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Abstract

Probe-based Confocal Laser Endomicroscopy (pCLE) enables more accurate diag-
nosis via optical biopsy. pCLE probes relay on of fibres bundles, which generate
irregularly sampled signals. Current pCLE reconstruction is based on interpolating
irregular signals onto an over-sampled Cartesian grid, using a sub-optimal Delau-
nay triangulation based linear interpolation scheme. High-quality reconstruction
with improved information representation should be possible with the use of Deep
Convolutional Neural Networks (CNNs). However, classical CNNs are limited to
take as an input only Cartesian images, not irregular data. In this work, we propose
to embed Nadaraya-Watson (NW) kernel regression into the CNN framework as
a novel trainable CNN layer that allows for processing of irregularly sampled
data represented as sparse data on a Cartesian grid. We design a new NWNet
architecture in conjunction with examplar-based super-resolution CNN, which
allows reconstructing high-quality pCLE images from the irregularly sampled
input data. Models were trained on a database of 8806 images from 238 pCLE
video sequences. The results were validated through an image quality assessment
based on a composition of the following metrics: PSNR, SSIM, GCF. Our analysis
indicates that the proposed solution unlocks the potential of CNNs for sparse data
processing. NW layer is the main contribution of our end-to-end model performing
pCLE image reconstruction directly from sparse imaging input to high-resolution
cartesian images. Our method outperforms the reconstruction method in current
clinical use.

1 Introduction

Probe-based Confocal Laser Endomicroscopy (pCLE) is a recent fibre-based medical imaging
modality with utility in a range of clinical indications and organ systems, including gastrointestinal,
urological and respiratory tracts [1]. The pCLE probe is an imaging guide used for performing in
vivo and in vitro optical biopsy during endoscopic examination.

The pCLE probe relies on a coherent fibre bundle comprised of multiple (>10k) cores that: 1) have
variable size and shape; 2) are irregularly distributed across the field of view; 3) display variable light
transmission properties, including coupling efficiency and inter-core coupling. The nature of image
acquisition through coherent fibre bundles constitutes a source of inherent limitations in pCLE having
a direct, negative impact on the image quality including the widely-known honeycomb artefact.
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The raw data that the pCLE devices produce remains difficult to use for both clinicians and comput-
erised decision support systems as it is modulated by the honeycomb pattern of the fibre bundle and
is distorted by a range of artefacts. In the context of pCLE, the irregular sampling domain can be
accurately discretised as a set of discrete locations in an oversampled regular grid. Existing pCLE
image reconstruction approaches typically use Delaunay triangulation based methods to interpolate
irregularly sampled raw signals onto a Cartesian grid, but do not improve quality of images [2].
These methods are themselves prone to generating artefacts, such as triangle edge highlights or addi-
tional blur [3, 2]. Incorporating prior information about pCLE images should reduce the uncertainty
introduced by the reconstruction process and enable higher quality reconstructions.

To improve the image quality, classically reconstructed pCLE images can be post-processed by
restoration and super-resolution techniques. It was shown that state-of-the-art deep learning examplar-
based super-resolution (EBSR) techniques improve quality of pCLE images [4]. A limitation in
current CNN approaches is that the analysis starts from reconstructed pCLE images over-sampled
from the irregularly sampled acquisitions.

Recently, CNNs have shown promising results for medical imaging tasks, but applying these networks
to irregularly sampled pCLE data is far from trivial. Existing CNNs rely on a small number of
building block types, with shift-invariant convolution being key to unlock the potential of artificial
neural networks for image processing and recognition tasks. When applied directly to fibre-bundle-
modulated images, whose structure is highly non-shift-invariant, the shift-invariance of CNNs has a
detrimental effect. Also, when dealing with small images, such as those produced with fibre bundles,
the cropping effect of standard convolutional layers limits the usable depth of the CNNs.

The vast majority of deep machine learning techniques for image data relies on regularly sampled
images. Hence there is an unmet need for a unified, computationally-efficient, image reconstruction
methodology that compensates for a range of limitations, including irregular sampling, and difficult-
to-model artefacts.

We propose a new paradigm by replacing convolution, the cornerstone of state of the art deep learning
approaches for classical regularly sampled images, by Nadaraya–Watson kernel regression [5]. We
replace the classical CNN layer with a novel trainable Nadaraya–Watson (NW) layer, which can be
used as an input layer of any CNN architecture. This NW layer is used to build and validate a unique
family of deep learning architectures (NWNets) for irregularly sampled data.

