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Abstract

We propose an end-to-end framework for training domain specific models (DSMs)1

to obtain both high accuracy and computational efficiency for object detection2

tasks. DSMs are trained with distillation [1] and focus on achieving high accuracy3

at a limited domain (e.g. fixed view of an intersection). We argue that DSMs4

can capture essential features well even with a small model size, enabling higher5

accuracy and efficiency than traditional techniques. In addition, we improve the6

training efficiency by reducing the dataset size by culling easy to classify images7

from the training set. For the limited domain, we observed that compact DSMs8

significantly surpass the accuracy of COCO trained models of the same size. By9

training on a compact dataset, we show that with an accuracy drop of only 3.6%,10

the training time can be reduced by 93%.11

1 Introduction12

Implementing CNN based object detection on stationary surveillance cameras can lead to enhancing13

the safety of cities, homes, offices and factories by detecting unauthorized substances or discovering14

anomaly events (e.g. a collapsed person). However, the computation-efficiency is a key requirement15

since such devices demand battery operation to ease installation. Many successful approaches to16

improve the efficiency of image classification have been proposed, such as model compression[2]17

and model cascades with domain specific models [3]. However, object detection is more complex18

than image classification, and while these techniques are likely to remain effective, there is need for19

additional methods.20

Instead of compressing large models, we target to train a computation-efficient model for each spe-21

cific surveillance camera and a framework is proposed to train such domain specific models (DSM).22

The framework is based on knowledge distillation [1][4][5] but targets to reduce the accuracy gap23

between student and teacher models by training the student using a restricted class of domain specific24

images. Since such training may be conducted on edge-devices, we improve the training efficiency25

by culling easy-to-classify images with small accuracy penalty.26

This paper’s contribution is summarized below.27

• We propose an end-to-end framework for training domain specific models (DSMs) to mit-28

igate the tradeoff between object-detection accuracy and computational efficiency. To the29

best of our knowledge, this is the first successful demonstration of training DSMs for object30

detection tasks.31

• By training resnet18-based Faster-RCNN DSMs, we observed a 19.7% accuracy (relative32

mAP) improvement compared to COCO trained model of the same size, tested on a cus-33

tomized YoutubeLive dataset.34
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Algorithm 1 Training Domain Specific Models
Require: Domain Specific Model (DSM), Teacher Model

1: procedure 1. PREPARE DATASET
Given domain images xi for i = {0, . . . , Ntrain − 1}

2: for i < Ntrain do
3: label(i)← Teacher.predict(xi).
4: pred(i)← DSM.predict(xi).
5: compute Ltrain(i) from label(i) and pred(i).
6: Collect [xi, label(i)] pairs with n largest values of Ltrain.
7: Compile Difficult Dataset (DDS): Ω = ([x0, label(0)]), . . . , [(xn−1, label(n− 1)]).
8: procedure 2. TRAIN DSM
9: DSM.train (Ω)

10: procedure 3. INFERENCE
11: Detection← DSM.predict(image)

Figure 1: Object detection results of the test image, before and after domain specific training.

• Since edge devices will have limited resources, we propose culling the training dataset to35

significantly reduce the computation resource required for the training. Only training data36

that has high utility in training is added. This filtering allows us to reduce training time by37

93% with an accuracy loss of only 3.6%.38

2 Training Domain Specific Models39

Large scale object detection datasets such as COCO[6] contain a large and diverse set of natural40

images. Using a small model on such a large dataset would typically yield higher misdetections41

than a large model. Furthermore, [4] showed that misdetections usually occur between foreground42

and background (false positives + true negatives); rarely do misdetections occur as a result of inter-43

class errors. In video surveillance, because frames in a video stream share a stationary background,44

a compact model can be good enough to detect foreground and background. This motivates our45

DSM framework to train compact models with dataset constructed by domain-specific data.46

As illustrated in Algorithm 1, our DSM framework consists of preparation of the data and training47

of the DSM. A large challenge when deploying models in surveillance is preparing the training data48

since manually labelling frames in videos is cumbersome. To overcome this, we label the dataset49

used to train the DSM by using the predictions of a much larger teacher model with higher accuracy50

and treating these predictions as ground truth labels. Furthermore, we compare the prediction on51

image xi made by the teacher to that of the DSM; we determine whether to store the xi and label52

Teacher.predict(xi) in our compiled dataset Ω. After the training set is compiled, it is used to train53

the DSM.54

Training a object detection model can take hours even with a GPU and can be challenging for55

applications requiring frequent retraining. We exploit the fact that when the DSM is pretrained on56

large-scale general dataset, it can already provide good predictions for a large chunk of the domain-57

specific data. This procedure develops a compact dataset Ω that is only composed of data that the58

DSM finds inconsistent with the prediction made by the teacher model. Keeping data xj that both59

the DSM and teacher detections are consistent is computationally redundant because it does not60

contribute to gradient signals. We define Ltrain to quantify the consistency between teacher and61

DSM:62

Ltrain =
FP + TP

TP + ϵ
+

FN + TP

TP + ϵ
(1)
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Table 1: Domain specific training results are summarized, where the mean accuracy result of 5
datasets are reported. Res101 results are used as ground truth, therefore accuracy is relative mAP
(rmAP). Along the model name, parameters and inference time on GPU per image is reported.

