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Abstract

We introduce a novel approach for batch selection in Stochastic Gradient Descent
(SGD) training, leveraging combinatorial bandit algorithms. Our methodology fo-
cuses on optimizing the learning process in the presence of label noise, a prevalent
issue in real-world datasets. Experimental evaluations on the CIFAR-10 dataset
reveal that our approach consistently outperforms existing methods across vari-
ous levels of label corruption. Importantly, we achieve this superior performance
without incurring the computational overhead commonly associated with auxiliary
neural network models. This work presents a balanced trade-off between com-
putational efficiency and model efficacy, offering a scalable solution for complex
machine learning applications.

1 Introduction

As applications increasingly demand larger and more complex deep learning models, the need for
efficient training strategies has become paramount. One way to accelerate training and potentially
improve model performance is through the use of Curriculum Learning (CL) and adaptive batch
selection. These techniques optimize learning by selectively focusing on data samples that are
intrinsically rich and informative at the most appropriate stages of the learning process. Such strategies
not only accelerate convergence but also enhance the model’s ability to generalize [19, 20, 27].

While many methods use difficulty metrics to select easy, hard, or uncertain instances for training [31],
a key area lies in handling noisy or mislabeled datasets [28]. This domain is particularly important for
two reasons: a) the impact of batch selection strategies is easily measured, leading to more insightful
conclusions; and b) it addresses the prevalent real-world scenarios where data is often sourced from
the web [18] or crowdsourced [7], and a large portion is considered “unclean”.

Sample selection strategies using auxiliary Deep Neural Networks (DNN) effectively mitigate the
impact of noisy or mislabeled data. However, these approaches incur substantial computational
overhead, limiting their scalability [9, 13, 17, 33]. While alternative methods like SELFIE [26]
offer computational efficiency, they are under-explored and rely on steps like re-labeling for optimal
performance. Meanwhile, the literature on CL and batch selection offers numerous methods for
efficient sample selection across diverse domains [8, 19].

This paper introduces a novel approach that synergizes insights from the CL and batch selection
literature to enhance efficient sampling schemes, specifically targeting scenarios with prevalent label
noise. Our methodology aims to achieve superior performance without the computational burden
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often associated with deploying additional DNNs, thereby striking a balance between efficacy and
computational efficiency. Unlike traditional CL approaches that focus on individual instances or tasks,
our method refines the feedback loop from each training iteration to optimize the selected batch. This
approach is particularly relevant for tackling the challenges posed by the increasing computational
complexity and diversity of machine learning applications across various domains.

2 Background

Batch selection and curriculum learning CL [3] and its variants like Self-Paced Learning (SPL)
[15] and Hard-Example Mining (HEM) [6, 19] provide frameworks for adaptive instance, batch, or
task selection based on difficulty or importance. Despite the efficacy of these strategies in enhancing
stability and convergence, a universal solution remains elusive, prompting exploration into varied
strategies, new importance metrics, and advanced re-weighting and sampling techniques.

Re-weighting the model’s loss by instance, akin to importance-sampling techniques, has been
investigated by [6, 19, 24]. These studies have indicated that re-weighting can stabilize gradient
estimates and reduce bias in the original objective function. However, both Loshchilov and Hutter
[19] and Chang et al. [6] have argued that the impact of this strategy on performance is limited, and
that comparable or superior results can be achieved by sampling from a weight-induced distribution.
Matiisen et al. [20] compared the sample selection strategies, ε-greedy, Boltzmann, and Thompson
sampling, and concluded that the optimal strategy hinges heavily on the sample weight metric. A
novel metric not tied to difficulty was introduced by Chang et al. [6], emphasizing samples with high
prediction uncertainty, and inspired by active learning. The authors demonstrated that, by avoiding
overly easy or hard instances, their strategy surpassed SPL or HEM on datasets like MNIST and
CIFAR with and without label noise. Song et al. [27] introduced Recency Bias to boost SGD’s
convergence by combining principles of [19] and [6]. The technique centers on prediction uncertainty,
measured by predicted label entropy, as its adaptive sample selection metric. It uses a Boltzmann
distribution with energy based on prediction uncertainty and a pressure parameter. Leveraging a
sliding window, it emphasizes recent scores, mitigating overfitting and slow convergence. Importantly,
Active Bias, Recency Bias, and our approach add minimal computational load to model training.

