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ABSTRACT

Recent studies show that widely used deep neural networks (DNNs) are vulner-
able to carefully crafted adversarial examples. Many advanced algorithms have
been proposed to generate adversarial examples by leveraging the Lp distance for
penalizing perturbations. Researchers have explored different defense methods to
defend against such adversarial attacks. While the effectiveness of Lp distance
as a metric of perceptual quality remains an active research area, in this paper
we will instead focus on a different type of perturbation, namely spatial transfor-
mation, as opposed to manipulating the pixel values directly as in prior works.
Perturbations generated through spatial transformation could result in large Lp

distance measures, but our extensive experiments show that such spatially trans-
formed adversarial examples are perceptually realistic and more difficult to defend
against with existing defense systems. This potentially provides a new direction
in adversarial example generation and the design of corresponding defenses. We
visualize the spatial transformation based perturbation for different examples and
show that our technique can produce realistic adversarial examples with smooth
image deformation. Finally, we visualize the attention of deep networks with dif-
ferent types of adversarial examples to better understand how these examples are
interpreted.

1 INTRODUCTION

Deep neural networks (DNNs) have demonstrated their outstanding performance in different do-
mains, ranging from image processing (Krizhevsky et al., 2012; He et al., 2016), text analysis (Col-
lobert & Weston, 2008) to speech recognition (Hinton et al., 2012). Though deep networks have
exhibited high performance for these tasks, recently they have been shown to be particularly vul-
nerable to adversarial perturbations added to the input images (Szegedy et al., 2013; Goodfellow
et al., 2015). These perturbed instances are called adversarial examples, which can lead to un-
desirable consequences in many practical applications based on DNNs. For example, adversarial
examples can be used to subvert malware detection, fraud detection, or even potentially mislead au-
tonomous navigation systems (Papernot et al., 2016b; Evtimov et al., 2017; Grosse et al., 2016) and
therefore pose security risks when applied to security-related applications. A comprehensive study
about adversarial examples is required to motivate effective defenses. Different methods have been
proposed to generate adversarial examples such as fast gradient sign methods (FGSM) (Goodfel-
low et al., 2015), which can produce adversarial instances rapidly, and optimization-based methods
(C&W) (Carlini & Wagner, 2017a), which search for adversarial examples with smaller magnitude
of perturbation.

One important criterion for adversarial examples is that the perturbed images should “look like”
the original instances. The traditional attack strategies adopt L2 (or other Lp) norm distance as a
perceptual similarity metric to evaluate the distortion (Gu & Rigazio, 2014). However, this is not
an ideal metric (Johnson et al., 2016; Isola et al., 2017), as L2 similarity is sensitive to lighting and
viewpoint change of a pictured object. For instance, an image can be shifted by one pixel, which will
lead to largeL2 distance, while the translated image actually appear “the same” to human perception.
Motivated by this example, in this paper we aim to look for other types of adversarial examples
and propose to create perceptually realistic examples by changing the positions of pixels instead
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of directly manipulating existing pixel values. This has been shown to better preserve the identity
and structure of the original image (Zhou et al., 2016b). Thus, the proposed spatially transformed
adversarial example optimization method (stAdv) can keep adversarial examples less distinguishable
from real instances (such examples can be found in Figure 3).

Various defense methods have also been proposed to defend against adversarial examples. Adver-
sarial training based methods have so far achieved the most promising results (Goodfellow et al.,
2015; Tramèr et al., 2017; Mądry et al., 2017). They have demonstrated the robustness of improved
deep networks under certain constraints. However, the spatially transformed adversarial examples
are generated through a rather different principle, whereby what is being minimized is the local
geometric distortion rather than the Lp pixel error between the adversarial and original instances.
Thus, the previous adversarial training based defense method may appear less effective against this
new attack given the fact that these examples generated by stAdv have never been seen before. This
opens a new challenge about how to defend against such attacks, as well as other attacks that are not
based on direct pixel value manipulation.

We visualize the spatial deformation generated by stAdv; it is seen to be locally smooth and virtu-
ally imperceptible to the human eye. In addition, to better understand the properties of deep neural
networks on different adversarial examples, we provide visualizations of the attention of the DNN
given adversarial examples generated by different attack algorithms. We find that the spatial trans-
formation based attack is more resilient across different defense models, including adversarially
trained robust models.

