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ABSTRACT

We propose an energy-based framework for correcting mislabelled training exam-
ples in the context of binary classification. While existing work addresses random
and class-dependent label noise, we focus on feature dependent label noise, which
is ubiquitous in real-world data and difficult to model. Two elements distinguish
our approach from others: 1) instead of relying on the original feature space, we
employ an autoencoder to learn a discriminative representation and 2) we intro-
duce an energy-based formalism for the label correction problem. We prove that a
discriminative representation can be learned by training a generative model using a
loss function comprised of the difference of energies corresponding to each class.
The learned energy value for each training instance is compared to the original
training labels and contradictions between energy assignment and training label
are used to correct labels. We validate our method across eight datasets, spanning
synthetic and realistic settings, and demonstrate the technique’s state-of-the-art
label correction performance. Furthermore, we derive analytical expressions to
show the effect of label noise on the gradients of empirical risk.

1 INTRODUCTION

Machine learning algorithms depend on reliable training labels or, when applicable, sufficiently
robust learning models in order to produce generalizable predictions (Zhu & Wu, 2004; Frénay &
Verleysen, 2014). Many empirical datasets suffer from training label corruption, which can result
from annotation error, human bias, or a noisy process for generating labels (Smyth, 1996; Brodley
& Friedl, 1999). In practice, it can be costly to obtain noise-free labels; hence, research on reducing
the effects of label noise on learning has received considerable attention.

Most work, however, focuses on label noise that is independent of the input features (e.g., random
label noise or class conditional random noise). The introduction of feature dependency significantly
complicates mathematical analysis (Natarajan et al., 2013; Liu & Tao, 2014; Northcutt et al., 2017).
Although work in this domain has yielded impressive results and improved generalization (Reb-
bapragada & Brodley, 2007a; Natarajan et al., 2013; Patrini et al., 2017; Rolnick et al., 2017; Ren
et al., 2018), the simplicity of these noise assumptions fails to capture crucial mislabelling processes
that arise in practice. In this work, we propose a semi-supervised framework for correcting the
effects of feature dependent label noise on supervised learning algorithms.

Label noise processes are categorized into three types, as illustrated in Figure 1. Type I refers to
a noise model where any label in the training data is incorrect with probability γ. In the case of
type II noise, the probability of label corruption is conditioned on the class, such that we have
different noise rate γ0 and γ1 for each class. Finally, type III noise models describe how label noise
depends explicitly on input features. Feature dependent label noise or equivalently type III noise
is a more realistic type of label noise that is ubiquitous in empirical datasets (Lachenbruch, 1974;
Schafer & Graham, 2002; Frénay & Verleysen, 2014). As an example of type III noise, consider the
diagnostic labels of Alzheimer’s disease. In this setting, the probability of label noise depends on
both age and sex (i.e., younger male patients are harder to diagnose) (Khachaturian, 1985; Murray
et al., 2016). Type III noise also includes the prevalence of unreliable labels for training instances in
low density regions of feature space (Denoeux, 1995; 1997; 2000) or near classification boundaries
(Lachenbruch, 1966; 1974; Chhikara & McKeon, 1984; Cohen, 1997; Beigman & Klebanov, 2009;
Beigman Klebanov & Beigman, 2009; Kolcz & Cormack, 2009).
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Figure 1: Different categories of label noise and their statistical dependencies, as depicted by the
red arrow. In type I noise, all instances are equally likely to be mislabelled base on some probability
γ ∈ [0, 1

2 ]. In the case of type II, this probability is different for each class: γ0 ∈ [0, 1
2 ] and

γ1 ∈ [0, 1
2 ]. Type III label noise is the most realistic model and yet the least studied. In this case the

probability of an error is a function of the input features: i.e. perror ∼ f(x).

In this paper, we present a practical framework for correcting label noise that extends beyond type
I and type II noise. We train an energy-based generative model on a small subset of the training
data with reliable labels, either manually annotated or automatically learned. This model is used to
identify and correct mislabelled examples based on the whether the assigned energy of a given point
is compatible with its original label. We empirically demonstrate our framework’s ability to handle
input dependent label noise on both simulated and real datasets.

2 RELATED WORK

The full body of work on the problem of label noise is too extensive to review here; however, we
direct interested readers to the detailed review by Frénay & Verleysen (2014). In this section, we
highlight key contributions in the label noise literature. We then briefly discuss existing theoretical
work.

2.1 LABEL NOISE CORRECTION

Existing work in label noise correction is designed for Type I and Type II noise and falls into three
categories: relabeling, learning procedures and loss functions. We expand on each area below.

Relabeling: Earlier approaches to label noise focus on relabeling the noisy training set. Brodley &
Friedl (1999) use the output of an ensemble of classifiers to identify mislabeled training examples.
Sun et al. (2007) identify mislabeled instances based on the entropy of class probabilities outputted
by a Bayesian classifier. These approaches, while robust to simpler label noise models, do not
account for Type III noise.

Learning Procedures: Methods modifying the learning procedure include the perceptron algorithm
with margin (PAM) Frénay & Verleysen (2014). Crammer & Lee (2010) use a velocity-based learn-
ing procedure to learn the weight vector distribution, termed gaussian herding (NHERD). Sukhbaatar
et al. (2014) introduce a noise layer to a neural network architecture to learn the noise function, while
Rebbapragada & Brodley (2007b) weight each example by class confidence in the training proce-
dure. These methods commonly suffer from overfitting to the noise and again, primarily focus on
Type I and Type II noise.