We exploit the irregularly sampled pCLE data for image reconstruction tasks. The main hypothesis of
this work is that pCLE image reconstructions can benefit from dedicated deep learning architectures
applied directly to the irregularly sampled data. This hypothesis has led us to design an end-to-end
pipeline which replaces the classical oversampled reconstruction with NWNets and uses EBSR for
regularly sampled data.

The rest of the paper is organised as follows. Section 2 gives a quick overview of the current state
of the art methods which enable sparse image data to be used as an input for CNN. Section 3
presents the mathematical and technical details of the NW layer and NWNet networks with the
implementation details, used datasets and the training strategy. Section 4 presents quantitative
image quality assessment (IQA) for evaluating the performance of NWNets in the context of image
reconstruction. Section 5 summarises the contribution of this research to pCLE imaging and deep
learning research.

2 Related work

Image reconstruction: Image reconstruction from sparse signal has been widely studied, and kernel
regression techniques have been shown to be a good choice for this task. Takedz et al. notably studied
regression methods in the context of denoising and interpolation [6]. Specifically, in the context
of pCLE, Vercauteren et al. used kernel regression as a generalisation of Shepard’s interpolation
with the arbitrary distance kernel [2]. As a part of their mosaicing framework, they implemented
reconstruction of scattered pCLE data with Nadaraya–Watson kernel regression using handcrafted
Gaussian weighing kernels. They demonstrated that the method efficiently reconstructs pCLE images
and reconstructed mosaics at the price of some additional blur.

Sparse CNN inputs: Widely used convolution layers have been identified as sub-optimal with
regards to sparse data [7]. Several approaches have been proposed to handle sparse data as input to
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CNN networks. Much of the available literature on exploring sparsity in the context of CNN input
deals with the irregular data in an intuitive way but ad hoc: non-informative pixels are assigned zero,
creating an artificial Cartesian image to be input to the network. A similar workaround is to use an
additional channel to assign validity to each pixel. For example, Li et al. used that technique and
assigned the missing points zero values on a low-resolution image [8], and Kohler et al. passed a
binary mask to the network [9]. These solutions suffer from the redundancy in image representation
which lowers computational performance and requires the network to learn sparse representation.

Numerous studies have attempted to generalise neural networks to work on arbitrarily structured
graphs. For example, Defferrard et al. proposed a graph-based CNN which learns local, stationary,
and compositional features for the image classification task [10]. Graph-based CNNs accept a graph
as input, and produce a graph as output (graph-in-graph-out). This approach cannot be directly
translated to image reconstruction, as this task would involve a graph as input and a reconstructed
image as output (graph-in-image-out).

In a recent study, Uhrig et al. proposed a sparse convolutional layer which jointly processes sparse
images and sparse masks [7]. The layer is designed to account for missing data during the convolution
operation by propagating the sparsity information (encoded in the mask) through the entire network.
Their research work on the sparse CNN layer is the most closely related to our work on the NW
layer. The critical difference between their approach and ours is that the NW layer performs a
methodologically founded Nadaraya–Watson kernel regression, while the sparse CNN layer does not
perform a typical regression, but rather uses a non-shared constant kernel for the convolution of the
mask.

3 Materials and methods

Irregularly sampled data can be represented with an arbitrary approximation quality as sparse data on
a fine cartesian grid. Specifically, in the context of pCLE reconstruction, the missing information
is interpolated, meaning the reconstructed images are over-sampled, and only a subset of the pixels
carries information [4]. As is illustrated in Figure 1, we typically represent the corresponding sparse
images by assigning a value of 0 to all non-informative pixels.

Since the position u, v of informative pixels within the sparse image S is given, we can represent the
image sparsity in the same space. Let M denote a binary sparsity mask (of the same size as image S)
that encodes information such that it takes the values 1 and 0 for the informative and non-informative
pixels respectively. A sample sparsity mask with the corresponding sparse pCLE image is also
depicted in Figure 1.

3.1 NW layer

Convolutional layer is denoted by f as:

fu,v(X) =

k∑
i,j=−k

xu+i,v+jwi,j + b , (1)

and it takes image X as an input. The image X is represented on a Cartesian grid with pixel
coordinates given by u, v. The convolution operator considers all image pixels as equally important
regardless of position u, v. The output of the convolutional layer f(X) is generated by convolving
the input image X using weights w and adding a bias b. Weights w are defined by a kernel W of size
2k + 1 along each image dimension.