Our contributions are summarized as follows:

• We propose to generate adversarial examples based on spatial transformation instead of
direct manipulation of the pixel values, and we show realistic and effective adversarial
examples on the MNIST, CIFAR-10, and ImageNet datasets.

• We provide visualizations of optimized transformations and show that such geometric
changes are small and locally smooth, leading to high perceptual quality.

• We empirically show that, compared to other attacks, adversarial examples generated by
stAdv are more difficult to detect with current defense systems.

• Finally, we visualize the attention maps of deep networks on different adversarial examples
and demonstrate that adversarial examples based on stAdv can more consistently mislead
the adversarial trained robust deep networks compared to other existing attack methods.

2 RELATED WORK

Here we first briefly summarize the existing adversarial attack algorithms as well as the current
defense methods. We then discuss the spatial transformation model used in our adversarial attack.

Adversarial Examples Given a benign sample x, an attack instance xadv is referred to as an
adversarial example, if a small magnitude of perturbation ε is added to x (i.e. xadv = x + ε)
so that xadv is misclassified by the targeted classifier g. Based on the adversarial goal, attacks
can be classified into two categories: targeted and untargeted attacks. In a targeted attack, the
adversary’s objective is to modify an input x such that the target model g classifies the perturbed
input xadv in a targeted class chosen, which differs from its ground truth. In a untargeted attack, the
adversary’s objective is to cause the perturbed input xadv to be misclassified in any class other than
its ground truth. Based on the adversarial capabilities, these attacks can be categorized as white-box
and black-box attacks, where an adversary has full knowledge of the classifier and training data
in the white-box setting (Szegedy et al., 2014; Goodfellow et al., 2015; Carlini & Wagner, 2017a;
Moosavi-Dezfooli et al., 2015; Papernot et al., 2016b; Biggio et al., 2013; Fawzi & Frossard, 2015;
Kanbak, 2017; Kurakin et al., 2016); while having zero knowledge about them in the black-box
setting (Papernot et al., 2016a; Liu et al., 2017; Moosavi-Dezfooli et al., 2016; Mopuri et al., 2017).
In this work, we will focus on the white-box setting to explore what a powerful adversary can do
based on the Kerckhoffs’s principle (Shannon, 1949) to better motivate defense methods.

Spatial Transformation In computer vision and graphics literature, Two main aspects determine
the appearance of a pictured object (Szeliski, 2010): (1) the lighting and material, which determine
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the brightness of a point as a function of illumination and object material properties, and (2) the
geometry, which determines where the projection of a point will be located in the scene. Most
previous adversarial attacks (Goodfellow et al., 2015) focus on changing the lighting and material
aspect, while assuming the underlying geometry stays the same during the adversarial perturbation
generation process.

Modeling geometric transformation with neural networks was first explored by “capsules,” compu-
tational units that locally transform their input for modeling 2D and 3D geometric changes (Hinton
et al., 2011). Later, Jaderberg et al. (2015) demonstrated that similar computational units, named
spatial transformers, can benefit many visual recognition tasks. Zhou et al. (2016a) adopted the
spatial transformers for synthesizing novel views of the same object and has shown that a geometric
method can produce more realistic results compared to pure pixel-based methods. Inspired by these
successes, we also use the spatial transformers to deform the input images, but with a different goal:
to generate realistic adversarial examples.

Defensive Methods Following the emergence of adversarial examples, various defense methods
have been studied, including adversarial training (Goodfellow et al., 2015), distillation (Papernot
et al., 2016c), gradient masking (Gu & Rigazio, 2014) and feature squeezing (Xu et al., 2017).
However, these defenses can either be evaded by C&W attacks or only provide marginal improve-
ments (Carlini & Wagner, 2017b; He et al., 2017). Among these defenses, adversarial training has
achieved the state-of-the-art performance. Goodfellow et al. (2015) proposed to use the fast gradient
sign attack as an adversary to perform adversarial training, which is much faster, followed by en-
semble adversarial training (Tramèr et al., 2017) and projected gradient descent (PGD) adversarial
training (Mądry et al., 2017). In this work, we explicitly analyze how effective the spatial transfor-
mation based adversarial examples are under these adversarial training based defense methods.

3 GENERATING ADVERSARIAL EXAMPLES

Here we first introduce several existing attack methods and then present our formulation for produc-
ing spatially transformed adversarial examples.