Automated curriculum learning (ACL) distinguishes itself among CL approaches by the degree of
control over the learning process. In ACL, the selection of tasks is determined dynamically using an
algorithm, typically an RL or a bandit method. Graves et al. [8] and Matiisen et al. [20] have proposed
utilizing a non-stationary bandit (Exp3). They demonstrated that when an agent lacks prior knowledge
of its tasks, ACL can significantly boost training efficiency relative to uniform sampling. Moreover, a
bandit algorithm can discover complex orderings and opportunities for efficient knowledge transfer
in an unsorted curriculum. Although prior literature has focused primarily on task-based ACL, the
same principles can be utilized in instance and batch selection.

This paper aims to build upon the mentioned foundational CL techniques by introducing efficient
batch selection methods, particularly in the context of learning with noisy labels.

Efficient learning with noisy labels Learning with Noisy Labels (LNL) shares a connection with
batch selection but has a different objective. While batch selection picks instances that inherently
aid training, LNL focuses on distinguishing between those with clean and noisy labels. Both fields
converge when the right batch selection strategy is used to isolate the “clean” instances.

LNL is challenging due to DNNs’ tendency to memorize complex and possibly incorrect instances,
after initially learning simpler patterns [1, 34]. This can lead to memorization of inaccurate labels,
compromising model generalization. Mislabeled data can also cause confirmation bias, which arises
when models overfit to early-selected instances. Multi-network and co-training [9, 33] address these
issues but add computational overhead and complexity. Both challenges highlight the need for robust
training methods.

The “small-loss trick” is a commonly utilized tool for filtering out noisy labels by deeming instances
with smaller losses as likely clean. While prevalent in DNN approaches (e.g., [9, 13, 17, 25, 33]), this
method is not optimal when noisy and clean example distributions overlap significantly. Alternative
methods, like measuring prediction uncertainty over time, have been explored as indicators of label
corruption [6, 22, 26].
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Similarly to batch selection, LNL methods can be broadly categorized into: loss correction and
sample selection [28]. Loss correction includes re-weighting or re-labeling. Active Bias [6] re-
weights instances based on prediction variance, bridging LNL and batch selection. A method by Ren
et al. [24] uses a clean validation set to dynamically assign weights. Re-labeling refines labels
from a mix of noisy labels and DNN predictions, as seen in [23, 29, 32], effectively providing
data augmentation. While innovative, these methods pose risks like overfitting to noisy labels and
add complexity. Filtering out noisy labels, by contrast, provides a simpler approach but sacrifices
information from label refinement. Sample selection filters out mislabeled data during training,
often using an auxiliary DNN. MentorNet [13] stands out as a pivotal multi-network approach. It
supervises a StudentNet by emphasizing “clean” instances and refining the learning trajectory based
on feedback. Han et al. [9] proposed a “Co-teaching” paradigm, an alternative, where two DNNs
are trained simultaneously and share insights on small-loss instances to diminish errors from noisy
labels. “Co-teaching+” [33] tackles the risk of two networks reaching a consensus with an ’update
by disagreement’ strategy. The "deep abstaining classifier" [30] is a feature-based multi-network
approach, which is particularly effective against structured noise. DivideMix [17] has demonstrated
the state-of-the-art LNL performance by employing a semi-supervised (SSL) approach. It dynamically
segregates training data into clean and noisy sets using a Gaussian Mixture Model (GMM) and the
small-loss trick. To avoid confirmation bias, it utilizes co-teaching. The mislabeled instances are
stripped of their labels and refined using SSL [4]. Despite their ability to counteract confirmation
bias, the multi-network training approaches often come with significant computational overhead.

