
Under review as a conference paper at ICLR 2019

ADVERSARIAL EXPLORATION STRATEGY FOR SELF-
SUPERVISED IMITATION LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

We present an adversarial exploration strategy, a simple yet effective imitation learn-
ing scheme that incentivizes exploration of an environment without any extrinsic
reward or human demonstration. Our framework consists of a deep reinforcement
learning (DRL) agent and an inverse dynamics model contesting with each other.
The former collects training samples for the latter, and its objective is to maximize
the error of the latter. The latter is trained with samples collected by the former,
and generates rewards for the former when it fails to predict the actual action taken
by the former. In such a competitive setting, the DRL agent learns to generate
samples that the inverse dynamics model fails to predict correctly, and the inverse
dynamics model learns to adapt to the challenging samples. We further propose a
reward structure that ensures the DRL agent collects only moderately hard samples
and not overly hard ones that prevent the inverse model from imitating effectively.
We evaluate the effectiveness of our method on several OpenAI gym robotic arm
and hand manipulation tasks against a number of baseline models. Experimental
results show that our method is comparable to that directly trained with expert
demonstrations, and superior to the other baselines even without any human priors.

1 INTRODUCTION

Over the past decade, imitation learning (IL) has been successfully applied to a wide range of
domains, including robot learning (Englert et al., 2013; Schulman et al., 2013), autonomous naviga-
tion (Choudhury et al., 2017; Ross et al., 2013), manipulation tasks (Nair et al., 2017; Prieur et al.,
2012), and self-driving cars (Codevilla et al., 2018). Traditionally, IL aims to train an imitator to
learn a control policy π only from expert demonstrations. The imitator is typically presented with
multiple demonstrations during the training phase, with an aim to distill them into π. To learn π
effectively and efficiently, a large set of high-quality demonstrations are necessary. This is especially
prevalent in current state-of-the-art IL algorithms, such as dataset aggregation (DAgger) (Ross et al.,
2011) and generative adversarial imitation learning (GAIL) (Ho & Ermon, 2016). Although these
approaches have been the dominant algorithms in IL, a major bottleneck for them is their reliance
on high-quality demonstrations, which often require extensive supervision from human experts.
In addition, a serious flaw in the learned policy π is its tendency to overfit to demonstration data,
preventing it from generalizing to new ones. To overcome the aforementioned challenges in IL, a
number of methods have been investigated to enhance the generalizability and data efficiency, or
reduce the degree of human supervision. Initial efforts in this direction were based on the idea of
meta learning (Duan et al., 2017; Finn et al., 2017; Yu et al., 2018), in which the imitator is trained
from a meta learner that is able to quickly learn a new task with only a few set of demonstrations.
However, such schemes still require training the meta-learner with tremendous amount of time and
demonstration data, leaving much room for improvement. Thus, a rapidly-growing body of literature
based on the concept of using forward/inverse dynamics models to learn π within an environment in a
self-supervised fashion (Agrawal et al., 2016; Nair et al., 2017; Pathak et al., 2018) has emerged in the
past few years. One key advantage of the concept is that it provides an autonomous way for preparing
training data, removing the need of human intervention. In this paper, we call it self-supervised IL.

Self-supervised IL allows an imitator to collect training data by itself instead of using predefined
extrinsic reward functions or expert supervision during training. It only needs demonstration during
inference, drastically decreasing the time and effort required from human experts. Although the core
principles of self-supervised IL are straightforward and have been exploited in many fields (Agrawal
et al., 2016; Nair et al., 2017; Pathak et al., 2017; 2018), recent research efforts have been dedicated

1

Under review as a conference paper at ICLR 2019

to addressing the challenges of multi-modality and multi-step planning. For example, the use of
forward consistency loss and forward regularizer have been extensively investigated to enhance the
task performance of the imitator (Agrawal et al., 2016; Pathak et al., 2018). This becomes especially
essential when the lengths of trajectories grow and demonstration samples are sparse, as multiple
paths may co-exist to lead the imitator from its initial observation to the goal observation. The issue
of multi-step planning has also drawn a lot of attention from researchers, and is usually tackled by
recurrent neural networks (RNNs) and step-by-step demonstrations (Nair et al., 2017; Pathak et al.,
2018). The above self-supervised IL approaches report promising results, however, most of them are
limited in applicability due to several drawbacks. First, traditional methods of data collection are
usually inefficient and time-consuming. Inefficient data collection results in poor exploration, giving
rise to a degradation in robustness to varying environmental conditions (e.g., noise in motor control)
and generalizability to difficult tasks. Second, human bias in data sampling range tailored to specific
interesting configurations is often employed (Agrawal et al., 2016; Nair et al., 2017). Although a
more general exploration strategy called curiosity-driven exploration was later proposed in Pathak
et al. (2017), it focuses only on exploration in states novel to the forward dynamics model, rather
than those directly influential to the inverse dynamics model. Furthermore, it does not discuss the
applicability to continuous control domains, and fails in high dimensional action spaces according
to our experiments in Section 4. Unlike the approaches discussed above, we do not propose to deal
with multi-modality or multi-step planning. Instead, we focus our attention on improving the overall
quality of the collected samples in the context of self-supervised IL. This motivates us to equip the
model with the necessary knowledge to explore the environment in an efficient and effective fashion.

In this paper, we propose a straightforward and efficient self-supervised IL scheme, called adversarial
exploration strategy, which motivates exploration of an environment in a self-supervised manner
(i.e., without any extrinsic reward or human demonstration). Inspired by Pinto et al. (2017); Shioya
et al. (2018); Sukhbaatar et al. (2018), we implement the proposed strategy by jointly training a deep
reinforcement learning (DRL) agent and an inverse dynamics model competing with each other. The
former explores the environment to collect training data for the latter, and receives rewards from the
latter if the data samples are considered difficult. The latter is trained with the training data collected
by the former, and only generates rewards when it fails to predict the true actions performed by the
former. In such an adversarial setting, the DRL agent is rewarded only for the failure of the inverse
dynamics model. Therefore, the DRL agent learns to sample hard examples to maximize the chances
to fail the inverse dynamics model. On the other hand, the inverse dynamics model learns to be
robust to the hard examples collected by the DRL agent by minimizing the probability of failures.
As a result, as the inverse dynamics model becomes stronger, the DRL agent is also incentivized to
search for harder examples to obtain rewards. Overly hard examples, however, may lead to biased
exploration and cause instability of the learning process. In order to stabilize the learning curve
of the inverse dynamics model, we further propose a reward structure such that the DRL agent is
encouraged to explore moderately hard examples for the inverse dynamics model, but refraining from
too difficult ones for the latter to learn. The self-regulating feedback structure between the DRL agent
and the inverse dynamics model enables them to automatically construct a curriculum for exploration.

