, ξ1, · · · , ξm0
). Then with p0 increasing, ξ∗0 increases, ξ∗i increases and ξ∗0 − ξ∗i decreases,

where i = 1, · · · ,m0.

Proof. See Appendix C.

Note that only penalizing the difference between discriminator outputs on close real and fake pairs
in Subsection 4.2 is just a special case of considering fake as real here when p0 = 0. Based on
Proposition 3, considering fake datapoints as real with increasing probability p0 for real datapoints
training part can reduce the norm of ∇yiLG(yi) from Eqn.6. It means when we consider more
fake as real where large gradient happens for real training part, the attraction to the real datapoint
for fake ones can be alleviate to make it easier to be moved to other real datapoints and prevent
the overfitting to one single real datapoint. Note that for a fixed p0, when the number m0 of fake
datapoints very close to the real one increases, more fake datapoints will be considered as real to
alleviate the influences of increasing m0 discussed in Subsection 4.2.

5 METHOD

To overcome the problem of overfitting to some single datapoints and achieve a better generaliza-
tion, we propose that fake samples generated by generator in real time can be trained as real samples
in discriminator. For original N real samples in a training batch in training process, we substitute
them with N0 real samples in Dr and M0 generated samples in Dg , where N = N0 +M0. Our
approach is mainly aimed at preventing large gradient in the region where many generated samples
overfit one single real sample. To find generated samples in these regions, we choose the generated
ones with low discriminator output, owing to the reason that discriminator tends to have a lower
output for the region with more generated datapoints approaching one real datapoint from Proposi-
tion 2. Therefore, we choose needed M0 generated samples denoted as set DFAR as real samples
from a larger generated set Df containing M1 generated samples {f1,f2, · · · ,fM1} according to
corresponding discriminator output:

DFAR = {fi}, i ∈ index of top M0 in{−D0(f1),−D0(f2), · · · ,−D0(fM1
)}. (11)

We also add a zero-centered gradient penalty on real datapoints Mescheder et al. (2018) based on
the discussions in Subsection 4.2, resulting in the following empirical discriminator objective in a
batch containing N real samples and M fake samples:

LFAR =
1

N
[

N0∑
i=1

log(σ(D0(xi))) +

M0∑
i=1

log(σ(D0(fi)))]

+
1

M

M∑
i=1

log(1− σ(D0(yi)) +
λ

N

N∑
i=1

||(∇D0)ci ||2, (12)

where xi ∈ Dr,fi ∈ DFAR, yi ∈ Dg and ci ∈ Dr ∪DFAR. In practice, we usually let N = M .
Because some fake datapoints are trained as real ones, the zero-centered gradient penalty are actually
enforced on the mixture of real and fake datapoints.

When we sample more generated datapoints for Df to decide the needed M0 datapoints as real, the
probability of finding the overfitting region with large gradient is higher. When more fake datapoints
in DFAR that are close to corresponding real ones are considered as real for training, it is equivalent
to increase the value of p0 in Subsection 4.3. For a largerDFAR, the number of real samplesN0 will
decrease for a fixed batchsize N and the speed to cover real ones may be slowed at the beginning of
training owning to the reason that some fake datapoints are considered as real and discriminator will
be not so confident to give fake ones a large gradient to move them to real ones. Our method can
stabilize discriminator output and prevent mode collapse caused by gradient exploding efficiently
based on our theoretical analysis. A more faithful generated distribution will be achieved in practice.
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6 EXPERIMENTS

6.1 SYNTHETIC DATA

To test the effectiveness of our method in preventing an unbalanced distribution resulted from over-
fitting to only some real datapoints, we designed a dataset with finite real samples coming from
a Gaussian distributions and trained MLP based GANs with different gradient penalties and our
method on that dataset. For gradient penalties in all GANs, the weight λ is set 10. Training batch
is set 64 and one quarter of the real training batch are generated samples picked from 256 generated
samples according to discriminator output, namely M0 = 16 and M1 = 256 in Eqn. 11. Learning
rate is set 0.003 for both G and D. The result is shown in Fig.1. It can be observed that original
GAN, GAN-0GP-sample and GAN-0GP-interpolation all have serious overfitting problem leading
to a biased generated distribution with training process going on, while our method can generate
much better samples with good generalization.