SELFIE [26] is a hybrid approach, combining both loss correction and sample selection. SELFIE
seeks to refurbish labels of unclean samples selectively, based on uncertainty, and leverage them
along with clean samples, to further reduce false corrections while fully exploiting the current training
data. While methods like SELFIE are computationally efficient and provide increase in performance,
we argue that their selection strategies can be made better. In this paper we focus on improving the
batch selection methodology, and compare performance to the pure selection method, Active Bias [6],
and two bandit approaches — the Exponential-weight algorithm for Exploration and Exploitation
(Exp3) [2] and Follow the Perturbed Leader (FPL) [16, 21]. Details on these algorithms can be found
in Sec. 3 and in Appendix, Sec. A.

Improving sampling efficiency by exploration The challenge of balancing exploration and ex-
ploitation is inherent in the process of batch selection. This balance is crucial for identifying new
instances that can enhance training efficiency and subsequently leverage them for optimal training
outcomes. In addition, it is essential to account for the high degree of non-stationarity in neural
network training. Specifically, a network can typically be trained on a particular data instance for
only a few iterations before it risks overfitting. To address this issue, our approach aims to man-
age non-stationarity by dynamically adapting weight estimates. This adaptation can be achieved
either through periodic reevaluation, which may be computationally expensive, or by employing a
discounted moving average.

So far we are aware of only one study that has directly compared various exploration-exploitation
strategies in the context of instance selection: its mixed results suggest such strategies depend
highly on the researcher’s choice of a sample weight metric [20]. Although ε-greedy and UCB
bandit methods have demonstrated effective performance in instance selection [6, 20], the Boltzmann
exploration strategy has recently gained prominence in this subfield [5, 19]. In particular, the
adversarial bandit — Exp3 [2], which uses Boltzmann exploration, is commonly utilized as a
baseline in non-stationary environments, and has been shown to be particularly effective in automated
curriculum learning [8, 20].

Our work diverges from prior studies focused on choosing instances [6, 27] or tasks [8, 20], and
targets batch selection instead. We utilized the FPL strategy, which can be thought of as a natural
extension of Exp3 into combinatorial (batch), rather than individual (instance) action selection.

3 Methods

Adversarial multi-armed bandit problem A classic baseline approach for non-stationary en-
vironments is the adversarial bandit, in particular, the Exp3 algorithm and its variants. In an
adversarial K-armed bandit problem, at each time step t ∈ {1, 2, ..., T}, the player selects an action
at ∈ {1, 2, ...,K} and then an adversary, with full knowledge of the player’s previous actions, assigns
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a reward vector rt = (rt,1, rt,2, ..., rt,K) ∈ [0, 1]K across all actions. The player receives a reward
rt,at corresponding to the selected action at. There is typically almost no restrictions on how the
adversary can choose the reward vectors, as long as the sequence of reward vectors r1, r2, ..., rT is
fixed in advance or chosen based on the player’s past actions. The player’s goal remains to maximize
the total collected reward or equivalently, to minimize regret.

Combinatorial bandits for batch selection In order to select a full batch of instances at once we
need to utilize the combinatorial bandit paradigm, which considers the joint utility of combinations
of “basic arms”. Formally, combinatorial bandits can be considered a type of bandit where a subset
of arms is selected in a form of a binary vector a ∈ {0, 1}d, and the final reward is derived from
either a Hadamard or a dot product of that vector with the reward vector r. In this work we consider
only the subset of a pre-specified batch size m, s.t. ||a||1 = m, and a semi-bandit reward model
(see Appendix, Sec. A). A direct application of Exp3 to the semi-bandit problem would entail
monitoring the sequence of estimates for

(
K
m

)
arms, a task that is computationally infeasible. The

state-of-the-art approach to semi-bandits is Follow the Perturbed Leader (FPL) [10], which mimics
Exp3, but estimates probabilities using reward perturbations, rather than storing them directly. FPL
was originally introduced by Hannan [10] and Kalai and Vempala [14], with an efficient version
operating on a principle of geometric re-asmpling (GR) proposed by Neu and Bartók [21]. In this
work, we adapt the FPL algorithm to batch selection.