Loss Functions: Long & Servedio (2010) have shown classification algorithms that optimize a
convex potential over a linear class are not robust to random label noise. This has led to work which
aims to modify convex loss functions in order to make them noise-tolerant in the presence of type
I and type II noise. Ghosh et al. (2015) derived sufficient conditions for classification losses that
render them robust to random noise; namely, the components of a loss (where each component is
defined over a given class) must sum to a constant value. Rooyen et al. (2015) proposed a convex
loss that avoids the negative result of Long & Servedio (2010) for type I noise by virtue of being
negatively unbounded. Natarajan et al. (2013) have shown that risk minimization over the corrupted
data is consistent with risk minimization over clean data provided that the standard convex loss (e.g.,
binary cross entropy) is modified appropriately to produce an unbiased loss estimator (ULE). Each
of these loss functions is presented for and validated on Type I and Type II noise.
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2.2 EXISTING THEORETICAL GUARANTEES

(Bylander, 1994; Blum et al., 1998; Blum & Mitchell, 1998) offer guarantees for hypothesis gener-
alization in the face of Type I and Type II noise. Angluin & Laird (1988); Bylander (1997; 1998);
Servedio (1999) present guarantees for type III noise, where the probability of error depends on the
distance to the margin. We introduce a gradient-based interpretation of label noise to these existing
results.

3 BINARY CLASSIFICATION IN THE PRESENCE OF LABEL NOISE

3.1 PROBLEM SETUP AND NOTATION

Let P denote the true distribution from which n i.i.d. training examples
(x1, y1), (x2, y2), . . . , (xn, yn) have been drawn, where (xi, yi) ∈ Rd × {0, 1}. The clean
and corrupted training datasets are denoted as

T =
{

(xi, yi) for i = 1, 2, . . . , n
}

& T̃ =
{

(xi, ỹi) for i = 1, 2, . . . , n
}
, (1)

respectively, where due to some label noise process yi → ỹi. Hence, we have access to the noisy
data T̃ during training instead of the clean data T . It can be assumed that the corrupted samples
(xi, ỹi) are drawn from a noisy distribution P̃ .

In supervised binary classification, we aim to learn a discriminator f : Rd → R that minimizes
the risk with respect to a given loss function1. Formally, we want to minimize the empirical risk
is R̂ [`, f, T ] = 1

m

∑m
i=1 ` (f(xi,θ), yi), where the m, `, θ denote the size of the mini-batch size,

loss function, and the learnable model parameters respectively. Gradient based learning algorithms
compute ∇θ(R̂ [`, f, T ]) and update model parameters. For example, as in mini-batch gradient
descent,

θt+1 = θt − η∇θ
(
R̂ [`, f, T ]

)
, (2)

where η is the learning rate. In practice, we may not have access to the clean data T . Instead
we must learn the discriminator using the noisy data T̃ . Thus, the second term in Eq. 2 becomes
∇θ(R̂[`, f, T̃ ]), which denotes the risk with respect to the noisy training data.

3.2 LABEL NOISE EFFECT ON RISK MINIMIZATION

We can describe the effect of label noise on learning by expressing the noisy gradient∇θ(R̂[`, f, T̃ ])

in terms of the true gradient ∇θ(R̂[`, f, T ]) and a noise term. In the case of type I noise where any
label yi can be flipped to 1− yi with probability γ ∈ [0, 1/2], we have

E(x,ỹ)∼P̃

[
∇θR̂[`, T̃ ]

]
= (1− 2γ)Etrue + 2γ Erand, (3)

where Etrue ≡ E(x,ỹ)∼P̃ [∇θR̂[`, T ]] is the true (i.e. noise-free) gradient, and Erand is the completely
noisy term obtained by replacing all targets yi with a random value of either 0 or 1. For type II
noise, we have an equation analogous to Eq. 3, where γ is replaced by the average γ̄ = (γ0 + γ1)/2
noise rate and we have an additional term reflecting the noise imbalance between each class when
γ0 6= γ1. For more information on this and derivations of these equations, see Appendix A.

From Eq. 3 we deduce that for small γ the true gradients dominate the dynamics of searching θ
space for optimal parameters. As γ grows, the true gradients are scaled down by the factor (1−2γ),
which means that the contribution of Etrue diminishes and the random perturbation term Erand starts
to dominate as γ grows. A similar conclusion can be reached for type II noise (replacing γ with γ̄)
where we have an additional term modifying the true gradients based on the class imbalance (see
A.2).

The effect of Erand can be negated by increasing the amount of training data proportionately with γ̄
as discussed by Rolnick et al. (2017): i.e. as the probability of a random error occurring increases,

1In practice the loss function ` is usually classification-calibrated to minimize the 0-1 loss given that the
sample size is sufficiently large (Bartlett et al., 2006).
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Figure 2: Plots showing the path traversed in θ space by a supervised model as learnable parameters
are updated via a gradient based optimizer. The gold line shows the path followed by a noise-free
model and the blue lines show the modified paths due to label noise. In the case of random label
noise (left plot), the perturbations Erand to the true gradient direction are curbed by an increase in
training set size. In contrast, for input dependent noise (right plot), supplying the model with more
data perpetuates the label bias.

the model needs more data to make progress in the direction of the true gradient. We can neutralize
the effects (i.e. suppress Erand) of random noise (type I) or class conditional random noise (type II)
by increasing the number of training examples and by utilizing a robust loss function when possible
(Natarajan et al., 2013).