3.1 PROBLEM DEFINITION

Given a learned classifier g : X → Y from a feature spaceX to a set of classification outputs Y (e.g.,
Y = {0, 1} for binary classification), an adversary aims to generate adversarial example xadv for an
original instance x ∈ X with its ground truth label y ∈ Y , so that the classifier predicts g(xadv) 6= y
(untargeted attack) or g(xadv) = t (targeted attack) where t is the target class.

3.2 BACKGROUND: CURRENT PIXEL-VALUE BASED ATTACK METHODS

All of the current methods for generating adversarial examples are built on directly modifying the
pixel values of the original image.

The fast gradient sign method (FGSM) (Goodfellow et al., 2015) uses a first-order approximation
of the loss function to construct adversarial samples for the adversary’s target classifier g. The
algorithm achieves untargeted attack by performing a single gradient ascent step: xadv = x +
ε · sign(∇x`g(x, y)), where `g(x, y) is the loss function (e.g. cross-entropy loss) used to train the
original model g, y denotes the ground truth label, and the hyper-parameter ε controls the magnitude
of the perturbation. A targeted version of it can be done similarly.

Optimization-based attack (C&W) produces an adversarial perturbation for a targeted attack based
on certain constraints (Carlini & Wagner, 2017a; Liu et al., 2017) as formulated below:

min ||δ||2p s.t. g(x + δ) = t and x + δ ∈ X,

where the Lp norm penalty ensures that the added perturbation ε is small. The same optimization
procedure can achieve untargeted attacks with a modified constraint g(x + δ) 6= y.
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Figure 1: Generating adversarial examples with spatial transformation: the blue point denotes the
coordinate of a pixel in an output adversarial image and the green point is its corresponding pixel in
an input image. The flow field in red represents the displacement from the pixels in the adversarial
image to the pixels in the input image.

3.3 OUR APPROACH: SPATIALLY TRANSFORMED ADVERSARIAL EXAMPLES

All the existing approaches directly modify pixel values, which may sometimes produce noticeable
artifacts. Instead, we aim to smoothly change the geometry of the scene while keeping the original
appearance, producing more perceptually realistic adversarial examples. In this section, we first
introduce our spatial transformation model and then describe our objective function for generating
spatially transformed adversarial examples.

Spatial transformation We use x
(i)
adv to denote the pixel value of the i-th pixel and 2D coordinate

(u
(i)
adv, v

(i)
adv) to denote its location in the adversarial image xadv. We assume that x(i)

adv is transformed
from the pixel x(i) from the original image. We use the per-pixel flow (displacement) field f to
synthesize the adversarial image xadv using pixels from the input x. For the i-th pixel within xadv

at the pixel location (u
(i)
adv, v

(i)
adv), we optimize the amount of displacement in each image dimension,

with the pair denoted by the flow vector fi := (∆u(i),∆v(i)). Note that the flow vector fi goes from
a pixel x(i)

adv in the adversarial image to its corresponding pixel x(i) in the input image. Thus, the
location of its corresponding pixel x(i) can be derived as (u(i), v(i)) = (u

(i)
adv + ∆u(i), v

(i)
adv + ∆v(i)).

As the (u(i), v(i)) can be fractional numbers and does not necessarily lie on the integer image grid,
we use the differentiable bilinear interpolation (Jaderberg et al., 2015) to transform the input image
with the flow field. We calculate x

(i)
adv as:

x
(i)
adv =

∑
q∈N (u(i),v(i))

x(q)(1− |u(i) − u(q)|)(1− |v(i) − v(q)|), (1)

where N (u(i), v(i)) are the indices of the 4-pixel neighbors at the location (u(i), v(i)) (top-left, top-
right, bottom-left, bottom-right). We can obtain the adversarial image xadv by calculating Equation
1 for every pixel x(i)

adv. Note that xadv is differentiable with respect to the flow field f (Jaderberg
et al., 2015; Zhou et al., 2016b). The estimated flow field essentially captures the amount of spatial
transformation required to fool the classifier.

Objective function Most of the previous methods constrain the added perturbation to be small
regarding a Lp metric. Here instead of imposing the Lp norm on pixel space, we introduce a new
regularization loss Lflow on the local distortion f , producing higher perceptual quality for adversar-
ial examples. Therefore, the goal of the attack is to generate adversarial examples which can mislead
the classifier as well as minimizing the local distortion introduced by the flow field f .
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Formally, given a benign instance x, we obtain the flow field f by minimize the following objective:

f∗ = argmin
f

Ladv (x, f) + τLflow (f), (2)

where Ladv encourages the generated adversarial examples to be misclassified by the target classi-
fier. Lflow ensures that the spatial transformation distance is minimized to preserve high perceptual
quality, and τ balances these two losses.