FPL operates over n rounds, maintaining a vector of weights wt,i for each action ai in the action set
A. In our case a is a binary vector, such that setting an i-th action ai = 1 corresponds to selecting an
i-th instance xi. Each round the algorithm perturbs the weights with noise ρt from distribution Q,
selecting the action at that maximizes the inner product with the perturbed weight vector. While Neu
and Bartók [21] used the Exp(1) distribution for Q, recent work by Honda et al. [11] suggests the
Fréchet(2) (also known as inverse Weibull) distribution yields optimal regret in adversarial settings.
As opposed to the algorithms presented in literature [11, 21] we estimate reward, rather than loss
associated with each arm. We have found this adaptation to significantly improve performance in our
application, however we acknowledge that while this algorithm remains in line with reward estimation
done in Exp3, the original theoretical performance guarantees for combinatorial arm selection may
no longer apply.

Algorithm 1: Follow The Perturbed Leader (Reward-guided)
Data: A, n, η,M,Q

1 for i = 1 to d do
2 w0,i ← 0 // Initialize weight vector
3 for t = 1 to n do
4 Sample ρt ∼ Q // Sample weight perturbations
5 Compute at = argmaxa∈A⟨a, ηwt−1 + ρt⟩ // Choose combinatorial action
6 rt ∼ νat // Draw reward vector from arm at of MAB ν
7 foreach i with at,i = 1 do

// Geometric Re-sampling
8 Sample σt,i ∼ Geometric(pt,i)
9 r̂t,i = min{M,σt,i}at,irt,i // Compute bounded reward estimate

10 wt,i = wt−1,i + r̂t,i // Update weight of chosen action

Following action selection, for each i where at,i = 1, the algorithm proceeds with a geometric
re-sampling (GR) step. Sampling from the geometric distribution estimates 1/pi and in practice is not
done directly, but rather by sampling arms from Q+ ηwt−1 and counting the number of iterations to
re-occurrance. M is the cap on sampling size, to trade off computational efficiency with estimation
accuracy. The algorithm draws a sample σt,i from the approximated geometric distribution, and
computes a bounded reward estimate r̂t,i in the same way as Exp3, as an importance-weighted
estimate, by at,iσt,irt,i.1

Finally, the algorithm updates the weight wt,i of the chosen action ai by adding the reward estimate
r̂t,i to the previous weight wt−1,i. This process continues for n rounds, enabling the algorithm to

1σt,i estimates 1/pi
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Figure 1: Test error over the course of training with confidence intervals (CI) over 5 runs for Uniform,
Active Bias (weighted), Exp3 and FPL, for label noise ratio ∈ {0.1, 0.3, 0.5}.

effectively explore and exploit the action space by balancing the current estimated rewards and the
exploration noise introduced by perturbations. While FPL may require more computational resources
compared to Exp3, it offers the advantage of reducing dependency on the combinatorial action space.
This makes FPL a practical choice for real-world sequential decision-making tasks.

Label noise According to Song et al. [28], label noise can be either instance-independent, charac-
terized by constant rates and probabilities, or instance-dependent, where corruption probabilities vary
with data features and true labels. This study concentrates on symmetric, instance-independent noise
to provide a baseline in a controlled setting.

LNL weight metric Choosing the right metric to select informative instances is still an open
problem. In the field of LNL, metrics based on prediction loss [9, 13, 17, 33] and prediction
uncertainty [6, 22, 26] have shown particular promise. The following metric was proposed by Chang
et al. [6] as part of the Active Bias method:

wi ∝ v̂ar(pHt−1
i

(yi|xi)),

where, for each instance xi, it saves prediction probabilities for their target class over time in a history
bufferHi, and then computes their variance.