In contrast, Type III noise is substantially more difficult to address because the available training
data T̃ can have optimal discriminators that are significantly different from the true discriminator
corresponding to the clean data T . Separating Type III noise into the true term and the perturbation
term necessitates restrictive assumptions on the noise model (See Appendix A. In Figure 2, we show
this by visualizing SGD over the true training set (gold lines) and the noise training set (blue lines).
As shown in Figure 2, increasing the size of the training set is effective in address Type II noise.
This strategy is not only ineffective for addressing type III noise, but they can also lead to our model
learning the biased discriminator; thus, hindering any possibility of generalization.

4 AN ENERGY-BASED FRAMEWORK FOR BIAS CORRECTION

Type III noise is particularly challenging because noise can depend on the input features in an
arbitrarily complex way. Modeling this requires significant information about the noise process,
which can be difficult to obtain in practice. In order to deal with this challenge we will avoid
training directly on the mislabelled instances. Instead, we start our training procedure by assuming
there exists a small subset of T̃ that is noise-free (e.g. 1% of the data is sufficient the MNIST
dataset). Such a set can be obtained via a manual labelling process or by using domain knowledge
to identify the appropriate data points2.

Our objective is to correct mislabelled training instances such that the corrected data leads to the
improved generalization of a trained model. We will demonstrate in Section 5 that our framework
extends beyond Type I and Type II noise to Type III noise, in realistic settings. In particular, we
demonstrate the method’s strength in correcting algorithmically assigned labels.

The proposed correction framework consists of three steps:

1. Obtain known labels: There are two ways of identifying instances that have correct labels.
The first approach is to use domain knowledge – frequently, one has access to a subset of
clean labels and their instances. We can use this subset as our clean data for step 2. If
this set is unknown or too small, then we can inference which examples are likely to be
correctly labeled, as is done in Ding et al. (2018). We report results on both approaches in
Section 5.

2This assumption can be relaxed in situations where we can learn which labels are likely to be clean. E.g.
see Ding et al. (2018)
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2. Train semi-supervised model: The framework uses the filtered data from the previous step
to train a semi-supervised algorithm that learns to classify instances based on similarity
between features. In contrast with supervised learning, where the goal is to learn p(y|x),
we want to learn which features are most compatible with a given label: i.e. p(x|y). Thus,
we train a generative model (e.g. energy-based autoencoder) to use feature similarity (as
quantified by an energy function) to identify which instances belong to the specific class.

3. Identify and correct mislabelled instances: The features of the full training data (with mis-
labeled targets) are injected into the previously trained semi-supervised model resulting in
each instance being assigned an energy value based on the output of the model. The en-
ergy corresponding to each instance serves as a proxy for class assignment (i.e. low energy
corresponds to y = 0 whereas high energy corresponds to y = 1). Contradictions between
energy assignment and training labels are used to correct the training data such that all
labels are compatible with their assigned energy.

We first motivate the design decisions involved in this framework. Namely, we explore our choice
of contrastive divergence as a loss function and empirically justify our use of an autoencoder. In the
subsequent section, we elaborate on our implementation of the framework.

4.1 FRAMEWORK MOTIVATION

Given a small, clean dataset T ⊂ T̃ , we aim to train a model which can be used to determine
labels on the remaining, noisily labelled dataset. One obvious approach is to train a binary classi-
fier directly and use it to correct labels. However, as discussed by Berthelot et al. (2017), binary
classification provides a relatively weak training signal which largely ignores the intricacies of the
input feature distribution. See Fig. 3 where we compare the class separation achieved by a few stan-
dard binary classifiers with our proposed approach. Alternatively, one could train class conditional
models. However, such models are trained without knowledge of the primary task, differentiating
classes. Further, traditional unsupervised training regimes typically use a maximum likelihood for-
mulation (i.e. forward KL divergence) which is prone to distributing probability mass broadly (the
so-called “mean-seeking behaviour” (Murphy, 2012)) and further limit the discriminative ability of
the learned model.

Instead, we prioritize learning to discriminate the underlying classes based on aspects of the input
feature distributions. To do this, we propose to use a contrastive divergence (Carreira-Perpinan &
Hinton, 2005) training loss:

CD (θ) = KL [p0 (x) ‖q (x;θ)]− KL [p1 (x) ‖q (x;θ)] . (4)
where p0(x) and p1(x) denote the target probability distributions conditioned on class 0 and 1
respectively and q(x; θ) denotes the learned model. Thus, training aims to produce a model q (x;θ)
which assigns high probability to samples from class 0, while giving low probability to samples from
class 1. In theorem 1, we show that a finite sample approximation of the optimization objective in
Eq. 4 can be computed as