We perform extensive experiments to validate adversarial exploration strategy on multiple OpenAI
gym (Brockman et al., 2016) robotic arm and hand manipulation task environments simulated by the
MuJoCo physics engine (Todorov et al., 2012), including FetchReach, FetchPush, FetchPickAndPlace,
FetchSlide, and HandReach. These environments are intentionally selected by us for evaluating the
performance of inverse dynamics model, as each of them allows only a very limited set of chained
actions to transition the robotic arms and hands to target observations. We examine the effectiveness
of our method by comparing it against a number of self-supervised IL schemes. The experimental
results show that our method is more effective and data-efficient than the other self-supervised IL
schemes for both low- and high-dimensional observation spaces, as well as in environments with
high-dimensional action spaces. We also demonstrate that in most of the cases the performance
of the inverse dynamics model trained by our method is comparable to that directly trained with
expert demonstrations. The above observations suggest that our method is superior to the other
self-supervised IL schemes even in the absence of human priors. We further evaluate our method on
environments with action space perturbations, and show that our method is able to achieve satisfactory
success rates. To justify each of our design decisions, we provide a comprehensive set of ablative
analysis and discuss their implications. The contributions of this work are summarized as follows:

• We introduce an adversarial exploration strategy for self-supervised IL. It consists of a DRL
agent and an inverse dynamics model developed for efficient exploration and data collection.

2

Under review as a conference paper at ICLR 2019

• We employ a competitive scheme for the DRL agent and the inverse dynamics model,
enabling them to automatically construct a curriculum for exploration of observation space.

• We introduce a reward structure for the proposed scheme to stabilize the training process.
• We demonstrate the proposed method and compare it with a number of baselines for multiple

robotic arm and hand manipulation tasks in both low- and high-dimensional state spaces.
• We validate that our method is generalizable to tasks with high-dimensional action spaces.

The remainder of this paper is organized as follows. Section 2 introduces background material.
Section 3 describes the proposed adversarial exploration strategy in detail. Section 4 reports the
experimental results, and provides an in-depth ablative analysis of our method. Section 5 concludes.

2 BACKGROUND

In this section, we briefly review DRL, policy gradient methods, as well as inverse dynamics model.

2.1 DEEP REINFORCEMENT LEARNING AND POLICY GRADIENT METHODS

DRL trains an agent to interact with an environment E . At each timestep t, the agent receives an
observation xt ∈ X , where X is the observation space of E . It then takes an action at from the action
space A based on its current policy π, receives a reward r, and transitions to the next observation
x′. The policy π is represented by a deep neural network with parameters θ, and is expressed as
π(a|x, θ). The goal of the agent is to learn a policy to maximize the discounted sum of rewards Gt:

Gt =

T∑
τ=t

γτ−tr(xτ , aτ), (1)

where t is the current timestep, γ ∈ (0, 1] the discount factor, and T the horizon. Policy gradient
methods (Mnih et al., 2016; Sutton et al., 2000; Williams, 1992) are a class of RL techniques that
directly optimize the parameters of a stochastic policy approximator using policy gradients. Although
these methods have achieved remarkable success in a variety of domains, the high variance of gradient
estimates has been a major challenge. Trust region policy optimization (TRPO) (Schulman et al.,
2015) circumvented this problem by applying a trust-region constraint to the scale of policy updates.
However, TRPO is a second-order algorithm, which is relatively complicated and not compatible
with architectures that embrace noise or parameter sharing (Schulman et al., 2017). In this paper,
we employ a more recent family of policy gradient methods, called proximal policy optimization
(PPO) (Schulman et al., 2017). PPO is an approximation to TRPO, which similarly prevents large
changes to the policy between updates, but requires only first-order optimization. PPO is superior in
its generalizability and sample complexity while retaining the stability and reliability of TRPO 1.

2.2 INVERSE DYNAMICS MODEL

An inverse dynamics model I takes as input a pair of observations (x, x′), and predicts the action â
required to reach the next observation x′ from the current observation x. It is formally expressed as:

â = I(x, x′|θI), (2)

where (x, x′) are sampled from the collected data, and θI represents the trainable parameters of I .
During the training phase, θI is iteratively updated to minimize the loss function LI , expressed as:

LI(a, â|θI) = d(a, â), (3)

where d is a distance metric, and a the ground truth action. During the testing phase, a sequence of
observations {x̂0, x̂1, · · · , x̂T } is first captured from an expert demonstration. A pair of observations
(x̂t, x̂t+1) is then fed into I at each timestep t. Starting from x̂0, the objective of I is to predict a
sequence of actions {â0, â1, · · · , âT−1} and transition the final observation x̂T as close as possible.

3 METHODOLOGY

In this section, we first describe the proposed adversarial exploration strategy. We then explain the
training methodology in detail. Finally, we discuss a technique for stabilizing the training process.

3.1 ADVERSARIAL EXPLORATION STRATEGY

Fig. 1 shows a framework that illustrates the proposed adversarial exploration strategy, which includes
a DRL agent P and an inverse dynamics model I . Assume that Φπ : {x0, a0, x1, a1 · · · , xT } is the

1For more details on PPO, please refer to supplementary material S.2.

