
Published as a conference paper at ICLR 2019

UNIVERSAL TRANSFORMERS

Mostafa Dehghani∗† Stephan Gouws∗ Oriol Vinyals
University of Amsterdam DeepMind DeepMind
dehghani@uva.nl sgouws@google.com vinyals@google.com

Jakob Uszkoreit Łukasz Kaiser
Google Brain Google Brain
usz@google.com lukaszkaiser@google.com

ABSTRACT

Recurrent neural networks (RNNs) sequentially process data by updating their
state with each new data point, and have long been the de facto choice for sequence
modeling tasks. However, their inherently sequential computation makes them
slow to train. Feed-forward and convolutional architectures have recently been
shown to achieve superior results on some sequence modeling tasks such as machine
translation, with the added advantage that they concurrently process all inputs in
the sequence, leading to easy parallelization and faster training times. Despite these
successes, however, popular feed-forward sequence models like the Transformer
fail to generalize in many simple tasks that recurrent models handle with ease, e.g.
copying strings or even simple logical inference when the string or formula lengths
exceed those observed at training time. We propose the Universal Transformer
(UT), a parallel-in-time self-attentive recurrent sequence model which can be
cast as a generalization of the Transformer model and which addresses these
issues. UTs combine the parallelizability and global receptive field of feed-forward
sequence models like the Transformer with the recurrent inductive bias of RNNs.
We also add a dynamic per-position halting mechanism and find that it improves
accuracy on several tasks. In contrast to the standard Transformer, under certain
assumptions UTs can be shown to be Turing-complete. Our experiments show that
UTs outperform standard Transformers on a wide range of algorithmic and language
understanding tasks, including the challenging LAMBADA language modeling
task where UTs achieve a new state of the art, and machine translation where UTs
achieve a 0.9 BLEU improvement over Transformers on the WMT14 En-De dataset.

1 INTRODUCTION

Convolutional and fully-attentional feed-forward architectures like the Transformer have recently
emerged as viable alternatives to recurrent neural networks (RNNs) for a range of sequence
modeling tasks, notably machine translation (Gehring et al., 2017; Vaswani et al., 2017). These
parallel-in-time architectures address a significant shortcoming of RNNs, namely their inherently
sequential computation which prevents parallelization across elements of the input sequence, whilst
still addressing the vanishing gradients problem as the sequence length gets longer (Hochreiter et al.,
2003). The Transformer model in particular relies entirely on a self-attention mechanism (Parikh et al.,
2016; Lin et al., 2017) to compute a series of context-informed vector-space representations of the
symbols in its input and output, which are then used to predict distributions over subsequent symbols as
the model predicts the output sequence symbol-by-symbol. Not only is this mechanism straightforward
to parallelize, but as each symbol’s representation is also directly informed by all other symbols’
representations, this results in an effectively global receptive field across the whole sequence. This
stands in contrast to e.g. convolutional architectures which typically only have a limited receptive field.

Notably, however, the Transformer with its fixed stack of distinct layers foregoes RNNs’ inductive bias
towards learning iterative or recursive transformations. Our experiments indicate that this inductive

∗ Equal contribution, alphabetically by last name.
†Work performed while at Google Brain.

1

Published as a conference paper at ICLR 2019

h1
t

h2
t

hm
tPe

r P
os

iti
on

 S
ta

te
s

Time

…

Self-Attention

Self-Attention

Self-Attention

Transition Function

Transition Function

Transition Function

… …

Parameters are tied across positions and time steps

h1
t+1

h2
t+1

hm
t+1

…

Self-Attention

Self-Attention

Self-Attention

Transition Function

Transition Function

Transition Function

h1
t+2

h2
t+2

hm
t+2

…… …

Figure 1: The Universal Transformer repeatedly refines a series of vector representations for each
position of the sequence in parallel, by combining information from different positions using
self-attention (see Eqn 2) and applying a recurrent transition function (see Eqn 4) across all time
steps 1≤ t≤T . We show this process over two recurrent time-steps. Arrows denote dependencies
between operations. Initially, h0 is initialized with the embedding for each symbol in the sequence.
ht
i represents the representation for input symbol 1≤ i≤m at recurrent time-step t. With dynamic

halting, T is dynamically determined for each position (Section 2.2).

bias may be crucial for several algorithmic and language understanding tasks of varying complexity:
in contrast to models such as the Neural Turing Machine (Graves et al., 2014), the Neural GPU (Kaiser
& Sutskever, 2016) or Stack RNNs (Joulin & Mikolov, 2015), the Transformer does not generalize
well to input lengths not encountered during training.

In this paper, we introduce the Universal Transformer (UT), a parallel-in-time recurrent self-attentive
sequence model which can be cast as a generalization of the Transformer model, yielding increased
theoretical capabilities and improved results on a wide range of challenging sequence-to-sequence
tasks. UTs combine the parallelizability and global receptive field of feed-forward sequence models
like the Transformer with the recurrent inductive bias of RNNs, which seems to be better suited to
a range of algorithmic and natural language understanding sequence-to-sequence problems. As the
name implies, and in contrast to the standard Transformer, under certain assumptions UTs can be
shown to be Turing-complete (or “computationally universal”, as shown in Section 4).