L (θ) =
1

|T0|
∑
x0∈T0

E (x0;θ)− 1

|T1|
∑
x1∈T1

E (x1;θ) , (5)

where Ty , for y ∈ {0, 1}, contains instances from class y and Ty ⊆ T , |Ty| denotes the
number of elements in Ty and E(x;θ) is the energy of the model q (x;θ), i.e., q (x;θ) =
exp (−E(x;θ)) /Z(θ) where Z(θ) is the normalizing partition function. Analogously, we can
define Eq. 5 over each mini-batch. This contrastive loss have been applied successfully in adver-
sarial training, resulting in faster and improved stability of training, enhanced generator quality, and
improved generator diversity (Zhao et al., 2016; Berthelot et al., 2017). As described in section 2.2
of (LeCun et al., 2006), the negative log-likelihood function, E(x;θ) = − log q (x;θ), constitute
a valid energy which has been used in numerous energy-based models [e.g. (Bengio et al., 2003;
Zhao et al., 2016; Berthelot et al., 2017)].

Theorem 1. The contrastive divergence CD (θ) in Equation 4 has the finite approximation L (θ) up
to some constant k which is independent of θ.

Proof. Using the definition of KL divergence, we expand Equation 4:

CD (θ) = −
∫
x

p0 (x) log q (x;θ)dx+

∫
x′
p1 (x′) log q (x′;θ)dx′ + k (6)
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(a) Logistic Regression (b) SVM (c) 1-Layer NN (d) Autoencoder

(e) Clean Data (f) Noisy Data (g) AE Corrected Data

Figure 3: In the first row, we visualize the separation achieved by classifiers trained on a training
set with noisy labels. From left to right, we show the results of logistic regression, an SVM, a 1
layer feed-forward neural network and the proposed technique. In the second row, we visualize
the training data. From left to right, we show the clean data, the noisy data and the autoencoder-
corrected data. We observe that standard binary classifiers are unable to achieve satisfactory class
separation. The 1 hidden layer NN classifier accomplishes significant separation but it incorrectly
identifies mislabelled instances. The proposed model is able to identify mislabelled instances based
on the energy distribution of the training data.

where the two entropy terms
∫
x
p0 (x) log p0 (x)dx and

∫
x
p1 (x) log p1 (x)dx have been grouped

in the constant k as they do not depend on the optimization parameters θ. Assume the Gibbs form
for the model distribution,

q (x;θ) =
e−E(x;θ)

Z(θ)
, (7)

where E(x;θ) is the energy and Z(θ) =
∫
x
e−E(x;θ)dx is the partition function. Then, Equation 6

becomes

CD (θ) =

∫
x

p0 (x)E(x;θ)dx−
∫
x′
p1 (x′)E(x;θ)dx′ (8)

−
(∫

x

p0 (x) dx

)
Z(θ) +

(∫
x

p1 (x) dx

)
Z(θ) + k, (9)

where the partition function terms conveniently cancel out due to the normalization of p0 and p1.
Therefore,

CD (θ) = Ep0(x) [E (x)]− Ep1(x) [E (x)] + k (10)

and we conclude that CD (θ) has the finite approximation L (θ) as defined in Equation 5, up to a
constant k. �

4.2 FRAMEWORK IMPLEMENTATION: CONTRASTIVE AUTOENCODER

Using the clean subset T , we implement step 2 of our framework by using an energy-based au-
toencoder (analogous to Zhao et al. (2016)). In order to ensure stable training and to prevent
the second term of Equation 5 from diverging, we balance our mini-batch to have an equal num-
ber of positive and negative class samples. After training is complete, we process the original
training data T̃ using the trained autoencoder. Specifically, we compute the energy using the re-
sulting outputs: E (x;θ) = − log q (x;θ), which reduces to the reconstruction loss correspond-
ing to the autoencoder (Goodfellow et al., 2016). For example, if the underlying distribution is
assumed to be Gaussian then, we have E (x;θ) = ‖x − x̂(θ)‖2, where x̂(θ) is the output of
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the autoencoder3. Whereas, if the underlying distribution is assumed to be Bernoulli, we obtain
E (x;θ) = − [x log x̂(θ) + (1− x) log(1− x̂(θ))].

To execute our label correction protocol, we impose the following two conditions. (i) if E(x;θ) >

Ē1− a for x ∈ T̃0, then change label of x. Here we denote T̃0 as the originals negative samples, Ē1

as the mean energy over the set of clean positive samples T1, and a is a tuneable hyperparameter
that determines how aggressively we want to change 0→ 1. Analogously, we impose condition (ii)
if E(x;θ) < Ē0 − b for x ∈ T̃1, then change label of x. The rationale is to modify samples where
the original label ỹ contradicts the energy assignment. When one is not able to tune the threshold
hyperparameters a and b, an empirical heuristic is to set them equal to the standard deviation about
the means Ē1 and Ē0 respectively. See Appendix B details and pseudo-code.

5 EXPERIMENTS

We conduct experiments with simulated data and real-world data where three different type III noise
models are studied: (i) Linear noise (perror ∼ αxi): the probability of an error occurring depends
linearly on a feature (Table 1). (ii) Quadratic noise (perror ∼ αx2

i ): the probability of an error
occurring depends on the square of a feature. We control the amount of noise added with α and
we select xi if it has sufficient variance to make the noise model distinct from random noise, i.e. 0
variance implies random noise (Table 2). (iii) Boundary noise: the probability of label error depends
on the distance from the class boundary, which is determined using the noise-free data. We report the
average class-weighted F1-score along with the standard error over 10 runs with random train-test
(80:20) splits (Table 3).