We also test our method on a mixture of 8 Gaussians dataset where random samples in different
modes are far from each other. The evolution of our method is depicted in Fig.2. We observe that
although our method only covers 3 modes at the beginning, it can cover other modes gradually
because our method alleviates the gradient exploding on close real and fake datapoints. It is possible
that fake datapoints are moved to other Gaussian modes when the attraction to other modes is larger
than to the overfitted datapoints. Hence, our method has the ability to find the uncovered modes to
achieve a faithful distribution even when samples in high dimensional space are far from each other.
More synthetic experiments can be found in Appendix D.
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Figure 2: Evolution of our method on a mixture of 8 Gaussians dataset. (a) iter. 0. (b) iter. 100,000.
(c) iter. 335,000. (d) iter. 500,000.

(a) (b)

Figure 3: Inception score and FID on CIFAR-10 of GAN-0GP-sample and GAN-0GP-sample with
our method

6.2 REAL WORLD DATA

To test our method on real world data, we compare our method with GAN-0GP-sample on CIFAR-10
(Antonio et al. (2008)), CIFAR-100 (Antonio et al. (2008)) and a more challenging dataset ImageNet
(Russakovsky et al. (2015)) with ResNet-architectures similar with that in Mescheder et al. (2018).
Inception score (Salimans et al. (2016)) and FID (Heusel et al. (2017)) are used as quantitative

8
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(a) (b)

Figure 4: Inception score and FID on CIFAR-100 of GAN-0GP-sample and GAN-0GP-sample with
our method

(a) (b)

Figure 5: Losses of discriminator (not including regularization term) and generator on CIFAR-10
of GAN-0GP-sample and GAN-0GP-sample with our method

measures. For Inception score, we follow the guideline from Salimans et al. (2016). The FID
score is evaluated on 10k generated images and statistics of data are calculated at the same scale of
generation. Better generation can be achieved with higher inception score and lower FID value. The
maximum number of iterations for CIFAR experiment is 500k, while for ImageNet is 600k because
of training difficulty with much more modes.We use the code from Mescheder et al. (2018).

The weight λ for gradient penalty is also set 10. Training batch is set 64 and for a better gradient
alleviation on close real and fake datapoints, half of the real training batch are generated samples
with M0 = 32 and M1 = 256 in Eqn. 11. For CIFAR experiments, we use the RMSProp optimizer
with α = 0.99 and a learning rate of 10−4. For ImageNet experiments, we use the Adam optimizer
with α = 0, β = 0.9 and TTUR with learning rates of 10−4 and 3 × 10−4 for the generator
and discriminator respectively. We use an exponential moving average with decay 0.999 over the
weights to produce the final model.

6.2.1 CIFAR-10 AND CIFAR-100

The results on Inception score and FID are shown in Fig. 3 and 4. Our method outperforms GAN-
0GP-sample by a large margin. As predicted in Section 5, the speed of our method to cover real
ones could be slowed at the beginning of training with some fake considered as real. However, our
method can cover more modes and have a much better balanced generation than the baseline.

The losses of discriminator and generator during the process of CIFAR-10 training are shown in
Fig.5. It can be observed that our method has a much more stable training process. Owing to
the overfitting to some single datapoints and an unbalanced generated distribution missing modes,
the losses of discriminator and generator for GAN-0GP-sample gradually deviate from the optimal
theoretical value, namely 2 log 2 ≈ 1.386 for discriminator and log 2 ≈ 0.693 for generator respec-
tively. However, our method has a much more stable output of discriminator to achieve the losses
for discriminator and generator very close to theoretical case. It proves practically that our method
can stabilize discriminator output on close real and fake datapoints to prevent more datapoints from

9
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(a) (b)

Figure 6: Inception score and FID on ImageNet of GAN-0GP-sample and GAN-0GP-sample with
our method

trapped in a local region and has a better generalization. The losses of discriminator and generator
on CIFAR-100 and image samples can be found in Appendix D.

6.2.2 IMAGENET

For the challenging ImageNet task, we train GANs to learn a generative model of all 1000 classes
at resolution 64 × 64 with the limitation of our hardware. However, our models are completely
unsupervised learning models with no labels used instead of another 256 dimensions being used in
latent code z as labels in Mescheder et al. (2018).

The results in Fig. 6 show that our methods still outperforms GAN-0GP-sample on ImageNet. Our
method can produce samples of state of the art quality without using any category labels and stabilize
the training process. Random selected samples and losses of discriminator and generator during the
training process can be found in Appendix D.