Since the irregularly distributed pCLE signal is represented on a Cartesian grid as a sparse image, it
can be input into any CNN. Nonetheless, if the sparse image S is input to the CNN, the network has
to learn not only the function f(X) for informative pixels but also their sparsity, which makes the
optimisation of f(X) a difficult task. Here the open challenge is to adapt the CNN to work around
the input image sparsity by predicting the missing information. To tackle this problem, we introduce
the Nadaraya-Watson kernel regression layer (henceforth referred to as "NW layer").

Sparse pixels of S are related, and this relation can be model. It leads to Nadaraya–Watson kernel
regression which models relation of the data points by use of custom kernels to perform local
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interpolation. This regression technique can be efficiently implemented using two convolutions and
a pixel-wise division, and it was successfully used with a single hand-crafted kernel to reconstruct
pCLE images and mosaics [2].

To incorporate Nadaraya–Watson kernel regression into the CNN framework, we define the NW layer
as :

Ru,v(S,M) =

∑k
i,j=−k Su+i,v+jwi,j∑k

i,j=−k Mu+i,v+j |wi,j |
(2)

The NW layer takes as input a sparse image S and a corresponding sparsity mask M that are both
convolved with shared kernels W . The output of the NW layer are reconstructed feature maps R
estimated using a Nadaraya–Watson regression, which we generalise to allow for negative kernel
values as described below. The graphical interpretation of NW layer is presented in Figure 1. The
mask M can be seen as a probabilistic sparsity map. The input M ∈ {0, 1} is initially a binary
mask but arbitrary probabilistic sparsity patterns are then propagated through the NW layers. By
convolution with kernels W , M is transformed to an approximation of continuous distribution that
represents the probability of obtaining R(u, v) given S(u, v).
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Figure 1: NW layer: the network inputs are the sparse image S and sparsity mask M ; an NW layer
performs two convolutions and a division; the NW layer outputs are reconstructed feature maps R
and a probabilistic sparsity mask M after convolutions with kernels W .

Classical Nadaraya–Watson kernel regression uses positive kernels, but for flexibility, our NW layer
allows for negative values and this generalises the kernel regression. It is necessary for the convolution
of the mask M to rely on the absolute value of W , as this operation is meant to capture the influence
of neighbouring pixels on the predicted values of R(u, v) (see denominator in equation 2). Our
proposed NW layer implementation is given as pseudo-code in Algorithm 1. The implementation of
the NW layer requires numerical safety measures such as checking against not-a-number (NaN) and
infinity values which may arise during the training procedure, and divisions by 0 or very small values
from sparsity mask. We also normalise the kernels to

∑k
i,j=−k |wi,j | = 1 for numerical stability.

3.2 NWNet

We conceptualise the NWNet framework as a stack of n NW layers as illustrated in Figure 2. Every
NW layer has t unique kernels W . The first (n = 1) NWNet layer takes as input a sparse image
S and a binary mask M . Every consecutive NW layer then returns t feature maps R and t sparsity
masks M which become the input for the next NW layer. The last NW layer of the NWNet framework
returns only t feature maps R, and masks M are discarded.

The multiple layers of Nadaraya–Watson kernel regression with learned kernels can be used to
generalise standard CNNs for irregularly sampled pCLE data. Given that the deeper classical CNN
architecture has better performance, intuitively the same rule should apply to NWNet architectures:
the deeper the NWNet, the better the generalisation. We assume that NWNet learns the sparsity of
the input data, such that after a few NW layers the output features map can be directed to classical
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Algorithm 1 Implementation of the NW layer
1: function NW(S, M )
2: threshold = 0.0001
3: W = initialisation(weights_shape)
4: Sconv = S ∗W
5: Mconv = M ∗ |W |
6: W = |W |∑

|W |
7: if Mconv(u, v) < threshold then
8: norm(u, v) = 1

Mconv

9: else
10: norm(u, v) = 0
11: end if
12: R = Sconv · norm
13: if R(u, v) is NaN or Inf then
14: R(u, v) = 0
15: end if
16: return R, M
17: end function

CNN layers. This in turn facilitates the implementation of end-to-end pipelines that can incorporate
sparse inputs by combining NWNet with any classical CNN architecture.
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EDSR Netw
ork

CNN

NW
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Figure 2: NWNet framework: the NWNet input are the sparse image S and binary sparsity mask M ;
a NWNet is a stack of n NW layers which utilise M to learn the sparsity of S; the NWNet output are
reconstructed feature maps R.