3

Under review as a conference paper at ICLR 2019

Figure 1: Framework of adversarial exploration strategy.

sequence of observations and actions generated by P as it explores E using a policy π. At each
timestep t, P collects a 3-tuple training sample (xt, at, xt+1) for I , while I predicts an action ât and
generates a reward rt for P . In this work, I is modified from Eq. (2) to include an additional hidden
vector ht, which recurrently encodes the information of the past observations. I is thus expressed as:

ât = I(xt, xt+1|ht, θI)
ht = f(ht−1, xt),

(4)

where f(·) denotes the recurrent function. θI is iteratively updated to minimize LI , formulated as:

min
θI

LI(at, ât|θI) = min
θI

β||at − ât||2, (5)

where β is a scaling constant. We employ mean squared error β||at − ât||2 as the distance metric
d(at, ât), since we only consider continuous control domains in this paper. It can be replaced with a
cross-entropy loss for discrete control tasks. We directly use LI as the reward rt for P , expressed as:

rt(xt, at, xt+1) = LI(at, ât|θI) = β||at − I(xt, xt+1|ht, θI)||2. (6)

Our method targets at improving both the quality and efficiency of the data collection process
performed by P , as well as the performance of I . Therefore, the goal of the proposed framework is
twofold. First, P has to learn an adversarial policy πadv(at|xt) such that its cumulated discounted
rewards Gt|πadv

=
∑T
τ=t γ

τ−trt(xτ , aτ , xτ+1) is maximized. Second, I requires to learn an optimal
θI such that Eq. (6) is minimized. Minimizing LI (i.e., rt) leads to decreased Gt|πadv

, forcing P to
enhance πadv to explore more difficult samples to increase Gt|πadv

. This implies that P is motivated
to focus on I’s weak points, instead of randomly collecting ineffective training samples. Training I
with hard samples not only accelerates its learning progress, but also helps to boost its performance.

3.2 TRAINING METHODOLOGY

We describe the training methodology of our adversarial exploration strategy by a pseudocode
presented in Algorithm 1. Assume that P ’s policy πadv is parameterized by a set of trainable
parameters θP , and is represented as πadv(at|xt, θP). We create two buffers ZP and ZI for storing
the training samples of P and I , respectively. In the beginning, ZP , ZI , E , θP , θI , πadv , as well as a
timestep cumulative counter c are initialized. A number of hyperparameters are set to appropriate
values, including the number of iterations Niter, the number of episodes Nepisode, the horizon T ,
as well as the update period TP of θP . At each timestep t, P perceives the current observation xt
from E , takes an action at according to πadv(at|xt, θP), and receives the next observation xt+1 and
a termination indicator ξ (lines 9-11). ξ is set to 1 only when t equals T , otherwise it is set to 0. We
then store (xt, at, xt+1, ξ) and (xt, at, xt+1) in ZP and ZI , respectively. We update θP every TP
timesteps using the samples stored in ZP , as shown in (lines 13-21). At the end of each episode, we
update θI with samples drawn from ZI according to the loss function LI defined in Eq. (5) (line 23).

3.3 STABILIZATION TECHNIQUE

Although adversarial exploration strategy is effective in collecting hard samples, it requires additional
adjustments if P becomes too strong such that the collected samples are too difficult for I to learn.
Overly difficult samples lead to a large variance in gradients derived from LI , which in turn cause a
performance drop in I and instability in its learning process. We analyze this phenomenon in greater
detail in Section 4.5. To tackle the issue, we propose a training technique that reshapes rt as follows:

rt := −|rt − δ|, (7)

4

Under review as a conference paper at ICLR 2019

Algorithm 1 Adversarial exploration strategy
1: Initialize ZP , ZI , E , and model parameters θP & θI
2: Initialize πadv(at|xt, θP)
3: Initialize the timestep cumulative counter c = 0
4: SetNiter ,Nepisode, T , and TP
5: for iteration i = 1 toNiter do
6: for episode e = 1 toNepisode do
7: for timestep t = 0 to T do
8: P perceives xt from E , and predicts an action at according to πadv(at|xt, θP)
9: xt+1 = E(xt, at)
10: ξ = 1[t == T]
11: Store (xt, at, xt+1, ξ) in ZP

12: Store (xt, at, xt+1) in ZI

13: if (c% TP) == 0 then
14: Initialize an empty batchB
15: Initialize a recurrent state ht

16: for (xt, at, xt+1, ξ) in ZP do
17: Evaluate ât = I(xt, xt+1|ht, θI) (calculated from Eq. (4))
18: Evaluate rt(xt, at, xt+1) = LI(at, ât|θI) (calculated from Eq. (6))
19: Store (xt, at, xt+1, rt) inB
20: Update θP with the gradient calculated from the samples ofB
21: Reset ZP

22: c = c+ 1

23: Update θI with the gradient calculated from the samples of ZI (according to Eq. (5))
24: end

where δ is a pre-defined threshold value. This technique poses a restriction on the range of rt, driving
P to gather moderate samples instead of overly hard ones. Note that the value of δ affects the learning
speed and the final performance. We plot the impact of δ on the learning curve of I in Section 4.5.
We further provide an example in our supplementary material to visualize the effect of this technique.

4 EXPERIMENTAL RESULTS

In this section, we present experimental results for a series of robotic tasks, and validate that (i) our
method is effective in both low- and high-dimensional observation spaces; (ii) our method is effective
in environments with high-dimensional action spaces; (iii) our method is more data efficient than the
baseline methods; and (iv) our method is robust against action space perturbations. We first introduce
our experimental setup. Then, we report experimental results of robotic arm and hand manipulation
tasks. Finally, we present a comprehensive set of ablative analysis to validate our design decisions.

4.1 EXPERIMENTAL SETUP

We first describe the environments and tasks. Next, we explain the evaluation procedure and the
method for collecting expert demonstrations. We then walk through the baselines used for comparison.

4.1.1 ENVIRONMENTS AND TASKS

We evaluate our method on a number of robotic arm and hand manipulation tasks via OpenAI
gym (Brockman et al., 2016) environments simulated by the MuJoCo (Todorov et al., 2012) physics
engine. We use the Fetch and Shadow Dexterous Hand (Plappert et al., 2018b) for the arm and
hand manipulation tasks, respectively. For the arm manipulation tasks, which include FetchReach,
FetchPush, FetchPickAndPlace, and FetchSlide, the imitator (i.e., the inverse dynamic model I) takes
as inputs the positions and velocities of a gripper and a target object. It then infers the gripper’s
action in 3-dimensional space to manipulate it. For the hand manipulation task HandReach, the
imitator takes as inputs the positions and velocities of the fingers of a robotic hand, and determines
the velocities of the joints to achieve the goal. In addition to low-dimensional observations (i.e.,
position, velocity, and gripper state), we further perform experiments for the above tasks using
visual observations (i.e., high-dimensional observations) in the form of camera images taken from a
third-person perspective. The detailed description of the above tasks is specified in Plappert et al.
(2018b). For the detailed configurations of these tasks, please refer to our supplementary material.