UCI benchmark datasets: We train logistic regression on the corrected dataset resulting from the
proposed algorithm. If a small clean dataset is not initially provided, then our results are labelled
as AE (learned), otherwise they are labelled at AE (known) – see step 1 in Sec. 4. We compare to
noise robust algorithms: NHERD Crammer & Lee (2010), PAM Frénay & Verleysen (2014), and
ULE Natarajan et al. (2013). Additionally, we report upper and lower bounds by training logistic
regression on the noisy data (LR-N) and on the clean data (LR-C). All algorithms are tested on noise-
free data. Even without access to any clean labels (i.e., we learn which labels are likely clean), our
framework generally outperforms the other algorithms in the presence of linear noise and quadratic
noise. In general, learning which labels are noisy following the method in Ding et al. (2018) is
not possible for arbitrary label noise processes: e.g., when the optimal discriminators of T̃ are very
different than the optimal discriminators of T . For boundary noise, we show that using a small clean
dataset T enables our methods to learn in the presence of boundary noise, where the other methods
generally breakdown (Table 3). For a fair evaluation, the benchmark algorithms (which don’t have
access to clean data) should be compared to AE (learned).

MNIST: Next, we compare our method with another state-of-the-art noise robust algorithm that
relies on clean data, i.e., the loss weighting scheme of Ren et al. (2018). Both methods are given
the same percentage of clean data for each noise setting. The task is to classify the distinguish “3”
(class 0) vs. other digits (class 1). The noise process is input dependent as it changes 4, 5, 6 to class
0 depending on a specified noise rate (α). We demonstrate (Table 4) that our method generalizes
better in the presence of type III noise, even when starting with only 1% of the data that is clean.

Arrhythmia We use the MIT-BIH Arrhythmia dataset Goldberger et al. (2000) to evaluate the pro-
posed method’s ability to correct algorithmically assigned labels. Algorithmically-assigned labels
(AALs) are prevalent in domains with abundant unlabeled data and high labelling costs. Common
applications include web page annotation, but the value of this approach extends to automatic anno-
tation of images and natural language. We employ the data preprocessing procedure described by
Mondéjar-Guerra et al. (2019), where each arrhythmia is described by 59 features.

We divide the dataset into three parts: T1, T2 and T3. T1 and T2 serve as training sets and T3 is
the test set. We train a classifier on T1 and subsequently use that classifier to generate AALs for
T2. Thus, the predictions of the trained classifier become ỹ and the original expert labels remain
y. As demonstrated in Table 1, the proposed technique achieves a higher F1 score than competing

3More precisely, E (x;θ) = ‖x− x̂(θ)‖2 up to an irrelevant scaling factor that we can drop for simplicity.
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Dataset Noise Parameters (col, α) LR-N NHERD PAM ULE AE (learned) AE (known) LR-C
Lin-Sep 1, 1.2 0.86± 0.03 0.91± 0.01 0.76± 0.01 0.90± 0.02 0.94± 0.01 0.95± 0.01 0.96± 0.01
Diabetes 5 , 1.0 0.60± 0.03 0.50± 0.01 0.48± 0.03 0.60± 0.03 0.64± 0.01 0.70± 0.02 0.72± 0.02
German 1 , 1.2 0.67± 0.03 0.72± 0.01 0.49± 0.03 0.63± 0.01 0.67± 0.03 0.73± 0.01 0.76± 0.02
Image 1 , 0.7 0.61± 0.03 0.63± 0.01 0.54± 0.01 0.61± 0.02 0.67± 0.01 0.77± 0.01 0.77± 0.01

Twonorm 1 , 1.2 0.68± 0.04 0.50± 0.02 0.43± 0.03 0.82± 0.04 0.88± 0.01 0.91± 0.02 0.98± 0.01
Breast Cancer 5 , 1.0 0.66± 0.02 0.67± 0.02 0.52± 0.03 0.60± 0.03 0.60± 0.02 0.71± 0.02 0.70± 0.01
Arrhythmia - 0.79± 0.01 0.83± 0.01 0.81± 0.02 0.66± 0.04 0.85± 0.02 0.85± .01 0.85± 0.02

Table 1: Noise model: probability of an error occurring depends linearly on an input feature. We
report the class weighted mean f1 score on the noise-free test set along with the standard error.

Dataset Noise Parameters (col, α) LR-N NHERD PAM ULE AE (learned) AE (known) LR-C
Lin-Sep 1, 1.2 0.40± 0.01 0.53± 0.04 0.62± 0.03 0.61± 0.02 0.93± 0.01 0.96± 0.01 0.96± 0.01
Diabetes 5 , 1.2 0.62± 0.01 0.59± 0.01 0.67± 0.01 0.71± 0.01 0.66± 0.03 0.69± 0.01 0.72± 0.02
German 1 , 1.2 0.60± 0.02 0.72± 0.01 0.60± 0.01 0.67± 0.01 0.68± 0.03 0.73± 0.03 0.76± 0.02
Image 1 , 0.7 0.55± 0.02 0.64± 0.01 0.57± 0.01 0.60± 0.03 0.74± 0.01 0.77± 0.01 0.77± 0.01

Twonorm 1 , 1.2 0.90± 0.03 0.55± 0.02 0.86± 0.01 0.94± 0.01 0.96± 0.01 0.97± 0.01 0.98± 0.01
Breast Cancer 5 , 1.0 0.60± 0.02 0.60± 0.02 0.63± 0.02 0.63± 0.03 0.65± 0.03 0.66± 0.01 0.70± 0.01

Table 2: Noise model: probability of an error occurring depends quadratically on an input feature.
We report the class weighted mean f1 score on the noise-free test set along with the standard error.