3.3 Application to endomicroscopy image reconstruction

NWNet unlocks access to complex deep learning models which can contribute to the less uncertain
reconstructions by providing prior information, such such as super-resolving filters trained by
exemplar-based super-resolution methods. It was shown in [4] that Enhanced Deep Residual Networks
for Single Image Super-Resolution (EDSR) [11] allows for improving the quality of over-sampled
Cartesian pCLE images. We decided to build a pCLE reconstructions pipeline by merging NWNet
with EDSR. These way, we utilise advantages of both: NW layers enabling existing deep-learning
models to perform training on sparse pCLE images, and EDSR as a post-processing method to
improve the pCLE reconstruction.

3.4 Experiments

Networks: We propose five NWNet architectures combined with EDSR as presented in Figure 2.
The proposed NWNet differs by the number of kernels and layers as given NWNet(layers, (kernels)).
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In the original work EDSR has 16 residual layers. To maintain depth of the entire pipeline, the
number of residual layers in EDSR is reduced by the number of NW layers, and donated EDSR(17 -
NW layers). The networks are designed as follows:

• three shallow (in terms of NW layers only) architectures with a single NW layer with 32, 64,
128 kernels each:
i. NWNet(1, (32)) + EDSR(16); ii. NWNet(1, (64)) + EDSR(16); iii. NWNet(1, (128)) +
EDSR(16).

• two deep architectures: the first architecture has 2 NW layers with 128 and 64 kernels for
each layer respectively: NWNet(2, (128, 64)) + EDSR(15);
and the second architecture has 3 NW layers with 128, 64, 32 kernels for each layer
respectively: NWNet(3, (128, 64, 32)) + EDSR(14).

As a baseline method we used the EDSR network, which takes as input reconstructed pCLE images
as presented in [4].

Dataset: Networks are trained on synthetic pCLE dataset published in [4]. Three subsets are created
as a fraction of the entire dataset: train (70%), validation (15%) and test (15%) sets.

The high-resolution (HR) images are transformed to low-resolution sparse pCLE images (LR) by
assigning zeros to all pixels which do not correspond to any fibre signal. These sparse pixels are
normalised: LR = LR −meanLR/stdLR and HR = HR −meanLR/stdLR, and scaled in the
range [0-1] for every sparse frame individually, without considering non-informative zero pixels.
Lastly, for the train and validation sets, non-overlapping 64× 64 sparse patches are extracted from
the processed images.

NWNet described in Section 3.2 takes as input a sparse image with the corresponding binary mask.
The mask is generated by assigning 1s to where fibre signal is, and 0s to rest of the image space (for
the example patch see Figure 1).

The test set, which is not available during training, is built with pCLE full-size original sparse
images. It is important to note that ground truth images are not available in the context of pCLE. The
synthetic pCLE dataset published in [4] was generated with a registration-based simulation which
produces synthetic high-resolution (HR) estimates of ground truth images. The final performance
of the NWNets is tested by comparing reconstructed super-resolved (SR) pCLE images with the
synthetic HR images.

Training strategy: Networks are trained with batch-based stochastic strategy, with a batch size of
32 patches. Our choice for optimiser is RMSprop [12] with a momentum and a learning rate of 0.1
and 0.0005 respectively. Gradient clipping technique is applied to reduce the problem of vanishing
gradients with the gradient clipped from -1 to 1.

The kernel size for NWNet layers is 9 (k=3) across each image dimension. The size was chosen
based on known distribution of fibres across a Cartesian image to ensure that each convolution
would capture more than 10 informative pixels. The weights were initialised with a truncated normal
distribution with mean, and standard deviation equal to 0.2 and 0.05 respectively. Additionally, all
the weights in NW layer are regularised with L1 and L2 norm, with a scale 0.1 for both.

The models are first trained with the L1 loss. These pre-trained models are further trained with
SSIM+L1 loss [13]. This training strategy was chosen based on results presented in [4], which
indicates that the best performing models were trained with SSIM+L1. L1 loss is computationally
less expensive than SSIM+L1, so networks were pre-trained to shorten training time. The threshold
in Algorithm 1 is set empirically to 0.0001.

4 Results

The purpose of the experiments proposed in 3.4 was to validate the performance of the super-
resolving pipelines (NWNet + EDSR) by assessing the quality of the reconstructed SR images. To
measure image quality of the SR pCLE reconstructions we design an image quality assessment
(IQA) procedure by combining three complementary metrics. Typically, metrics used to assess the
quality of the images are the peak signal-to-noise ratio (PSNR) and the Structural SIMilarity index
SSIM [14]. Good image contrast is also desirable for pCLE images, and this was judged based on
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Global Contrast Factor (GCF) [15]. GCF is reference-free technique, thus to measure improvement in
contrast we computed the differences ∆ of GCF(image): ∆GCFLR = GCF(SR)−GCF(LR) and
∆GCFHR = GCF(SR)−GCF(HR). If contrast of SR images is improved, ∆GCF is a positive.