7 CONCLUSION

In this paper, we explain the reason that an unbalanced distribution is often generated in GANs
training. We show that a theoretical equilibrium for empirical discriminator is unachievable during
the training process. We analyze the affection on the gradient that generator receives from discrim-
inator with respect to restriction on difference between discriminator outputs on close real and fake
pairs and trick of considering fake as real. Based on the theoretical analysis, we propose a novel
GAN training method by considering some fake samples as real ones according to the discriminator
outputs in a training batch. Experiments on diverse datasets verify that our method can stabilize the
training process and improve the performance by a large margin.
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A PROOF FOR PROPOSITION 1

For empirical discriminator, it maximizes the following objective:

L = Ex∈Dr [log(D(x))] + Ey∈Dg [log(1−D(y))]. (13)

When pg is a discrete uniform distribution on Dr, and generated samples in Dg are the same with
real samples in Dr. It is obvious that the discriminator outputs 1

2 to achieve the optimal value when
it cannot distinguish fake samples from real ones.

For continues distribution pg , Thanh-Tung et al. (2019) has proved that an ε-optimal discriminator
can be constructed as a one hidden layer MLP with O(dx(m + n)) parameters, namely D(x) ≥
1
2 +

ε
2 ,∀x ∈ Dr and D(y) ≤ 1

2 −
ε
2 ,∀y ∈ Dg , where Dr and Dg are disjoint with probability 1. In

this case, discriminator objective has a larger value than the theoretical optimal version:

L ≥ Ex∈Dr [log(
1

2
+
ε

2
)] + Ey∈Dg [log(

1

2
+
ε

2
)]

= 2 log(
1

2
+
ε

2
) > 2 log

1

2
. (14)

So the optimal discriminator output on Dr and Dg is not a constant 1
2 in this case.
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Even discriminator has much less parameters than O(dx(m + n)), there exists a real datapoint
x0 and a generated datapoint y0 satisfying D(x0) ≥ 1

2 + ε
2 and D(y0) ≤ 1

2 −
ε
2 . Whether pg

is a discrete distribution only cover part samples in Dr or a continues distribution, there exists a
generated datapoint y0 satisfying y0 6∈ Dr. Assume that samples are normalized:

||xi|| = ||yi|| = 1,∀x ∈ Dr,y ∈ Dg. (15)

Let W1 ∈ R2×dx , W2 ∈ R2×2 and W3 ∈ R2 be the weight matrices, b ∈ R2 offset vector and
k1,k2 a constant, We can construct needed discriminator as a MLP with two hidden layer containing
O(2dx) parameters. We set weight matrices

W1 =

[
xT0
yT0

]
,W2 =

[
1 −1
−1 1

]
,W3 =

[
1
2 + ε

2
1
2 −

ε
2

]
. (16)

For any input v ∈ Dr ∪Dg , the discriminator output is computed as:

D(v) =W T
3 σ(k2W2σ(k1(W1v − b))), (17)

where σ(x) = 1
1+e−x is the sigmoid function. Let α =W1v − b, we have

α1 =

{
1− b1, if v = x0

l − b1, if v 6= x0
, α2 =

{
1− b2, if v = y0

l − b2, if v 6= y0
, (18)

where l < 1. Let β = σ(k1α), we have

β1 =

{
1, if v = x0

0, if v 6= x0
, β2 =

{
1, if v = y0

0, if v 6= y0
(19)

as k1 →∞ and b→ 1−. Let γ = σ(k2W2β), we have

γ1 =


1, if v = x0

0, if v = y0
1

2
, if v 6= x0,y0

, γ2 =


0, if v = x0

1, if v = y0
1

2
, if v 6= x0,y0

(20)

as k2 →∞. Hence, for any input v ∈ Dr ∪Dg , discriminator outputs

D(v) =W T
3 γ =



1

2
+
ε

2
,if v = x0

1

2
− ε

2
,if v = y0

1

2
,else

. (21)

In this case, discriminator objective also has a more optimal value than the theoretical optimal ver-
sion:

L =
1

n
((n− 1) log

1

2
+ log(

1

2
+
ε

2
)) +

1

m
((m− 1) log

1

2
+ log(

1

2
+
ε

2
))

> 2 log
1

2
. (22)

So the optimal discriminator output on Dr and Dg is also not a constant 1
2 in this case.

B PROOF FOR PROPOSITION 2

We rewrite f(ξ0, ξ1, · · · , ξm0
) here

f(ξ0, ξ1, · · · , ξm0
) = log σ(ξ0) +

n

m

m0∑
i=1

log(1− σ(ξi))−
nk0
m0

m0∑
i=1

(ξ0 − ξi)2. (23)
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To achieve the optimal value, let f ′(ξi) = 0, i = 0, · · · ,m0 and we have

f ′(ξ0) = 1− σ(ξ0)−
2nk0
m0

m0∑
i=1

(ξ0 − ξi) = 0, (24)

f ′(ξi) = − n
m
σ(ξi) +

2nk0
m0

(ξ0 − ξi) = 0, i = 1, · · · ,m0. (25)