Dataset Noise Parameters (α) LR-N NHERD PAM ULE AE (known) LR-C
Lin-Sep 0.7 0.39± 0.01 0.41± 0.01 0.53± 0.02 0.85± 0.01 0.94± 0.01 0.96± 0.01
Diabetes 0.7 0.56± 0.01 0.53± 0.03 0.50± 0.02 0.55± 0.02 0.68± 0.02 0.72± 0.02
German 0.7 0.57± 0.01 0.70± 0.01 0.47± 0.01 0.60± 0.01 0.72± 0.01 0.76± 0.02
Image 0.7 0.43± 0.01 0.61± 0.01 0.45± 0.02 0.43± 0.01 0.74± 0.03 0.77± 0.01

Twonorm 0.5 0.52± 0.03 0.51± 0.03 0.52± 0.03 0.51± 0.04 0.88± 0.03 0.98± 0.01
Breast Cancer 0.7 0.62± 0.02 0.62± 0.02 0.46± 0.02 0.63± 0.02 0.66± 0.04 0.70± 0.01

Table 3: Noise model: probability of an error occurring depends linearly on the distance from class
boundary (which is defined by the clean dataset before noise is synthetically introduced). We report
the class weighted mean f1 score on the noise-free test set along with the standard error.

% Clean data Noise Parameter (α) AE(known) Ren et al. (2018) No noise model
1 0.1 98.28± 0.01 93.27± 0.01 90.87± 0.05
1 0.8 98.14± 0.00 91.27± 0.01 87.32± 0.03
5 0.1 98.77± 0.00 93.44± 0.01 91.01± 0.02
5 0.8 98.65± 0.00 91.29± 0.01 88.85± 0.02
10 0.1 98.93± 0.00 94.87± 0.03 90.99± 0.02
10 0.8 98.54± 0.01 91.77± 0.02 90.16± 0.03

Table 4: We compare the label re-weighting scheme of Ren et al. (2018) with our proposed model.
The models compared for different sizes of clean dataset and different noise rates α. The base model
in each case is a standard LeNet as in Ren et al. (2018)

methods. The success of the model in this setting suggests its unique robustness to feature-dependent
noise.

6 CONCLUSION

We have proposed an energy-based framework to correct mislabelled training instances. By mini-
mizing a contrastive loss, the proposed method learns a representation that is valuable in relabeling
noisy training sets. We evaluate the proposed model across six datasets and three noise models to
demonstrate the method’s empirical value in correcting feature-dependent label noise. Furthermore,
we demonstrate our method’s improvement upon existing work in making machine learning more
robust to label noise processes.
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APPENDICES

A EFFECT OF LABEL NOISE ON EMPIRICAL RISK

Here we show how label noise affects optimization of empirical risk. Recall that our task is to
improve the labels of a training set in order to enable effective learning. In the following sections,
we explore the Type I, Type II, and Type III noise. We first introduce the key variables.

We focus on binary classification, where the probability of class 0 is p and consequently, the proba-
bility of class 1 is (1− p):

p(y = 0) = p

p(y = 1) = 1− p

T represents the training set with correct labels, while T̃ represents the training set with label noise.
In our setting, we are given T̃ and propose a method to transform T̃ into T . We will call D the true
label distribution and P̃ the noisy label distribution.

T =
{

(Xi, Yi) for i = 1, 2, . . . , n
}

T̃ =
{

(Xi, Ỹi) for i = 1, 2, . . . , n
}

In the following calculations, we describe the difference in empirical risks over each training set and
the subsequent effect on stochastic gradient descent. We refer to the empirical risk over the clean
training set as R̂ [`, T ]. Similarly, we refer to the empirical risk over the corrupted training set as
R̂
[
`, T̃

]
.

R̂ [`, T ] =
1

n

n∑
i=1

` (Φ(Xi,θ), Yi) ,

In order to explain the effects of label noise on stochastic gradient descent (SGD), we are primarily
interested in the gradient of the empirical risk with respect to θ. Below, we break the empirical risk
term into two class-dependent terms and introduce short-hand to represent each of these terms.