4.1.2 EVALUATION PROCEDURE

The primary objective of our experiments is to demonstrate the efficiency of the proposed adversarial
exploration strategy in collecting training data (in a self-supervised manner) for the imitator. We
compare our strategy against a number of self-supervised data collection methods (referred to as
”baselines” or ”baseline methods”) described in Section 4.1.4. As different baseline methods employ
different data collection strategies, the learning curve of the imitator also varies for different cases.
For a fair comparison, the model architecture of the imitator and the amount of training data are fixed

5

Under review as a conference paper at ICLR 2019

for all cases. All of the experimental results are evaluated and averaged over 20 trials, corresponding
to 20 different random initial seeds. In each trial, we train an imitator by the training data collected
by a single self-supervised data collection method. At the beginning of each episode, the imitator
receives a sequence of observations {x̂0, x̂1, · · · , x̂T } from a successful expert demonstration. At
each timestep t, the imitator infers an action ât from an expert observation x̂t+1 and its current
observation xt by Eq. (4). We periodically evaluate the imitator every 10K timesteps. The evaluation
is performed by averaging the success rates of reaching x̂T over 500 episodes. The configuration of
the imitator and the hyperparameters of the baselines are summarized in the supplementary material.

4.1.3 COLLECTION OF EXPERT DEMONSTRATIONS

For each task mentioned in Section 4.1.1, we first randomly configure task-relevant settings (e.g., goal
position, initial state, etc.). We then collect demonstrations from non-trivial and successful episodes
performed by a pre-trained expert agent (Andrychowicz et al., 2017). Please note that the collected
demonstrations only contain sequences of observations. The implementation details of the expert
agent and the method for filtering out trivial episodes are presented in our supplementary material.

4.1.4 BASELINE METHODS

We compare our proposed methodology with the following four baseline methods in our experiments.

• Random: This method collects training samples by random exploration. We consider it to
be an important baseline because of its simplicity and prevalence in a number of research
works on self-supervised IL (Agrawal et al., 2016; Nair et al., 2017; Pathak et al., 2018).

• Demo: This method trains the imitator directly with expert demonstrations. It serves as the
performance upper bound, as the training data is the same as the testing data for this method.

• Curiosity: This method trains a DRL agent via curiosity (Pathak et al., 2017; 2018) to collect
training samples. Unlike the original implementation, we replace its DRL algorithm with
PPO, as training should be done on a single thread for a fair comparison with the other
baselines. This is alo an important baseline due to its effectiveness in Pathak et al. (2018).

• Noise (Plappert et al., 2018a): In this method, noise is injected to the parameter space of a
DRL agent to encourage exploration (Plappert et al., 2018a). Please note that its exploratory
behavior relies entirely on parameter space noise, instead of using any extrinsic reward. We
include this method due to its superior performance and data efficiency in many DRL tasks.

4.2 PERFORMANCE COMPARISON IN ROBOTIC ARM MANIPULATION TASKS

We compare the performance of the proposed method and the baselines on the robotic arm manip-
ulation tasks described in Section 4.1.1. As opposed to discrete control domains, these tasks are
especially challenging, as the sample complexity grows in continuous control domains. Furthermore,
the imitator may not have the complete picture of the environment dynamics, increasing its difficulty
to learn an inverse dynamics model. In FetchSlide, for instance, the movement of the object on the
slippery surface is affected by both friction and the force exerted by the gripper. It thus motivates
us to investigate whether the proposed method can help overcome the challenge. In the subsequent
paragraphs, we discuss the experimental results in both low- and high-dimensional observation spaces,
and plot them in Figs. 2 and 3, respectively. All of the results are obtained by following the procedure
described in Section 4.1.2. The shaded regions in Figs. 2 and 3 represent the confidence intervals.

Low-dimensional observation spaces. Fig. 2 plots the learning curves for all of the methods in
low-dimensional observation spaces. In all of the tasks, our method yields superior or comparable
performance to the baselines except for Demo, which is trained directly with expert demonstrations.
In FetchReach, it can be seen that every method achieves a success rate of 1.0. This implies that it does
not require a sophisticated exploration strategy to learn an inverse dynamics model in an environment
where the dynamics is relatively simple. It should be noted that although all methods reach the same
final success rate, ours learns significantly faster than Demo. In contrast, in FetchPush, our method is
comparable to Demo, and demonstrates superior performance to the other baselines. Our method also
learns drastically faster than all the other baselines, which confirms that the proposed strategy does
improve the performance and efficiency of self-supervised IL. Our method is particularly effective
in tasks that require an accurate inverse dynamics model. In FetchPickAndPlace, for example, our
method surpasses all the other baselines. However, all methods including Demo fail to learn a
successful inverse dynamics model in FetchSlide, which suggests that it is difficult to train an imitator
when the outcome of an action is not completely dependent on the action itself. It is worth noting that
Curiosity loses to Random in FetchPush and FetchSlide, and Noise performs even worse than these

6

Under review as a conference paper at ICLR 2019

Figure 2: Performance comparison of robotic arm and hand tasks in low-dimensional observation spaces.

Figure 3: Performance comparison of robotic arm tasks in high-dimensional observation spaces.

two methods in all of the tasks. We therefore conclude that Curiosity is not suitable for continuous
control tasks, and the parameter space noise strategy cannot be directly applied to self-supervised
IL. In addition to the quantitative results presented above, we further discuss the empirical results
qualitatively. Please refer our supplementary material for a description of the qualitative results.

High-dimensional observation spaces. Fig. 3 plots the learning curves of all methods in high-
dimensional observation spaces. It can be seen that our method performs significantly better than
the other baseline methods in most of the tasks, and is comparable to Demo. In FetchPickAndPlace,
our method is the only one that learns a successful inverse dynamics model. Similar to the results in
Fig. 2, Curiosity is no better than Random in high-dimensional observation spaces. Please note that
we do not include Noise in Fig. 3 as it performs worse enough already in low-dimensional settings.