It is obvious that ξ1 = ξ2 = · · · = ξm0
= ξ. Hence we have

1− σ(ξ0)− 2nk0(ξ0 − ξ) = 0, (26)

− n
m
σ(ξ) +

2nk0
m0

(ξ0 − ξ) = 0. (27)

We can solve
ξ = − ln(

nm0

m
(1 + eξ0)− 1). (28)

Substitute Eqn. 28 into Eqn. 26 and we get

f ′(ξ0) =
1

1 + eξ0
− 2nk0(ξ0 + ln(

nm0

m
(1 + eξ0)− 1)) = 0. (29)

We can also have from Eqn. 28 and Eqn. 26 respectively

ξ0 − ξ = ξ0 + ln(
nm0

m
(1 + eξ0)− 1), (30)

=
1

2nk0(1 + eξ0)
. (31)

Note that there must exist an optimal ξ0 satisfying f ′(ξ0) = 0 in Eqn. 29, so ξ0 + ln(nm0

m (1 +

eξ0)− 1) > 0 and f ′(ξ0) in Eqn. 29 decreases with k0 increasing. Also considering that f ′(ξ0) is a
monotonically decreasing function on ξ0, ξ∗0 decreases with k0 increasing. From Eqn. 28 and Eqn.
30, we know ξ∗ increases and ξ∗0 − ξ∗ decreases with k0 increasing. Similarly, note that f ′(ξ0) in
Eqn. 29 decreases with m0 increasing and f ′(ξ0) is a monotonically decreasing function on ξ0, we
have that ξ∗0 decreases with m0 increasing. From Eqn. 31, we further know that ξ∗ decreases and
ξ∗0 − ξ∗ increases with m0 increasing.

C PROOF FOR PROPOSITION 3

We rewrite h(ξ0, ξ1, · · · , ξm0
) here

h(ξ0, ξ1, · · · , ξm0
) = log σ(ξ0)+p0

m0∑
i=1

log σ(ξi)+
n

m

m0∑
i=1

log(1−σ(ξi))−
nk0
m0

m0∑
i=1

(ξ0−ξi)2. (32)

Let f ′(ξi) = 0, i = 0, · · · ,m0 and we have ξ1 = ξ2 = · · · = ξm0
= ξ,

1− σ(ξ0)− 2nk0(ξ0 − ξ) = 0, (33)

p0(1− σ(ξ0))−
n

m
σ(ξ) +

2nk0
m0

(ξ0 − ξ) = 0. (34)

We can solve

ξ = − ln
nm0

m (1 + eξ0)− 1

1 + p0(1 + eξ0)
. (35)

Substitute Eqn. 35 into Eqn. 33 and we get

p0 =
1

1 + eξ0
[e

2nk0ξ0− 1

1+eξ0 (
nm0

m
(1 + eξ0)− 1)2nk0 − 1] = g(ξ0). (36)

The derivative of g(ξ0) with respect to ξ0 is computed as

(1 + eξ0)2g′(ξ0) = [e
2nk0ξ0− 1

1+eξ0 (2nk0 +
eξ0

(1 + eξ0)2
)(
nm0

m
(1 + eξ0)− 1)2nk0

+e
2nk0ξ0− 1

1+eξ0 2nk0(
nm0

m
(1 + eξ0)− 1)2nk0−1

nm0

m
eξ0 ]

1

1 + eξ0

+[e
2nk0ξ0− 1

1+eξ0 (
nm0

m
(1 + eξ0)− 1)2nk0 − 1]

eξ0

(1 + eξ0)2
. (37)
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Because
nm0

m
(1 + eξ0)− 1 = e−ξ + (1 + eξ0)p0e

−ξ > 0 (38)

and
1

1 + eξ0
[e

2nk0ξ0− 1

1+eξ0 (
nm0

m
(1 + eξ0)− 1)2nk0 − 1] = p0 ≥ 0, (39)

g′(ξ0) > 0. Hence ξ∗0 increases with p0 increasing. From Eqn. 33, we also have

ξ0 − ξ =
1

2nk0(1 + eξ0)
. (40)

we further know that ξ∗ increases and ξ∗0 − ξ∗ decreases with p0 increasing.

D FURTHER RESULTS

(a) (b)

Figure 7: Losses of discriminator (not including regularization term) and generator on CIFAR-100
of GAN-0GP-sample and GAN-0GP-sample with our method

(a) (b)

Figure 8: Losses of discriminator (not including regularization term) and generator on ImageNet of
GAN-0GP-sample and GAN-0GP-sample with our method
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Figure 9: Generation of our method on a mixture of 25 Gaussians dataset and swissroll datatset.
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(a) image generation of GAN-0GP-sample (b) image generation of GAN-0GP-sample with our
method

Figure 10: Image generation of CIFAR-10.