E(X,Y )∼D

[
∇θR̂[`, T ]

]
= E(X,Y )∼D

[
∇θ

1

n

n∑
i=1

` (Φ(Xi,θ), Yi)

]
(11)

= ∇θ
1

n

n∑
i=1

E(X,Y )∼D [` (Φ(Xi,θ), Yi)] (12)

= ∇θ

[
1

n

n∑
i=1

∫
p(xi, yi)` (Φ(xi,θ), yi) dxi dyi

]
(13)

= ∇θ

[
1

n

n∑
i=1

∫
p(xi|yi)p(yi)` (Φ(xi,θ), yi) dxi dyi

]
(14)

= p(yi = 0)∇θ

[
1

n

n∑
i=1

∫
p(xi|0)`0 (Φ(xi,θ)) dxi

]
(15)

+ p(yi = 1)∇θ

[
1

n

n∑
i=1

∫
p(xi|1)`1 (Φ(xi,θ)) dxi

]
,

We define shorthand based on Equation (5):

12
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β0 = ∇θ

[
1

n

n∑
i=1

∫
p(xi|0)`0 (Φ(xi,θ)) dxi

]
(16)

β1 = ∇θ

[
1

n

n∑
i=1

∫
p(xi|1)`1 (Φ(xi,θ)) dxi

]
. (17)

Rewriting the original equation in terms of the above, we arrive at the following form for empirical
risk:

E(X,Y )∼D

[
∇θR̂[`, T ]

]
= p(yi = 0)β0 + p(yi = 1)β0 (18)

We revisit Equation 8 in the follow sections to interpret empirical risk under varying noise models.
Note that β0 and β1 are the same in both the expected empirical risk with respect to the true label
distribution (D) and the corrupted label distribution (P̃ ) for Type I and Type II noise. Additionally,
we introduce shorthand for the true expectation of empirical risk (Etrue) and the expectation of
empirical risk when labels are assigned at random (Erand).

Etrue = pβ0 + (1− p)β1 (19)
Erand = .5β0 + .5β1 (20)

A.1 TYPE I: RANDOM NOISE

In the random noise scenario, each label has an equal probability of being flipped. We parameterize
this noise by γ, resulting in :

γ = p(ỹi 6= yi) (21)

We may define both p(ỹi = 0) in terms of γ and p:

p(ỹi = 0) = p(ỹi = 0|yi = 0) + p(ỹi = 0|yi = 1) (22)
p(ỹi = 0) = (1− γ)p+ γ(1− p) (23)

(24)

Likewise, we define p(ỹi = 1) as:

p(ỹi = 1) = p(ỹi = 1|yi = 0) + p(ỹi = 1|yi = 1) (25)
p(ỹi = 1) = γp+ (1− γ)(1− p) (26)

Below, we substitute these expressions into Equation 8:

E(X,Ỹ )∼P̃

[
∇θR̂[`, T̃ ]

]
= p(ỹi = 0)β0 + p(ỹi = 1)β0 (27)

= ((1− γ) p+ γ − γp)β0 + ((1− γ) (1− p) + γp)β1 (28)
= pβ0 − 2γpβ0 + γβ0 + β1 − γβ1 − pβ1 + 2γpβ1 (29)
= pβ0 + β1 − pβ1 − 2γpβ0 − γβ1 + 2γpβ1 + γβ0 (30)
= Etrue − 2γpβ0 − γβ1 + 2γpβ1 + γβ0 (31)
= Etrue − 2γpβ0 − γβ1 + 2γpβ1 + γβ0 − γβ1 + γβ1 (32)
= Etrue − 2γpβ0 − 2γβ1 + 2γpβ1 + γβ0 + γβ1 (33)
= Etrue − 2γ (pβ0 + β1 − pβ1) + γβ1 + γβ0 (34)
= (1− 2γ)Etrue + 2γErand (35)

13
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A.2 TYPE II NOISE

Type II noise implies class-dependent label noise. Thus, we define γ0 and γ1, the class-dependent
noise rates. In addition, we define γ∗ as the average class-dependent noise rate and ε as the absolute
distance of γ0 and γ1 from γ∗. Without loss of generality, we assume γ0 > γ1.

γ0 = p(ỹi = 1|yi = 0)

γ1 = p(ỹu = 0|yi = 1)

γ∗ =
γ0 + γ1

2

ε =
γ0 − γ1

2

We may redefine p(ỹi = 0) and p(ỹi = 1) using these terms:

p(ỹi = 0) = ((1− γ0) p+ γ1 (1− p)) (36)
= ((1− γ∗ − ε) p+ (γ∗ − ε) (1− p)) (37)
= (p− γ∗p− εp+ γ∗ − γ∗p− ε+ εp) (38)

p(ỹi = 1) = ((1− γ1) (1− p) + γ0p) (39)
= ((1− γ∗ + ε) (1− p) + (γ∗ + ε) p) (40)
= (1− γ∗ + ε− p+ γ∗p− εp+ γ∗p+ εp) (41)

Plugging this into Equation 8,

E(X,Ỹ )∼P̃

[
∇θR̂[`, T̃ ]

]
= (p− γ∗p− εp+ γ∗ − γ∗p− ε+ εp)β0 (42)

+ (1− γ∗ + ε− p+ γ∗p− εp+ γ∗p+ εp)β1

= (p− 2γ∗p+ γ∗ − ε)β0 (43)
+ (1− 2γ∗ + ε− p+ 2γ∗p+ γ∗)β1

Similar to our approach with Type I noise, we aim to rephrase this equation in terms of Etrue and
Erand.