4.3 PERFORMANCE COMPARISON IN ROBOTIC HAND MANIPULATION TASK

Fig. 2 plots the learning curves for each of the methods considered. Please note that Curiosity, Noise
and our method are pre-trained with 30K samples collected by random exploration, as we observe
that these methods on their own suffer from large errors in an early stage during training, which
prevents them from learning at all. After the first 30K samples, they are trained with data collected by
their exploration strategy instead. From the results in Fig. 2, it can be seen that Demo easily stands
out from the other methods as the best-performing model, surpassing them all by a considerable
extent. Although our method is not as impressive as Demo, it significantly outperforms all of the
other baseline methods, achieving a success rate of 0.4 while the others are still stuck at around 0.2.

The reason that the inverse dynamics models trained by the self-supervised data-collection strategies
discussed in this paper (including ours and the other baselines) are not comparable to the Demo
baseline in the HandReach task is primarily due to the high-dimensional action space. It is observed
that the data collected by the self-supervised data-collection strategies only cover a very limited range
of the state space in the HandReach environment. Therefore, the inverse dynamics models trained
with these data only learn to imitate trivial poses, leading to the poor success rates presented in Fig. 2.

4.4 ROBUSTNESS TO ACTION SPACE PERTURBATION

We evaluate the performance of the imitator trained in an environment with action space perturbations
to validate the robustness of our adversarial exploration strategy. In such an environment, every action
taken by the DRL agent is perturbed by a Gaussian random noise, such that the training samples
collected by the DRL agent are not inline with its actual intentions. Please note that we only inject
noise during the training phase, as we aim to validate the robustness of the proposed data collection
strategy. The scale of the injected noise is specified in the supplementary material. We report the
performance change rates of various methods for different tasks in Table. 1. The performance change
rate is defined as: Prperturb−Prorig

Prorig
, where Prperturb and Prorig represent the highest success rates

with and without action space perturbations, respectively. From Table. 1, it can be seen that our
method retains the performance for most of the tasks, indicating that our method is robust to action
space perturbations during the training phase. Please note that although Curiosity and Noise also
achieve a change rate of 0% in HandReach and FetchSlide, they are not considered robust due to their
poor performance in the original environment (Fig. 2). Another interesting observation is that our

7

Under review as a conference paper at ICLR 2019

FetchReach FetchPush FetchSlide FetchPickAndPlace HandReach

Random 0.00% -0.89% -23.21% -39.52% -32.32%
Curiosity 0.00% -45.48% -35.67% -18.61% 0.00%

Noise 0.00% -90.00% 0.00% -12.03% -40.00%

Ours 0.00% 1.64% -22.33% -23.17% 11.02%

Table 1: Comparison of performance change rate

Figure 4: PDFs of LI in low-dimensional observation spaces for the first 2K training batches.

method even gains some performance from action space perturbations in FetchPush and HandReach,
which we leave as one of our future directions. We thus conclude that our method is robust to action
space perturbations during the training phase, making it a practical option in real-world settings.

4.5 ABLATIVE ANALYSIS

In this section, we provide a set of ablative analysis. We examine the effectiveness of our method by
an investigation of the training loss distribution, the stabilization technique, and the influence of δ.
Please note that the value of δ is set to 1.5 by default, as described in our supplementary material.

Training loss distribution. Fig. 4 plots the probability density function (PDF) of LI (derived from
Eq. (5)) by kernel density estimation (KDE) for the first 2K training batches during the training phase.
The vertical axis corresponds to the probability density, while the horizontal axis represents the scale
of LI . The curves Ours (w stab) and Ours (w/o stab) represent the cases where the stabilization
technique described in Section 3.3 is employed or not, respectively. We additionally plot the curve
Random in Fig. 4 to highlight the effectiveness of our method. It can be observed that both Ours (w
stab) and Ours (w/o stab) concentrate on notably higher loss values than Random. This observation
implies that adversarial exploration strategy does explore hard samples for inverse dynamics model.

Validation of the stabilization technique. We validate the proposed stabilization technique in
terms of the PDF of LI and the learning curve of the imitator, and plot the results in Figs. 4 and 5,
respectively. From Fig. 4, it can be observed that the modes of Ours (w stab) are lower than those
of Ours (w/o stab) in most cases, implying that the stabilization technique indeed motivates the
DRL agents to favor those moderately hard samples. We also observe that for each of the five cases,
the mode of Ours (w stab) is close to the value of δ (plotted in a dotted line), indicating that our
reward structure presented in Eq. (7) does help to regulate LI (and thus rt) to be around δ. To
further demonstrate the effectiveness of the stabilization technique, we compare the learning curves
of Ours (w stab) and Ours (w/o stab) in Fig. 5. It is observed that for the initial 10K samples of the
five cases, the success rates of Ours (w/o stab) are comparable to those of Ours (w stab). However,
their performance degrade drastically during the rest of the training phase. This observation confirms
that the stabilization technique does contribute significantly to our adversarial exploration strategy.

Although most of the DRL works suggest that the rewards should be re-scaled or clipped within a
range (e.g., from -1 to 1), the unbounded rewards do not introduce any issues during the training
process of our experiments. The empirical rationale is that the rewards received by the DRL agent
are regulated by Eq. (7) to be around δ, as described in Section 4.5 and depicted in Fig. 4. Without
the stabilization technique, however, the learning curves of the inverse dynamics model degrade
drastically (as illustrated in Fig. 2), even if the reward clipping technique is applied.

Influence of δ. Fig. 6 compares the learning curves of the imitator for different values of δ. For
instance, Ours(0.1) corresponds to δ = 0.1. It is observed that for most of the tasks, the success rates
drop when δ is set to an overly high or low value (e.g., 100.0 or 0.0), suggesting that a moderate value
of δ is necessary for the stabilization technique. The value of δ can be adjusted dynamically by the
adaptive scaling technique presented in Plappert et al. (2018a), which is left as our future direction.

From the analysis presented above, we conclude that the proposed adversarial exploration strategy
is effective in collecting difficult training data for the imitator. The analysis also validates that our

8

Under review as a conference paper at ICLR 2019

Figure 5: Learning curves w/ and w/o the stabilization technique in low-dimensional observation spaces.