We employed this metric in our study, as it was shown suitable both for LNL and for batch selection in
general. Unlike the metrics that are derived from the change in the state of the model, the probability-
based metrics reflect the model’s current confidence in its predictions, rendering them independent of
the target solutions, and therefore, consistent across instances. This property makes them inherently
balanced for problems such as LNL. However, it should be noted that while these metrics offer
advantages, they do not directly track the progression of training. Therefore, following Song et al.
[27], we limit the size of the history to 10 predictions.

The estimated weights serve two main purposes: either to re-weight the loss as in [24] or to parameter-
ize the probability distribution over data instances. The latter often employs a Boltzmann distribution
(e.g. [8, 20]): Ps(i|H,Se, D) = ewi/τ/Z where Z is the normalization constant, H denotes the
history of scores (e.g. instance losses or prediciton probabilities), Se is the set of samples used in the
current epoch, and D = {(xi, yi) | i = 1, 2, . . . , N} represents the dataset. Given our interest in the
role of exploration in sample efficiency, we primarily focus on sampling methods underpinned by
bandit algorithms such as Exp3, which also employs a Boltzmann-like distribution.

4 Results

Experimental Setup We evaluated the performance of various sampling methods including Uni-
form Sampling, Active Bias, Exp3, and FPL on the CIFAR-10 dataset using a DenseNet model [12]
with 40 layers. We used the Adam optimizer with momentum 0.9 and an initial learning rate of 0.1
that is decayed by multiplicative factor of 0.1 after 40 k and 60 k iterations. The batch size was set to
128 and we ran 200 epochs, consisting of 391 batches each. All methods were repeated 5 times with
different seeds, under varying label corruption percentages ranging from 0% to 50%. We report the
mean and 95% confidence intervals (CI) of test accuracy achieved by each method. We will release a
PyTorch implementation to reproduce our experiments upon paper acceptance.
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Results Under all label corruption scenarios, FPL exhibited significantly reduced noise and superior
performance compared to the other methods, with Exp3 outperforming Active Bias, and Active
Bias performing better than Uniform Sampling. In conditions with no label noise, no significant
improvement was observed across methods, revealing a potential limitation in sensitivity to “hard to
classify” instances and an overfocus on mislabeling.

Method
Noise 10% 20% 30% 40% 50%

Uniform best 10.24±0.25 12.05±0.54 14.08±0.39 16.75±0.30 19.40±0.26
last 13.61±0.24 16.73±1.30 20.28±0.72 23.88±0.78 30.34±1.70

Active Bias best 9.17±0.15 10.69±0.13 12.85±0.09 15.09±0.19 18.09±0.19
last 12.03±0.57 13.74±0.62 17.26±0.45 20.70±0.31 25.86±0.88

Exp3 best 8.74±0.13 10.28±0.13 12.19±0.15 14.51±0.23 18.02±0.51
last 10.64±0.22 12.30±0.49 14.67±0.80 17.42±0.51 22.27±0.50

FPL best 8.37±0.19 10.04±0.15 12.11±0.34 14.25±0.36 17.65±0.29
last 8.97±0.15 10.46±0.24 12.77±0.37 15.37±0.46 19.79±0.51 0 10 20 30 40 50

Noise Level [%]

10

15

20

25

30

La
st

 E
po

ch
 Te

st
 E

rro
r [

%
] Uniform

Active Bias
FPL
Exp3

Figure 2: Left: Lowest and final epoch test errors (%) for each method on CIFAR-10 by noise ratio.
Right: Visualizing last epoch performance.