= (1− 2γ∗) pβ0 + (γ∗ − ε)β0 + (1− 2γ∗) (1− p)β1 + (ε+ γ∗)β1 (44)
= (1− 2γ∗)Etrue + (γ∗ − ε)β0 + (ε+ γ∗)β1 (45)
= (1− 2γ∗)Etrue + 2γ∗Erand + ε (β1 − β0) (46)

A.3 TYPE III NOISE

In this section, we analyze a specific case of type III noise where label corruption is restricted to a
given region of the feature space. As above, we want to study the effect on learning by determining
how the true gradient is modified in the presence of noise. We assume a scalar input space and define
the feature dependent noise as follows:

p(ỹi|x) =

{
γ x ∈ [a, b]
0 x /∈ [a, b]

}
The noise model above asserts that label noise depends only on the feature space and is label-
agnostic - thus, examples from both class 1 and class 0 with x ∈ [a, b] are equally likely to suffer
from a label flip.

14
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Revisiting

E(X,Ỹ )∼P̃

[
∇θR̂[`, T̃ ]

]
= ∇θ

[
1

n

n∑
i=1

∫
p(ỹi|xi)p(xi)` (Φ(xi,θ), ỹi) dxi dỹi

]
,

= ∇θ

[
1

n

n∑
i=1

∫ b

a

p(ỹi|xi)p(xi)` (Φ(xi,θ), ỹi) dxi dỹi

]

+ ∇θ

[
1

n

n∑
i=1

∫
x/∈[a,b]

p(yi|xi)p(xi)` (Φ(xi,θ), ỹi) dxi dỹi

]
.

Now we add and subtract the following term:

∇θ

[
1

n

n∑
i=1

∫ b

a

p(yi|xi)p(xi)` (Φ(xi,θ), ỹi) dxi dỹi

]
(47)

In order to obtain:

E(X,Ỹ )∼P̃

[
∇θR̂[`, T̃ ]

]
= Etrue +∇θ

[
1

n

n∑
i=1

∫ b

a

p(ỹi|xi)p(xi)` (Φ(xi,θ), ỹi) dxi dỹi

]

− ∇θ

[
1

n

n∑
i=1

∫ b

a

p(yi|xi)p(xi)` (Φ(xi,θ), ỹi) dxi dỹi

]

= Etrue +∇θ

[
1

n

n∑
i=1

∫ b

a

(p(ỹi|xi)− p(yi|xi)) p(xi)` (Φ(xi,θ), ỹi) dxi dỹi

]

Where we have used the fact that:

Etrue = ∇θ

[
1

n

n∑
i=1

∫ b

a

p(yi|xi)p(xi)` (Φ(xi,θ), ỹi) dxi dỹi

]

+ ∇θ

[
1

n

n∑
i=1

∫
x/∈[a,b]

p(yi|xi)p(xi)` (Φ(xi,θ), ỹi) dxi dỹi

]

B ALGORITHM PSEUDO-CODE

In this section, we include a more detailed form of the algorithms proposed in the paper.

15
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Algorithm 1 Train energy-based autoencoder

Require: T̃ . full training data
Require: T . training data with known labels
Require: η . learning rate
Require: Forward (x,θ) . autoencoder transformation that maps ∀x→ x̂
Require: E (x̂) . energy function, i.e. reconstruction loss
Require: L (B,O;θ) . objective function as defined in eq. 5
Require: GetBalancedBatch (T ) . get mini-batch with an equal number

of instances from each class

1: for i in {1,2,. . . ,m} do . where m is total number of batches
2: Bi = {xj , yj} ← GetBalancedBatch (T )
3: Oi = {x̂j} ← Forward (Bi,θi)
4: `i ← L (Bi,Oi;θi) . L (Bi,Oi;θi) is defined in Eq. 5
5: ∇θ (`i)← Backward (`i;θi)
6: θi+1 ← Step (θi, η,∇θ (`i))
7: end for

8: Initialize: E = {} . empty dictionary that will store energies
9: for {xi, ỹi} in T̃ do

10: x̂i ← Forward (xi;θ
?) . where θ? is the output of previous loop

11: ei ← E (x̂i)
12: E [i]← ei . E [i] is the value of E at index i
13: end for

Algorithm 2 Correct training data

Require: T̃ . full training data
Require: T . training data with known labels
Require: E . energies from algorithm 1
Require: E (x̂) . energy function, i.e. reconstruction loss
Require: GetNegativeSamples (T ) . get all samples from class 0
Require: GetPositiveSamples (T ) . get all samples from class 1

1: T0 ← GetNegativeSamples (T )
2: T1 ← GetPositiveSamples (T )
3: Ē0 ← 1

|T0|
∑
x∈T0

E (x) . get mean w.r.t class 0
4: Ē1 ← 1

|T1|
∑
x∈T1

E (x) . get mean w.r.t class 1

5: σ0 ←
[∑

x∈T0

(E(x;θ)−Ē0)
2

|T0|−1

] 1
2

. get standard deviation w.r.t class 0

6: σ1 ←
[∑

x∈T1

(E(x;θ)−Ē1)
2

|T1|−1

] 1
2

. get standard deviation w.r.t class 1

7: T c ← T̃ T . i.e. T c =
{

(xi, yi) ∈ T̃ ‖ (xi, yi) /∈ T
}

8: for {xi, yi} in T c do
9: ei ← E [i] . get energy corresponding to xi

10: if yi = 1 and ei < Ē0 + σ0 then
11: yi ← 0
12: else if yi = 0 and ei > Ē1 − σ0 then
13: yi ← 1
14: end if
15: end for
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