(a) image generation of GAN-0GP-sample (b) image generation of GAN-0GP-sample with our
method

Figure 11: Image generation of CIFAR-100.
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(a) image generation of GAN-0GP-sample

(b) image generation of GAN-0GP-sample with our method

Figure 12: Image generation of ImageNet.
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E NETWORK ARCHITECTURES

For synthetic experiment, the network architectures are the same with that in Thanh-Tung et al.
(2019). While for real world data experiment, we use the similar architectures in Mescheder et al.
(2018). We use Pytorch (Paszke et al. (2017)) for development.

Table 3: Generator architecture in synthetic experiment
Layer output size filter

Fully connected 64 2→ 64
RELU 64 -

Fully connected 64 64→ 64
RELU 64 -

Fully connected 64 64→ 64
RELU 64 -

Fully connected 2 64→ 2

Table 4: Discriminator architecture in synthetic experiment
Layer output size filter

Fully connected 64 2→ 64
RELU 64 -

Fully connected 64 64→ 64
RELU 64 -

Fully connected 64 64→ 64
RELU 64 -

Fully connected 1 64→ 1

Table 5: Generator architecture in CIFAR experiment
Layer output size filter

Fully connected 512 · 4 · 4 128→ 512 · 4 · 4
Reshape 512× 4× 4 -

Resnet-Block 256× 4× 4 512→ 256→ 256
NN-Upsampling 256× 8× 8 -

Resnet-Block 128× 8× 8 256→ 128→ 128
NN-Upsampling 128× 16× 16 -

Resnet-Block 64× 16× 16 128→ 64→ 64
NN-Upsampling 64× 32× 32 -

Resnet-Block 64× 32× 32 64→ 64→ 64
Conv2D 3× 32× 32 64→ 3
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Table 6: Discriminator architecture in CIFAR experiment
Layer output size filter

Conv2D 64× 32× 32 3→ 64
Resnet-Block 128× 32× 32 64→ 64→ 128
Avh-Pool2D 128× 16× 16 -
Resnet-Block 256× 16× 16 128→ 128→ 256
Avh-Pool2D 256× 8× 8 -
Resnet-Block 512× 8× 8 256→ 256→ 512
Avh-Pool2D 512× 4× 4 -

Reshape 512 · 4 · 4 -
Fully Connected 1 512 · 4 · 4→ 1

Table 7: Generator architecture in ImageNet experiment
Layer output size filter

Fully connected 1024 · 4 · 4 256→ 1024 · 4 · 4
Reshape 1024× 4× 4 -

Resnet-Block 1024× 4× 4 1024→ 1024→ 1024
Resnet-Block 1024× 4× 4 1024→ 1024→ 1024

NN-Upsampling 1024× 8× 8 -
Resnet-Block 512× 8× 8 1024→ 512→ 512
Resnet-Block 512× 8× 8 512→ 512→ 512

NN-Upsampling 512× 16× 16 -
Resnet-Block 256× 16× 16 512→ 256→ 256
Resnet-Block 256× 16× 16 256→ 256→ 256

NN-Upsampling 256× 32× 32 -
Resnet-Block 128× 32× 32 256→ 128→ 128
Resnet-Block 128× 32× 32 128→ 128→ 128

NN-Upsampling 128× 64× 64 -
Resnet-Block 64× 64× 64 128→ 64→ 64
Resnet-Block 64× 64× 64 64→ 64→ 64

Conv2D 3× 64× 64 64→ 3

Table 8: Discriminator architecture in ImageNet experiment
Layer output size filter

Conv2D 64× 64× 64 3→ 64
Resnet-Block 64× 64× 64 64→ 64→ 64
Resnet-Block 128× 64× 64 64→ 64→ 128
Avh-Pool2D 128× 32× 32 -
Resnet-Block 128× 32× 32 128→ 128→ 128
Resnet-Block 256× 32× 32 128→ 128→ 256
Avh-Pool2D 256× 16× 16 -
Resnet-Block 256× 16× 16 256→ 256→ 256
Resnet-Block 512× 16× 16 256→ 256→ 512
Avh-Pool2D 512× 8× 8 -
Resnet-Block 512× 8× 8 512→ 512→ 512
Resnet-Block 1024× 8× 8 512→ 512→ 1024
Avh-Pool2D 1024× 4× 4 -
Resnet-Block 1024× 4× 4 1024→ 1024→ 1024
Resnet-Block 1024× 4× 4 1024→ 1024→ 1024

Fully Connected 1 1024 · 4 · 4→ 1
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