The goal of Ladv is to guarantee the targeted attack g(xadv) = t where t is the targeted class,
different from the ground truth label y. Recall that we transform the input image x to xadv with the
flow field f (Equation 1). In practice, directly enforcing g(xadv) = t during optimization is highly
non-linear, we adopt the objective function suggested in Carlini & Wagner (2017a).

Ladv (x, f) = max(max
i 6=t

g(xadv)i − g(xadv)t, κ), (3)

where g(x) represents the logit output of model g, g(x)i denotes the i-th element of the logit vector,
and κ is used to control the attack confidence level.

To compute Lflow , we calculate the sum of spatial movement distance for any two adjacent pix-
els. Given an arbitrary pixel p and its neighbors q ∈ N (p), we enforce the locally smooth spatial
transformation perturbation Lflow based on the total variation (Rudin et al., 1992):

Lflow (f) =

all pixels∑
p

∑
q∈N (p)

√
||∆u(p) −∆u(q)||22 + ||∆v(p) −∆v(q)||22. (4)

Intuitively, minimizing the spatial transformation can help ensure the high perceptual quality for
stAdv, since adjacent pixels tend to move towards close direction and distance. We solve the above
optimization with L-BFGS solver (Liu & Nocedal, 1989).

4 EXPERIMENTAL RESULTS

In this section, we first show adversarial examples generated by the proposed spatial transformation
method and analyze the properties of these examples from different perspectives. We then visualize
the estimated flows for adversarial examples and show that with small and smooth transformation,
the generated adversarial examples can already achieve a high attack success rate against deep net-
works. We also show that stAdv can preserve a high attack success rate against current defense
methods, which motivates more sophisticated defense methods in the future. Finally, we analyze the
attention regions of DNNs, to better understand the attack properties of stAdv.

Experiment Setup We set τ as 0.05 for all our experiments. We use confidence κ = 0 for both
C&W and stAdv for a fair comparison. We leverage L-BFGS (Liu & Nocedal, 1989) as our solver
with backtracking linear search.

4.1 ADVERSARIAL EXAMPLES BASED ON SPATIAL TRANSFORMATIONS

We show adversarial examples with high perceptual quality for both MNIST (LeCun & Cortes,
1998) and CIFAR-10 (Krizhevsky et al., 2014) datasets.

stAdv on MNIST In our experiments, we generate adversarial examples againsts three target mod-
els in the white-box setting on the MNIST dataset. Model A, B, and C are derived from the prior
work (Tramèr et al., 2017), which represent different architectures. See Appendix A and Table 4 for
more details about their network architectures. Table 1 presents the accuracy of pristine MNIST test
data on each model as well as the attack success rate of adversarial examples generated by stAdv on
these models. Figure 2 shows the adversarial examples against different models where the original
instances appear in the diagonal. Each adversarial example achieves a targeted attack, with the target
class shown on the top of the column. It is clear that the generated adversarial examples still appear
to be in the same class as the original instance for humans. Another advantage for stAdv compared
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with traditional attacks is that examples based on stAdv seldom show noise pattern within the ad-
versarial examples. Instead, stAdv smoothly deforms the digits and since such natural deformation
also exists in the dataset digits, humans can barely notice such manipulation.

Table 1: Top: accuracy of different models on pristine data (p); bottom: attack success rates of
adversarial examples generated by stAdv on MNIST dataset.

Model A B C
Accuracy (p) 98.58% 98.94% 99.11%

Attack Success Rate 99.95% 99.98% 100.00%

Target class
0 1 2 3 4 5 6 7 8 9

(a) Model A

Target class
0 1 2 3 4 5 6 7 8 9

(b) Model B

Target class
0 1 2 3 4 5 6 7 8 9

(c) Model C

Figure 2: Adversarial examples generated by stAdv against different models on MNIST. The ground
truth images are shown in the diagonal and the rest are adversarial examples that are misclassified
to the target classes shown on the top.

stAdv on CIFAR-10 For CIFAR-10, we use ResNet-321 and wide ResNet-342 as the target clas-
sifers (Zagoruyko & Komodakis, 2016; He et al., 2016; Mądry et al., 2017). We show the classifi-
cation accuracy of pristine CIFAR-10 test data (p) and attack success rates of adversarial examples
generated by stAdv on different models in Table 2. Figure 3 shows the generated examples on
CIFAR-10 against different models. The original images are shown in the diagonal. The other im-
ages are targeted adversarial examples, with the index of the target classes shown at the top of the
column. Here we use “0-9” to denote the ground truth labels of images lying in the diagonal for each
corresponding column. These adversarial examples based on stAdv are randomly selected from the
instances that can successfully attack the corresponding classifier. Humans can hardly distinguish
these adversarial examples from the original instances.