Discussion The methods maintained a consistent ranking across noise levels, with the performance
gap widening as noise increased (see Fig. 1 and 2). FPL consistently yielded smooth and stable
convergence, due to its ability to choose informative instances. When adopting the same weight
metric and neural network architecture as Active Bias, our results show that implementing a bandit
strategy can lead to significant performance gains. This underscores the importance of not just
selecting an optimal weight metric, but also employing a beneficial exploration policy.
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Figure 3: Analysis of instance selection for Uniform, Exp3, and FPL1 with 20% label noise, showing
selection occurrence during the initial (a) and final (b) 1000 iterations and total proportion of
mislabeled instances (c; front) over total occurrences (c; background). The order of curves at index 0
aligns well with the overall performance of the methods, revealing a concentration of selection in
Exp3 and FPL, particularly pronounced in FPL, with Exp3 demonstrating overfitting to a limited set
of instances.

Analysis of instance occurrences (Fig. 3) reveals insights into the differences in sampling strategies,
addressing our initial inquiry into performance gain from utilizing batch- as opposed to instance-based
feedback. Initially (Fig. 3a), all methods show similar selection frequencies, but distinctions emerge
as training concludes (Fig. 3b), especially for Exp3 and FPL. Notably, the algorithm’s pattern of
concentration on specific instances correlates well with its performance. While Exp3 resembles
an exponential distribution, FPL produces a threshold at about 20 k instances, filtering 30 k of the
remaining images. The preference for ‘clean’ instances between the 10 k and 20 k sorted index
intensifies towards the end of training, indicating the algorithm’s inclination to retain instances
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initially deemed ‘clean’. These insights emphasize FPL’s efficiency as an m-set combinatorial bandit
method, and highlight its suitability for batch selection.

In Fig. 3c, we display curves representing total counts throughout the run, providing a holistic view of
each method’s sample selection strategy. Over these, with solid lines, we superimpose the percentage
of mislabeled instances within a sliding window of 1000 sorted instances. Each point on the overlay
represents the mislabeling percentage within that window, revealing a trend: instances sampled
less frequently (toward the right) have higher mislabeling percentages. This visualization supports
our hypothesis that bandit methods with uncertainty-based metrics, like Exp3 and FPL, enhance
performance by focusing on and filtering out mislabeled instances.

While Exp3 effectively identifies mislabeled instances like FPL (Fig. 3c), it tends to overfit to a narrow
set and over-explore the rest (Fig. 3b). This is expected as Exp3 is an instance-based algorithm.
However, this overfitting poses risks to its efficacy, as consistently selecting the same subset of
impactful instances, combined with a broad array of less pertinent ones, leads to lower performance.
Conversely, FPL, by adjusting weights in accordance with other instances, revisits a larger, more
balanced subset regularly, forming more informative and consequential batches, ensuring optimal
selection in batch training scenarios.

As weights play a crucial role in understanding the learning process in depth, we further analyze the
weight dynamics of FPL in Fig. 4. Initially set to 0, the weights adjust smoothly throughout training,
maintaining a balance in instance selection without anomalies or overfitting. There is a 40%-60%
split in instance selection (Fig. 3b) that is clearly reflected in the weights, with those corresponding to
highly informative instances increasing rapidly, whereas those consistently labeled (either correctly
or as mislabeled) remaining closer to zero. It is worth noting here that all instances were selected
at least once, with all weights turning strictly positive by the end of the run. Entropy visualization
(Fig. 4a) further emphasizes effective convergence on a well-sized subset of instances, reinforcing
selection for better exploitation without excessive exploration.
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Figure 4: Instance weight visualization. Entropy-aggregated weights are visualized over time in
(a). Once all instances are selected by epoch 40, the entropy gradually declines as certain instances
gain importance. This pattern indicates effective diversification without overfitting. In (b), a random
subset of weights is displayed over time to further validate their individual trajectories. In (c) the
lowest weights are shown to dynamics of weights that remain close to 0.