Figure 6: Performance comparison for different values of δ.

stabilization technique indeed leads to superior performance, and is capable of guiding the DRL agent
to collect moderately hard samples. This enables the imitator to pursue a stable learning curve.

5 CONCLUSION

In this paper, we presented an adversarial exploration strategy, which consists of a DRL agent and an
inverse dynamics model competing with each other for self-supervised IL. The former is encouraged
to adversarially collect difficult training data for the latter, such that the training efficiency of the latter
is significantly enhanced. Experimental results demonstrated that our method substantially improved
the data collection efficiency in multiple robotic arm and hand manipulation tasks, and boosted the
performance of the inverse dynamics model in both low- and high-dimensional observation spaces.
In addition, we validated that our method is generalizable to environments with high-dimensional
action spaces. Moreover, we showed that our method is robust to action space perturbations. Finally,
we provided a set of ablative analysis to validate the effectiveness for each of our design decisions.

REFERENCES

Pulkit Agrawal, Ashvin Nair, Pieter Abbeel, Jitendra Malik, and Sergey Levine. Learning to poke
by poking: Experiential learning of intuitive physics. In Proc. Advances in Neural Information
Processing Systems (NIPS), pp. pp. 5074-5082, 2016.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay. In Proc.
Advances in Neural Information Processing Systems (NIPS), pp. pp. 5048-5058, 2017.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proc. Int. Conf. Machine Learning (ICML), pp. 41-48, 2009.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv:1606.01540, 2016.

Sanjiban Choudhury, Mohak Bhardwaj, Sankalp Arora, Ashish Kapoor, Gireeja Ranade, Sebastian
Scherer, and Debadeepta Dey. Data-driven planning via imitation learning. arXiv:1711.06391,
2017.

Felipe Codevilla, Matthias Müller, Alexey Dosovitskiy, Antonio López, and Vladlen Koltun. End-
to-end driving via conditional imitation learning. In Proc. Int. Conf. Robotics and Automation
(ICRA), 2018.

Yan Duan, Marcin Andrychowicz, Bradly Stadie, Jonathan Ho, Jonas Schneider, Ilya Sutskever,
Pieter Abbeel, and Wojciech Zaremba. One-shot imitation learning. In Proc. Advances in Neural
Information Processing Systems (NIPS), pp. pp. 1087-1098, 2017.

Peter Englert, Alexandros Paraschos, Jan Peters, and Marc Peter Deisenroth. Model-based imitation
learning by probabilistic trajectory matching. In Proc. Int. Conf. Robotics and Automation (ICRA),
pp. pp. 1922-1927, 2013.

9

Under review as a conference paper at ICLR 2019

Chelsea Finn, Tianhe Yu, Tianhao Zhang, Pieter Abbeel, and Sergey Levine. One-shot visual imitation
learning via meta-learning. arXiv:1709.04905, 2017.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Proc. Advances in
Neural Information Processing Systems (NIPS), pp. pp. 4565-4573, 2016.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In Proc. Int. Conf. Machine Learning (ICML), pp. pp. 1928-1937, 2016.

Ashvin Nair, Dian Chen, Pulkit Agrawal, Phillip Isola, Pieter Abbeel, Jitendra Malik, and Sergey
Levine. Combining self-supervised learning and imitation for vision-based rope manipulation. In
Proc. Int. Conf. Robotics and Automation (ICRA), pp. pp. 2146-2153, 2017.

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven exploration by
self-supervised prediction. In Proc. Int. Conf. Machine Learning (ICML), 2017.

Deepak Pathak, Parsa Mahmoudieh, Michael Luo, Pulkit Agrawal, Dian Chen, Fred Shentu, Evan
Shelhamer, Jitendra Malik, Alexei A. Efros, and Trevor Darrell. Zero-shot visual imitation. In
Proc. Int. Conf. Learning Representations (ICLR), 2018.

Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Robust adversarial reinforce-
ment learning. In Proc. Int. Conf. Machine Learning (ICML), 03 2017.

Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y. Chen, Xi Chen,
Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. Parameter space noise for exploration.
In Proc. Int. Conf. Learning Representations (ICLR), 2018a.

Matthias Plappert et al. Multi-goal reinforcement learning: Challenging robotics environments and
request for research. arXiv:1802.09464, 2018b.

Urbain Prieur, Véronique Perdereau, and Alexandre Bernardino. Modeling and planning high-level
in-hand manipulation actions from human knowledge and active learning from demonstration. In
Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS), pp. pp. 1330-1336, 2012.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured
prediction to no-regret online learning. In Proc. Int. Conf. Artificial Intelligence and Statistics
(AISTATS), pp. pp. 627-635, 2011.

Stéphane Ross, Narek Melik-Barkhudarov, Kumar Shaurya Shankar, Andreas Wendel, Debadeepta
Dey, J Andrew Bagnell, and Martial Hebert. Learning monocular reactive UAV control in cluttered
natural environments. In Proc. Int. Conf. Robotics and Automation (ICRA), pp. pp. 1765-1772,
2013.

John Schulman, Ankush Gupta, Sibi Venkatesan, Mallory Tayson-Frederick, and Pieter Abbeel. A
case study of trajectory transfer through non-rigid registration for a simplified suturing scenario.
In Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS), pp. pp. 4111-4117, 2013.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In Proc. Int. Conf. Machine Learning (ICML), pp. pp. 1889-1897, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv:1707.06347, 2017.

Hiroaki Shioya, Yusuke Iwasawa, and Yutaka Matsuo. Extending robust adversarial reinforcement
learning considering adaptation and diversity. In Proc. Int. Conf. Learning Representations (ICLR)
Workshop, 2018.

Sainbayar Sukhbaatar, Zeming Lin, Ilya Kostrikov, Gabriel Synnaeve, Arthur Szlam, and Rob Fergus.
Intrinsic motivation and automatic curricula via asymmetric self-play. In Proc. Int. Conf. Learning
Representations (ICLR), 2018.

Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In Proc. Advances in Neural
Information Processing Systems (NIPS), pp. pp. 1057-1063, 2000.

10

Under review as a conference paper at ICLR 2019

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control
view. In Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS), pp. pp. 5026-5033,
2012.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. In Reinforcement Learning, pp. pp. 5-32. Springer, 1992.