Table 2: Top: accuracy of different models on pristine data (p); bottom: attack success rates of
adversarial examples generated by stAdv on the CIFAR-10 dataset. The numbers in parentheses
denote the number of parameters in each target model.

Model ResNet32 (0.47M) Wide ResNet34 (46.16M)
Accuracy (p) 93.16% 95.82%

Attack Success Rate 99.56% 98.84%

Comparison of different adversarial examples In Figure 4, we show adversarial examples that
are targeted attacked to the same class (“0” for MNIST and “airplane” for CIFAR-10), which is dif-
ferent from their ground truth. We compare adversarial examples generated from different methods

1https://github.com/tensorflow/models/blob/master/research/ResNet/ResNet_model.py
2https://github.com/MadryLab/cifar10_challenge/blob/master/model.py
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Target class
0 1 2 3 4 5 6 7 8 9

(a) wide ResNet34

Target class
0 1 2 3 4 5 6 7 8 9

(b) ResNet32

Figure 3: Adversarial examples generated by stAdv against different models on CIFAR-10. The
ground truth images are shown in the diagonal while the adversarial examples on each column are
classified into the same class as the ground truth image within that column.

and show that those based on stAdv look more visually realistic compared with FGSM (Goodfellow
et al., 2015) and C&W (Carlini & Wagner, 2017b) methods.

FGSM

C&W

StAdv

Figure 4: Comparison of adversarial examples generated by FGSM, C&W and stAdv. (Left:
MNIST, right: CIFAR-10) The target class for MNIST is “0” and “air plane” for CIFAR-10. We
generate adversarial examples by FGSM and C&W with perturbation bounded in terms of L∞ as
0.3 on MNIST and 8 on CIFAR-10.

Figure 5: Flow visualization on MNIST. A digit “0” is misclassified as “2”.

4.2 VISUALIZING SPATIAL TRANSFORMATION

To better understand the spatial transformation applied to the original images, we visualize the opti-
mized transformation flow for different datasets, respectively. Figure 5 visualizes a transformation
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Figure 6: Flow visualization on CIFAR-10. An “airplane” image is misclassified as “bird”.

(a) mountain bike (b) goldfish (c) Maltese dog (d) tabby cat
Figure 7: Flow visualization on ImageNet. (a): the original image, (b)-(c): images are misclassified
into goldfish, dog and cat, respectively. Note that to display the flows more clearly, we fade out the
color of the original image.

on an MNIST instance, where the digit “0” is misclassified as “2.” We can see that the adjacent
flows move in a similar direction in order to generate smooth results. The flows are more focused
on the edge of the digit and sometimes these flows move in different directions along the edge,
which implies that the object boundary plays an important role in our stAdv optimization. Figure 6
illustrates a similar visualization on CIFAR-10. It shows that the optimized flows often focus on
the area of the main object, such as the airplane. We also observe that the magnitude of flows near
the edge are usually larger, which similarly indicates the importance of edges for misleading the
classifiers. This observation confirms the observation that when DNNs extract edge information in
the earlier layers for visual recognition tasks (Viterbi, 1998). In addition, we visualize the similar
flow for the ImageNet dataset (Deng et al., 2009) in Figure 7. The top-1 label of the original image
in Figure 7 (a) is “mountain bike”. Figure 7 (b)-(d) show targeted adversarial examples generated by
stAdv, which have target classes “goldfish,” “Maltese dog,” and “tabby cat,” respectively, and which
are predicted as such as the top-1 class. An interesting observation is that, although there are other
objects within the image, nearly 90% of the spatial transformation flows tend to focus on the target
object bike. Different target class corresponds to different directions for these flows, which still fall
into the similar area.