Scalability and hyperparameter sensitivity We ran our experiments using η = 0.3 and γ = 0.1
for Exp3 and η ≈ 18, β ≈ 20, and the Fréchet(0.45) distribution for FPL. To show that FPL has
small sensitivity to these hyperparameters, we ran a grid search in their vicinity (see Fig. 5). We
found the number of GR samples to be optimal between 500 and 1000. In that range GR introduces
an additional computational overhead of 20%-40%. This may seem alarming at first, however, we
point out that GR is embarrassingly parallelizable and instance-based, which makes it scalable in
practical applications.

Limitations and future directions Exp3’s slower adaptation and potential benefits of its variants
like Exp3.P or Exp3.IX warrant further consideration. FPL excels in balancing exploration and
exploitation but shows limited improvement in noise-free scenarios, suggesting a potential overfocus
on mislabeled instances. While all methods generalize well, tests were limited in scope. Future work
will include naturally noisy sets like WebVision [18], as well as metrics like area under the margin
(AUM) [22], to deepen insights and enhance results.

1Active bias method is excluded here as we use its loss re-weighting variant, and so its sampling distribution
is the same as uniform.
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Figure 5: FPL hyperparameter sensitivity analysis for 50% label noise.

5 Conclusions

This investigation into the performance of sampling methods under different noise conditions has
revealed key insights into their adaptability, stability, and algorithmic nuances. FPL’s effective balance
between exploration and exploitation, particularly its focus on uncertain instances, underscores its
superior performance. Nonetheless, the absence of marked improvement in noise-free settings and
the limited scope of our experiments highlight avenues for future research and refinement.
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A Bandit algorithms

Classic adversarial bandits The classic adversarial algorithm, Exp3 (Alg. 8), employs a multi-step
process for importance adjustments of reward estimates. First, it adjusts the reward rj for arm j
at time t using the formula r̂j =

rt,j
pt,j

Ij=it , where pt,j is the probability of choosing arm j. These
adjusted rewards are then used to estimate sample weights wj . Finally, these weights wj are utilized
in the Boltzmann distribution for sampling instances.

Algorithm 2: Exp3 Algorithm
Data: γ ∈ (0, 1], K

1 for i = 1 to K do
2 w1,i ← 1 // Initialize weights
3 for each round t = 1, 2, ... do
4 pt,j ← (1− γ)

wt,j∑K
k=1 wt,k

+ γ
K // Compute pmf

5 it ∼ pt // Sample action
6 rt,it ∼ νit // Draw reward from arm it of MAB ν
7 r̂j ← rt,j

pt,j
I{j=it} // Compute reward estimate

8 wt+1,j ← wt,j exp(γr̂t,j) // Update weights

The Exp3 algorithm is very efficient computationally and is suitable for task or individual instance
selection, but it doesn’t take into account an impact of a full batch of instances on the performance
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of the neural network, which may result in suboptimal performance when competing instances are
present in the same batch.

Analysis and adoption of semi-bandit feedback in combinatorial bandits Combinatorial bandits
can be categorized as full-information, semi-bandits, or full-bandit feedback. In the full-bandit
feedback scenario we observe just one reward per batch. While maximizing this reward is our
ultimate objective, ignoring the available information about rewards received for individual arms
makes the decision process suboptimal. The full information setup, where rewards from all the arms
are observed is computationally infeasible, as it requires re-evaluating the network on all the instances.
In our research we adopt the semi-bandit, in which the rewards are observed only for the basic arms
selected in the current round. This setup aligns well with our problem, where we observe the rewards
for instances that the neural network was trained on in current iteration. As this information is readily
available, no additional passes through the network are required.

Efficient variant of FPL was proposed by Neu and Bartók [21], who deployed Geometric Re-
sampling to estimate probabilities for importance-weighted reward estimates (re-weighting step),
making FPL the first computationally feasible solution to semi-bandits with strong guarantees. While
other methods may offer comparable or superior theoretical performance in terms of upper regret
bounds, they frequently suffer from computational inefficiency or require additional optimization
steps, rendering them impractical for real-world applications. The primary appeal of FPL lies in its
computational efficiency.
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