Tianhe Yu, Chelsea Finn, Annie Xie, Sudeep Dasari, Tianhao Zhang, Pieter Abbeel, and
Sergey Levine. One-shot imitation from observing humans via domain-adaptive meta-learning.
arXiv:1802.01557, 2018.

11

Under review as a conference paper at ICLR 2019

Supplementary Material
S.1 QUALITATIVE ANALYSIS OF ROBOTIC ARM MANIPULATION TASKS

In addition to the quantitative results presented above, we further discuss the empirical results qual-
itatively. Through visualizing the training progress, we observe that our method initially acts like
Random, but later focuses on interacting with the object in FetchPush, FetchSlide, and FetchPickAnd-
Place. This phenomenon indicates that adversarial exploration strategy naturally gives rise to a
curriculum that improves the learning efficiency, which resembles curriculum learning (Bengio et al.,
2009). Another benefit that comes with the phenomenon is that data collection is biased towards
interactions with the object. Therefore, the DRL agent concentrates on collecting interesting samples
that has greater significance, rather than trivial ones. For instance, the agent prefers pushing the object
to swinging the robotic arm. On the other hand, although Curiosity explores the environment very
thoroughly in the beginning by stretching the arm into numerous different poses, it quickly overfits to
one specific pose. This causes its forward dynamics model to keep maintaining a low error, making it
less curious about the surroundings. Finally, we observe that the exploratory behavior of Noise does
not change as frequently as ours, Random, and Curiosity. We believe that the method’s success in the
original paper (Plappert et al., 2018a) is largely due to extrinsic rewards. In the absence of extrinsic
rewards, however, the method becomes less effective and unsuitable for data collection, especially in
self-supervised IL.

S.2 PROXIMAL POLICY OPTIMIZATION (PPO)
We employ PPO (Schulman et al., 2017) as the RL agent responsible for collecting training samples
because of its ease of use and good performance. PPO computes an update at every timestep that
minimizes the cost function while ensuring the deviation from the previous policy is relatively small.
One of the two main variants of PPO is a clipped surrogate objective expressed as:

LCLIP (θ) = E
[
πθ(a|s)
πθold(a|s)

Â, clip(
πθ(a|s)
πθold(a|s)

, 1− ε, 1 + ε)Â)

]
,

where Â is the advantage estimate, and ε a hyperparameter. The clipped probability ratio is used to
prevent large changes to the policy between updates. The other variant employs an adaptive penalty
on KL divergence, given by:

LKLPEN (θ) = E
[
πθ(a|s)
πθold(a|s)

Â− βKL [πθold(·|s), πθ(·|s)]
]
,

where β is an adaptive coefficient adjusted according to the observed change in the KL divergence.
In this work, we employ the former objective due to its better empirical performance.

S.3 IMPLEMENTATION DETAILS OF INVERSE DYNAMICS MODEL

In the experiments, the inverse dynamics model I(xt, xt+1|ht, θI) of all methods employs the same
network architecture. For low-dimensional observation setting, we use 3 Fully-Connected (FC) layers
with 256 hidden units followed by tanh activation units. For high-dimensional observation setting,
we use 3-layer Convolutional Neural Network (CNN) followed by relu activation units. The CNNs
are configured as (32, 8, 4), (64, 4, 2), and (64, 3, 1), with each element in the 3-tuple denoting the
number of output features, width/height of the filter, and stride. The features extracted by stacked
CNNs are then fed forward to a FC with 512 hidden units followed by relu activation units.

S.4 IMPLEMENTATION DETAILS OF ADVERSARIAL EXPLORATION STRATEGY

For both low- and high- dimensional observation settings, we use the architecture proposed in
Schulman et al. (2017). During training, we periodically update the DRL agent with a batch of
transitions as described in Algorithm. 1. We split the batch into several mini-batches, and update the
RL agent with these mini-batches iteratively. The hyperparameters are listed in Table. 2 (our method).

S.5 IMPLEMENTATION DETAILS OF Curiosity
Our baseline Curiosity is implemented based on the work (Pathak et al., 2018). The authors in Pathak
et al. (2018) propose to employ a curiosity-driven RL agent (Pathak et al., 2017) to improve the

12

Under review as a conference paper at ICLR 2019

Hyperparameter Value

Common
Batch size for inverse dynamic model update 64
Learning rate of inverse dynamic model 1e-3
Timestep per episode 50

Optimizer for inverse dynamic model Adam

Our method
Number of batch for update inverse dynamic model 25
Batch size for RL agent 2050
Mini-batch size for RL agent 50
Number of training iteration (Niter) 200
Number of training episode per iteration (Nepisode) 10
Horizon (T) of RL agent 50
Update period of RL agent 2050
Learning rate of RL agent 1e-3
Optimizer for RL agent Adam
δ of stabilization 1.5

Curiosity
Number of batch for update inverse dynamic model 500
Batch size for RL agent 2050
Mini-batch size for RL agent 50
Number of training iteration (Niter) 10
Number of training episode per iteration (Nepisode) 200
Horizon (T) of RL agent 50
Update period of RL agent 2050
Learning rate of RL agent 1e-3
Optimizer for RL agent Adam

Noise
Number of batch for update inverse dynamic model 500
The other hyperparameters Same as Plappert et al. (2018a)

Table 2: Hyperparameters settings.

efficiency of data collection. The curiosity-driven RL agent takes curiosity as intrinsic reward signal,
where curiosity is formulated as the error in an agents ability to predict the consequence of its own
actions. This can be defined as a forward dynamics model:

φ̂(x′) = f(φ(x), a; θF), (8)

where φ̂(x′) is the predicted feature encoding at the next timestep, φ(x) the feature vector at the
current timestep, a the action executed at the current timestep, and θF the parameters of the forward
model f . The network parameters θF is optimized by minimizing the loss function LF :

LF
(
φ(x), φ̂(x′)

)
=

1

2
||φ̂(x′)− φ(xt+1)||22. (9)

For low- and high- dimensional observation settings, we use the architecture proposed in Schulman
et al. (2017). The implementation of φ depends on the model architecture of the RL agent. For
low-dimensional observation setting, we implement φ with the architecture of low-dimensional
observation PPO. Note that φ does not share parameters with the RL agent in this case. For high-
dimensional observation setting, we share the features extracted by the CNNs of the RL agent, then
feed these features to φ which consists of a FC with 512 hidden units followed by relu activation.
The hyperparameters settings can be found in Table. 2(Curiosity).