All mentioned metrics measure different properties of the image. Therefore the total combined
score Totcs was introduced similarly to [4]. Totcs is defined as arithmetic average score of all the
normalised (in range [0− 1]) metrics: PSNR, SSIM, GCF.

The results computed for the test images are shown in Table 1. It is apparent from this table that
NWNet + EDSR give better reconstruction in comparison the base line method. Closer inspection of
the table shows that:

1. NWNet + EDSR applied to sparse images outperforms EDSR applied on Cartesian images
for contrast measurement, but gives slightly lower results for SSIM and PSNR. The differ-
ence of total scores given by Totcs between EDSR(16) and the simplest NWNet(1, (32)) +
EDSR(16) is -1, and the deepest NWNet(3, (128, 64, 32)) + EDSR(14) is -3. When Totcs is
considered every NWNet + EDSR performs better than just EDSR.

2. The Totcs for NWNet(1, (32)), NWNet(1, (64)), NWNet(1, (128)) increases with the
number of kernels, thus it highlights that NWNet-based reconstruction benefits from a larger
number of trained kernels. The more surprising observation is that individual changes in the
metrics’ score are not correlated with the number of kernels.

3. With successive increases in the number of layers (deeper NWNets) we obtain the better
quality reconstructed images. Totcs drops by -4 for EDSR(16) and both deep architectures.
The performance of NWNet with 3 layers is slightly better than NWNet with 2 layers, when
scores are considered individually.

Overall, these results reveal that the best performing model is NWNet(3, (128, 64, 32)) + EDSR(14),
which is the deepest (in terms on NW layers) NWNet out of all proposed models. The results confirm
that NW layer is a good choice for image reconstruction and yields increasingly good results on
sparse pCLE data.

We provide example reconstructions in figure 3.

Table 1: IQA for NWnets.

network SSIM PSNR ∆GCFLR ∆GCFHR Totcs
EDSR(16) 0.864±0.049 25.6±3.0 0.97±0.79 1.20±0.90 0.42±0.20
NW(1, (32)) + EDSR(16) 0.814±0.070 24.5±3.0 1.72±0.90 1.94±1.10 0.43±0.20
NW(1, (64)) + EDSR(16) 0.815±0.070 25.1±2.9 1.45±0.77 1.66±0.99 0.45±0.20
NW(1, (128)) + EDSR(16) 0.805±0.068 25.3±3.0 1.77±0.86 1.99±1.09 0.46±0.20
NW(2, (64, 32)) + EDSR(15) 0.836±0.068 25.3±3.0 1.35±0.85 1.56±1.08 0.46±0.19
NW(3, (128, 64, 32)) + EDSR(14) 0.858±0.053 25.7±3.0 1.14±0.70 1.36± 0.90 0.46±0.20

5 Conclusions

This work advances deep learning research by introducing a novel NW layer. The proposed CNN
layer enables the use of sparse images as input to the CNN framework, and learn sparse image
representation.

In the context of pCLE, this is the first work which proposes end-to-end deep learning-based image
reconstruction with prior information to super-resolved pCLE images irregularly sampled fibre data.
We proved that super-resolved pCLE images have better quality than the interpolated-based pCLE
images, thus the proposed super-resolution pipeline outperforms the currently used reconstruction
method.

NW layer is used as a building block in dedicated architectures (NWNets) which perform deep
generalised Nadaraya–Watson kernel regression. NWNets capture data sparsity and learn recon-
struction kernels for sparse data. We demonstrated that deep NWNets improve the performance
of super-resolving reconstruction pipeline over an equivalent approach using standard CNNs on
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Figure 3: Sample reconstructions

interpolated input images. It leads to the conclusion that NWNets generate output features maps
which capture a better representation of the input sparse data than interpolated Cartesian images.

NW layer and its extension to NWNets give an efficient way to incorporate irregularly sampled data
as the input of any CNN pipeline for regularly sampled data. Deep machine learning methods for
regularly sampled images, can be transferred to sparse images with a straightforward adaptation of
their architecture. We have shown successful implementation of the reconstruction pipeline, which
combines NWNets and EDSR to reconstruct super-resolved images form sparse input images.

Beyond pCLE, we believe that our research may benefit other applications in which data is defined on
a graph structure. NWNets are computationally efficient and can readily be adapted to either graph-
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in/scalar-out or graph-in/image-out. Future work will focus on developing NWNets architectures and
applying NWNets to tasks such as classification.
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