4.3 HUMAN PERCEPTUAL STUDY

To quantify the perceptual realism of stAdv’s adversarial examples, we perform a user study with
human participants on Amazon Mechanical Turk (AMT). We follow the same perceptual study
protocol used in prior image synthesis work (Zhang et al., 2016; Isola et al., 2017). We gener-
ate 600 images from an ImageNet-compatible dataset, described in Appendix C. In our study, the
participants are asked to choose the more visually realistic image between an adversarial example
generated by stAdv and its original image. During each trial, these two images appear side-by-side
for 2 seconds. After the images disappear, our participants are given unlimited time to make their
decision. To avoid labeling bias, we allow each user to conduct at most 50 trails. For each pair of an
original image and its adversarial example, we collect about 5 annotations from different users.

In total, we collected 2, 740 annotations from 93 AMT users. Examples generated by our method
were chosen as the more realistic in 47.01% ± 1.96% of the trails (perfectly realistic results would
achieve 50%). This indicates that our adversarial examples are almost indistinguishable from natural
images.
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Table 3: Attack success rates of adversarial examples generated by stAdv against models A, B, and
C on MNIST, and against ResNet and wide ResNet on CIFAR-10, under standard defenses.

Model Def. FGSM C&W. stAdv

A
Adv. 4.3% 4.6% 32.62%
Ens. 1.6% 4.2% 48.07%
PGD 4.4% 2.96% 48.38%

B
Adv. 6.0% 4.5% 50.17%
Ens. 2.7% 3.18% 46.14%
PGD 9.0% 3.0% 49.82%

C
Adv. 3.22% 0.86% 30.44%
Ens. 1.45% 0.98% 28.82%
PGD 2.1% 0.98% 28.13%

Model Def. FGSM C&W. stAdv

ResNet32
Adv. 13.10% 11.9% 43.36%
Ens. 10.00% 10.3% 36.89%
PGD 22.8% 21.4% 49.19%

wide
ResNet34

Adv. 5.04% 7.61% 31.66%
Ens. 4.65% 8.43% 29.56%
PGD 14.9% 13.90% 31.6%

4.4 ATTACK EFFICIENCY UNDER DEFENSE METHODS

Here we generate adversarial examples in the white-box setting and test different defense methods
against these samples to evaluate the strength of these attacks under defenses.

We mainly focus on the adversarial training defenses due to their state-of-the-art performance. We
apply three defense strategies in our evaluation: the FGSM adversarial training (Adv.) (Goodfel-
low et al., 2015), ensemble adversarial training (Ens.) (Tramèr et al., 2017), and projectile gra-
dient descent (PGD) adversarial training (Mądry et al., 2017) methods. For adversarial training
purposes, we generate adversarial examples based on L∞ bound (Carlini & Wagner, 2017a) as 0.3
on MNIST and 8 on CIFAR-10. We test adversarial examples generated against model A, B, and C
on MNIST as shown in Table 4, and similarly adversarial examples generated against ResNet32 and
wide ResNet34 on CIFAR-10.

The results on the MNIST and CIFAR-10 datasets are shown in Table 3. We observe that the three
defense strategies can achieve high performance (less than 10% attack success rate) against FGSM
and C&W attacks.

These defense methods only achieve low defense performance on stAdv, which improve the attack
success rate to more than 30% among all defense strategies. These results indicate that new type
of adversarial strategy, such as our spatial transformation-based attack, may open new directions
for developing better defense systems. However, for stAdv, we cannot use Lp norm to bound the
distance as translating an image by one pixel may introduce large Lp penalty. We instead constrain
the spatial transformation flow and show that our adversarial examples have high perceptual quality
in Figures 2, 3, and 4 as well as Section 4.3.

Mean blur defense We also test our adversarial examples against the 3×3 average pooling restora-
tion mechanism (Li & Li, 2016). Table 5 in Appendix B shows the classification accuracy of recov-
ered images after performing 3× 3 average filter on different models. We find that the simple 3× 3
average pooing restoration mechanism can recover the original class from fast gradient sign exam-
ples and improve the classification accuracy up to around 70%. Carlini & Wagner have also shown
that such mean blur defense strategy can defend against adversarial examples generated by their
attack and improve the model accuracy to around 80% (2017b). From Table 5, we can see that the
mean blur defense method can only improve the model accuracy to around 50% on stAdv examples,
which means adversarial examples generated by stAdv are more robust compared to other attacks.
We also perform a perfect knowledge adaptive attack against the mean blur defense following the
same attack strategy suggested in (Carlini & Wagner, 2017b), where we add the 3× 3 average pool-
ing layer into the original network and apply stAdv to attack the new network again. We observe that
the success rate of an adaptive attack is nearly 100%, which is consistent with Carlini & Wagner’s
findings (2017b).