Teacher: Res101 [48M/68ms]
Res18 [12M/26ms} Squeeze [6M/21ms]

COCO DSM Improvement COCO DSM Improvement
mean accuracy 54.5 74.3 + 19.7 41.5 63.3 + 21.7

Table 2: Number of training samples versus accuracy with res18. For simple, we pick the first N
training data and filter out the rest. For difficult dataset (DDS), N training data having highest Ltrain

are chosen. The mean accuracy drop of the 5 datasets were computed, in respect to the model trained
with all 3600 images. The training time does not include the time for teacher model labeling, which
takes about 10 min. We utilize single TitanXp GPU to measure the training time.

Dataset Classes Strategy Number of training samples n

64 128 256 512 All
(3600)

coral 1 Simple
DDS

81
89.6

89.4
89.6

89.6
89.6

90
89.8 90

taipei 4 Simple
DDS

50.4
60.7

62
61.7

62.1
62.2

62.8
64.2 68.2

jackson 2 Simple
DDS

52.5
71.6

60.1
76.7

60.9
78.3

72.8
80.6 87.0

kentucky 2 Simple
DDS

35
53.1

38.7
63.8

44.2
66.4

54.8
69.5 67.2

castro 3 Simple
DDS

60.4
67.2

63
68.35

65.2
75.0

66
77 77.6

mean
accuracy drop - Simple

DDS
23.6
9.5

20.8
5.9

13.8
3.6

11.3
1.7 0

Training Time [min] - - 1.8 3.6 7.4 14.6 110

where TP, FP, FN represents the number of true positive, false positive and false negative bounding-63

box (BB) detections of the image and ϵ = 0.5. Significantly fewer training data and steps are64

required with only a minimal penalty in accuracy.65

3 Experiments66

Models. We develop Faster-RCNN object detection models on PyTorch pretrained on MS-67

COCO[7][8][6]. We use 3 models: resnet101(res101), resnet(res18), and squeezenet(squeeze) as68

the backbone region proposal network (RPN) [9][10]. Res18 and squeeze holds 10% and 19% TOP-69

5 Imagenet error, which is a common accuracy range for compact CNN models like MobileNet [11].70

During training, res101 is used as the teacher, while res18 and squeeze are used as DSMs. While71

we chose Faster-RCNN for its accuracy on YoutubeLive, we can also use YOLO/SSD detectors72

for improved efficiency with this framework because the training requires the bounding box labels73

[12][13].74

Dataset. We obtain 5 fixed-angle videos from YouTubeLive. The video is 2 hours each with75

1 frames-per-second (fps), consisting of 7200 images. We split the images evenly: the first 360076

images are for training and the later 3600 images for testing.77

Results. As shown in table 1, we first train our res18 DSM using the full Ntrain = 3600 training78

images for 10 epochs using stochastic-gradient descent with a learn rate of 10−4. As compared79

to the res18 model pretrained on MS-COCO but without domain specific training, we achieved an80

average of 19.7% accuracy improvement.81

Table 2 shows the effectiveness of DDS on res18. Using DDS, we were able to reduce the training82

time by 93% (256 images) with only 3.6% accuracy penalty. If we simply picked 256 training83

images sequentially (strategy simple on table), the accuracy worsens 10.2% compared to DDS.84
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Table 3: Accuracy improvement observed for multiple dataset settings. For PASCAL+YoutubeLive,
we train the models with PASCAL-VOC2007 and YoutubeLive data. The accuracy improvement is
rmAP improvement compared to the COCO trained model.

PASCAL+YoutubeLive YoutubeLive Domain Specific
mean accuracy improvement

Res18 + 9.7 + 12.9 + 19.7

mean accuracy improvement
Squeeze + 10.3 + 13.5 + 21.7

4 Appendix119

4.1 Comparison against Data Distillation120

Data Distillation [5] is fundamentally different from our application setting and methods. Models121

with large network capacities were shown to achieve higher accuracy by bootstrapping the dataset122

with [5]. On the other hand in our framework, in order to fully utilize the small network capacity,123

we aim to train the models with only the domain specific data.124

We show on Table 3 that following a traditional method of data distillation (i.e. aggregating PASCAL125

with YoutubeLive data) yields lower rmAP improvement than with our approach of training with126

only domain specific data. In addition, training the small models with the entire YoutubeLive dataset127

also yields lower improvements as well. This is fundamentally because of the limited model capacity128

of the compact, but computationally-efficient model. We observe that for training small models,129

utilizing a larger dataset do not always obtain better results but restricting the data domain can do130

better.131
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