S.6 IMPLEMENTATION DETAILS OF Noise
We directly apply the same architecture in Plappert et al. (2018a) without any modification. Please
refer to Plappert et al. (2018a) for more detail.

13

Under review as a conference paper at ICLR 2019

S.7 IMPLEMENTATION DETAILS OF Demo
We collect 1000 episodes of expert demonstrations using the procedure defined in Sec. S8 for
training Demo. Each episodes lasts 50 timesteps. The demonstration data is in the form of a 3-tuple
(xt, a, xt+1), where xt is the current observation, at the action, and xt+1 the next observation. The
pseudocode for training Demo is shown in Algorithm. S1 below. In each training iteration, we
randomly sample 200 episodes, namely 10k transitions (line 4). The sampled data is then used to
update the inverse dynamics model (line 5).

Algorithm 2 Demo
1: Initialize ZDemo, θI
2: Set constants Niter
3: for iter i = 1 to Niter do
4: Sample 200 episodes of demonstration from ZDemo as B
5: Update θI with the gradient calculated from the samples in B (according to Eq. 6)
6: end

S.8 CONFIGURATION OF ENVIRONMENTS

We briefly explain each configuration of the environment below. For detailed description, please refer
to Plappert et al. (2018b).

• FetchReach: Control the gripper to reach a goal position in 3D space. The imitator can fully
comprehend the environment dynamics.

• FetchPush: Control the Fetch robot to push the object to a target position. The imitator
cannot fully comprehend the environment as the movement of the gripper may not affect the
object.

• FetchPickAndPlace: Control the gripper to grasp and lift the object to a goal position. In
addition to the imitator not having the complete picture of the environment dynamics, this
task requires a more accurate inverse dynamics model.

• FetchSlide: Control the robot to slide the object to a goal position. The task requires an even
more accurate inverse dynamics model, as the object’s movement on the slippery surface is
hard to predict.

• HandReach: Control the Shadow Dextrous Hand to reach a goal hand pose. The task is
especially challenging due to high-dimensional action spaces.

S.9 SETUP OF EXPERT DEMONSTRATION

We employ Deep Deterministic Policy Gradient combined with Hindsight Experience Replay (DDPG-
HER) (Andrychowicz et al., 2017) as the expert agent. For training and evaluation, we run the expert
to collect transitions for 1000 and 500 episodes, respectively. To prevent the imitator from succeeding
in the task without taking any action, we only collect successful and non-trivial episodes generated by
the expert agent. Non-trivial episodes are filtered out based on the following task-specific schemes:

• FetchReach: An episode is considered trivial if the distance between the goal position and
the initial position is smaller than 0.2.

• FetchPush: An episode is determined trivial if the distance between the goal position and
the object position is smaller than 0.2.

• FetchSlide: An episode is considered trivial if the distance between the goal position and
the object position is smaller than 0.1.

• FetchPickAndPlace: The episode is considered trivial if the distance between the goal
position and the object position is smaller than 0.2.

• HandReach: We do not filter out trivial episodes as this task is too difficult for most of the
methods.

S.10 ANALYSIS OF THE NUMBER OF EXPERT DEMONSTRATIONS

Fig. 7 illustrates the performance of Demo with different number of expert demonstrations.
Demo(100), Demo(1,000), and Demo(10,000) correspond to the Demo baselines with 100, 1,000, and
10,000 episodes of demonstrations, respectively. It is observed that their performance are comparable
for most of the tasks except FetchReach. In FetchReach, the performance of Demo(100) is signifi-
cantly worse than the other two cases. A possible explanation is that preparing a sufficiently diverse

14

Under review as a conference paper at ICLR 2019

set of demonstrations in FetchReach is relatively difficult with only 100 episodes of demonstrations. A
huge performance gap is observed when the number of episodes is increased to 1,000. Consequently,
Demo(1,000) is selected as our Demo baseline for the presentation of the experimental results in
Section 4. Another advantage is that Demo(1,000) demands less memory than Demo(10,000).

Figure 7: Comparison of different number of expert demonstrations in low-dimensional observation spaces.

S.11 SETUP OF NOISY ACTION

To test the robustness of our method to noisy actions, we add noise to the actions in the training stage.
Let ât denote the predicted action by the imitator. The actual noisy action to be executed by the robot
is defined as:

ât := ât +N (0, σ),

where σ is set as 0.01. Note that ât will be clipped in the range defined by each environment.

S.12 VISUALIZATION OF STABILIZATION TECHNIQUE

In this section, we visualize the effects of our stabilization technique with a list of rewards r in Fig. 8.
The rows of Before and After represent the rewards before and after reward shaping, respectively. The
bar on the right-hand side indicates the scale of the reward. It can be observed in Fig. 8 that after
reward shaping, the rewards are transformed to the negative distance to the specified δ (i.e., 2.5 in
this figure). As a result, our stabilization technique is able to encourage the DRL agent to pursue
rewards close to δ, where higher rewards can be received.

Figure 8: Visualization of the stabilization technique.

15

	Introduction
	Background
	Deep Reinforcement Learning and Policy Gradient Methods
	Inverse Dynamics Model

	Methodology
	Adversarial Exploration Strategy
	Training Methodology
	Stabilization Technique

	Experimental Results
	Experimental Setup
	Environments and Tasks
	Evaluation Procedure
	Collection of Expert Demonstrations
	Baseline Methods

	Performance Comparison in Robotic Arm Manipulation Tasks
	Performance Comparison in Robotic Hand Manipulation Task
	Robustness to Action Space Perturbation
	Ablative Analysis

	Conclusion
	Qualitative Analysis of Robotic Arm Manipulation Tasks
	Proximal Policy Optimization (PPO)
	Implementation Details of Inverse Dynamics Model
	Implementation Details of Adversarial Exploration Strategy
	Implementation details of Curiosity
	Implementation Details of Noise
	Implementation Details of Demo
	Configuration of Environments
	Setup of Expert Demonstration
	Analysis of the number of expert demonstrations
	Setup of Noisy Action
	Visualization of stabilization technique