4.5 VISUALIZING ATTENTION OF NETWORKS ON ADVERSARIAL EXAMPLES

In addition to the analyzing adversarial examples themselves, in this section, we further characterize
these spatially transformed adversarial examples from the perspective of deep neural networks.
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(a) mountain bike (b) goldfish (c) Maltese dog (d) tabby cat

(e) (f) (g) (h)
Figure 8: CAM attention visualizations for ImageNet inception_v3 model. (a) the original image and
(b)-(d) stAdv adversarial examples targeting different classes. The second row shows the attention
visualizations for the corresponding images displayed above.

Here we apply Class Activation Mapping (CAM) (Zhou et al., 2016a), an implicit attention visu-
alization technique for localizing the discriminative regions implicitly detected by a DNN. We use
it to show the attention of the target ImageNet inception_v3 model (Szegedy et al., 2016)) for both
original images and generated adversarial examples. Figure 8(a) shows an input bike image and Fig-
ure 8(b)–(d) show the targeted adversarial examples based on stAdv targeting three different classes
(goldfish, dog, and cat). Figure 8(e) illustrates that the target model draws attention to the bicycle
region. Interestingly, attention regions on examples generated by stAdv varies for different target
classes as shown in Figure 8(f)–(h). Though humans can barely distinguish between the original
image and the ones generated by stAdv, CAM map focus on completely different regions, implying
that our attack can mislead the network’s attention.

In addition, we also compare and visualize the attention regions of both naturally trained and the ad-
versarial trained inception_v3 model3 on adversarial images generated by different attack algorithms
(Figure 9). The ground truth top-1 label is “cinema,” so the attention region for the original image
(Figure 9 (a)) includes both tower and building regions. However, when the adversarial examples
are targeted attacked into the adversarial label “missile,” the attention region focuses on only the
tower for all the attack algorithms as shown in Figure 9 (b)-(d) with slight different attention region
sizes. More interestingly, we also test these adversarial examples on the public adversarial trained
robust inception_v3 model. The result appears in Figure 9 (f)–(h). This time, the attention regions
are drawn to the building again for both FGSM and C&W methods, which are close to the attention
regions of the original image. The top-1 label for Figure 9 (f) and (g) are again the ground truth
“cinema”, which means both FGSM and C&W fail to attack the robust model. However, Figure 9
(h) is still misclassified as “missile” under the robust model and the CAM visualization shows that
the attention region still focuses on the tower. This example again implies that adversarial examples
generated by stAdv are challenging to defend for the current “robust” ImageNet models.

5 CONCLUSIONS

Different from the previous works that generate adversarial examples by directly manipulating pixel
values, in this work we propose a new type of perturbation based on spatial transformation, which
aims to preserve high perceptual quality for adversarial examples. We have shown that adversarial
examples generated by stAdv are more difficult for humans to distinguish from original instances.

3https://github.com/tensorflow/cleverhans/tree/master/examples/nips17_adversarial_competition/
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(a) Benign (b) FGSM (c) C&W (d) StAdv

(e) Benign (f) FGSM (g) C&W (h) StAdv

Figure 9: CAM attention visualizations for ImageNet inception_v3 model. The first column shows
the CAM maps corresponding to the original images. Column 2-4 show the adversarial examples
generated by different methods. The visualizations are drawn for Row 1 (inception_v3 model) and
Row 2 (adversarial trained inception_v3 model). (a) and (e)-(g) are labeled as the ground truth
“cinema”, while (b)-(d) and (h) are labeled as the adversarial target “missile.”

We also analyze the attack success rate of these examples under existing defense methods and
demonstrate they are harder to defend against, which opens new directions for developing more
robust defense algorithms. Finally, we visualize the attention regions of DNNs on our adversarial
examples to better understand this new attack.
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A MODEL ARCHITECTURES

Table 4: Architecture of models applied on MNIST

A B C
Conv(64,5,5) + Relu Conv(64,8,8) + Relu Conv(128,3,3) + Relu
Conv(64,5,5) + Relu Dropout(0.2) Conv(64,3,3) + Relu

Dropout(0.25) Conv(128, 6, 6) + Relu Dropout(0.25)
FC(128) + Relu Conv(128, 5, 5) + Relu FC(128) + Relu

Dropout(0.5) Dropout(0.5) Dropout(0.5)
FC(10) + Softmax FC(10) +Softmax FC(10)+Softmax

B ANALYSIS FOR MEAN BLUR DEFENSE

Here we evaluated adversarial examples generated by stAdv against the 3 × 3 average pooling
restoration mechanism suggested in Li & Li (2016). Table 5 shows the classification accuracy of
recovered images after performing 3× 3 average pooling on different models.

Table 5: Performance of adversarial examples against the mean blur defense strategy with 3 × 3
mean filter.

Accuracy on
recovered images

MNIST CIFAR-10
A B C Resnet32 wide ResNet34

3× 3 Average Filter 59.00% 64.22% 79.71% 45.12% 50.12%

C ADVERSARIAL EXAMPLES FOR AN IMAGENET-COMPATIBLE SET,
MNIST, AND CIFAR-10

Experiment settings. In the following experiments, we perform a grid search of hyper-parameter τ
so that the adversarial examples can attack the target model with minimal deformation. Values of τ
are searched from 0.0005 to 0.05.

ImageNet-compatible. We use benign images from the DEV set from the NIPS 2017 targeted
adversarial attack competition.4 This competition provided a dataset compatible with ImageNet and
containing target labels for a targeted attack. We generate targeted adversarial examples for the
target inception_v3 model. In Figure 10 below, we show the original images on the left with the
correct label, and we show adversarial examples generated by stAdv on the right with the target
label.

MNIST. We generate adversarial examples for the target Model B. In Figure 11, we show original
images with ground truth classes 0–9 in the diagonal, and we show adversarial examples generated
by stAdv targeting the class of the original image within that column.

CIFAR-10. We generate adversarial examples for the target ResNet-32 model. In Figure 12, we
show the original images in the diagonal, and we show adversarial examples generated by stAdv
targeting the class of the original image within that column.

Table 6 shows the magnitude of the generated flow regarding total variation (TV) and L2 distance
on the ImageNet-compatible set, MNIST, CIFAR-10, respectively. These metrics are calculated by
the following equations, where n is the number of pixels:

TV =

√√√√ 1

n

all pixels∑
p

∑
q∈N (p)

||∆u(p) −∆u(q)||22 + ||∆v(p) −∆v(q)||22. (5)

4https://github.com/tensorflow/cleverhans/tree/master/examples/nips17_
adversarial_competition/dataset
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L2 =

√√√√ 1

n

all pixels∑
p

||∆u(p)||22 + ||∆v(p)||22 (6)

Table 6: Evaluation Metric (the number in bracket is image size)

Metric ImageNet-compatible (299x299) MNIST (28x28) CIFAR-10 (32x32)
flow TV 2.85× 10−4 ± 7.28× 10−5 8.26× 10−3 ± 4.95× 10−3 2.21× 10−3 ± 1.26× 10−3

flow L2 2.11× 10−4 ± 5.19× 10−5 5.18× 10−2 ± 5.66× 10−2 2.76× 10−3 ± 2.31× 10−3
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(a) Benign image (labeled as dung beetle) (b) Adversarial image (labeled as scale)

(c) Benign image (labeled as jeep) (d) Adversarial image (labeled as coil)

(e) Benign image (labeled as bull mastiff) (f) Adversarial image (labeled as American lobster)

17



Published as a conference paper at ICLR 2018

(g) Benign image (labeled as buckeye) (h) Adversarial image (labeled as goose)

(i) Benign image (labeled as thatch) (j) Adversarial image (labeled as miniature poodle)

(k) Benign image (labeled as beaker) (l) Adversarial image (labeled as padlock)
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(m) Benign image (labeled as strawberry) (n) Adversarial image (labeled as tench)

(o) Benign image (labeled as folding chair) (p) Adversarial image (labeled as power drill)

(q) Benign image (labeled as jeep) (r) Adversarial image (labeled as house finch)
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(s) Benign image (labeled as vase) (t) Adversarial image (labeled as marmoset)

Figure 10: Examples from an ImageNet-compatible set. Left: original image; right: adversarial
image generated by stAdv against inception_v3.
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Figure 11: Adversarial examples generated by stAdv against Model B on MNIST. The original
images are shown in the diagonal; the rest are adversarial examples that are classified into the same
class as the original image within that column.
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Figure 12: Adversarial examples generated by stAdv against a ResNet-32 on CIFAR-10. The orig-
inal images are shown in the diagonal; the rest are adversarial examples that are classified into the
same class as the original image within that column.
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