In each recurrent step, the Universal Transformer iteratively refines its representations for all symbols
in the sequence in parallel using a self-attention mechanism (Parikh et al., 2016; Lin et al., 2017),
followed by a transformation (shared across all positions and time-steps) consisting of a depth-wise
separable convolution (Chollet, 2016; Kaiser et al., 2017) or a position-wise fully-connected layer
(see Fig 1). We also add a dynamic per-position halting mechanism (Graves, 2016), allowing the model
to choose the required number of refinement steps for each symbol dynamically, and show for the first
time that such a conditional computation mechanism can in fact improve accuracy on several smaller,
structured algorithmic and linguistic inference tasks (although it marginally degraded results on MT).

Our strong experimental results show that UTs outperform Transformers and LSTMs across a wide
range of tasks. The added recurrence yields improved results in machine translation where UTs
outperform the standard Transformer. In experiments on several algorithmic tasks and the bAbI
language understanding task, UTs also consistently and significantly improve over LSTMs and the
standard Transformer. Furthermore, on the challenging LAMBADA text understanding data set UTs
with dynamic halting achieve a new state of the art.

2 MODEL DESCRIPTION

2.1 THE UNIVERSAL TRANSFORMER

The Universal Transformer (UT; see Fig. 2) is based on the popular encoder-decoder architecture
commonly used in most neural sequence-to-sequence models (Sutskever et al., 2014; Cho et al., 2014;
Vaswani et al., 2017). Both the encoder and decoder of the UT operate by applying a recurrent neural
network to the representations of each of the positions of the input and output sequence, respectively.
However, in contrast to most applications of recurrent neural networks to sequential data, the UT does
not recur over positions in the sequence, but over consecutive revisions of the vector representations of
each position (i.e., over “depth”). In other words, the UT is not computationally bound by the number
of symbols in the sequence, but only by the number of revisions made to each symbol’s representation.

2

Published as a conference paper at ICLR 2019

In each recurrent time-step, the representation of every position is concurrently (in parallel) revised
in two sub-steps: first, using a self-attention mechanism to exchange information across all positions
in the sequence, thereby generating a vector representation for each position that is informed by the
representations of all other positions at the previous time-step. Then, by applying a transition function
(shared across position and time) to the outputs of the self-attention mechanism, independently at
each position. As the recurrent transition function can be applied any number of times, this implies
that UTs can have variable depth (number of per-symbol processing steps). Crucially, this is in contrast
to most popular neural sequence models, including the Transformer (Vaswani et al., 2017) or deep
RNNs, which have constant depth as a result of applying a fixed stack of layers. We now describe
the encoder and decoder in more detail.

ENCODER: Given an input sequence of length m, we start with a matrix whose rows are initialized
as the d-dimensional embeddings of the symbols at each position of the sequence H0∈Rm×d. The
UT then iteratively computes representations Ht at step t for all m positions in parallel by applying
the multi-headed dot-product self-attention mechanism from Vaswani et al. (2017), followed by a
recurrent transition function. We also add residual connections around each of these function blocks
and apply dropout and layer normalization (Srivastava et al., 2014; Ba et al., 2016) (see Fig. 2 for a
simplified diagram, and Fig. 4 in the Appendix A for the complete model.).

More specifically, we use the scaled dot-product attention which combines queries Q, keys K and
values V as follows

ATTENTION(Q,K,V)= SOFTMAX

(
QKT

√
d

)
V, (1)

where d is the number of columns of Q, K and V . We use the multi-head version with k heads, as
introduced in (Vaswani et al., 2017),

MULTIHEADSELFATTENTION(Ht)= CONCAT(head1,...,headk)WO (2)

where headi = ATTENTION(HtWQ
i ,HtWK

i ,HtWV
i) (3)

and we map the state Ht to queries, keys and values with affine projections using learned parameter
matrices WQ∈Rd×d/k, WK ∈Rd×d/k, WV ∈Rd×d/k and WO∈Rd×d.

At step t, the UT then computes revised representationsHt∈Rm×d for allm input positions as follows

Ht = LAYERNORM(At+TRANSITION(At)) (4)

where At = LAYERNORM((Ht−1+P t)+MULTIHEADSELFATTENTION(Ht−1+P t)), (5)

where LAYERNORM() is defined in Ba et al. (2016), and TRANSITION() and P t are discussed below.

Depending on the task, we use one of two different transition functions: either a separable
convolution (Chollet, 2016) or a fully-connected neural network that consists of a single rectified-linear
activation function between two affine transformations, applied position-wise, i.e. individually to
each row of At.

P t ∈ Rm×d above are fixed, constant, two-dimensional (position, time) coordinate embeddings,
obtained by computing the sinusoidal position embedding vectors as defined in (Vaswani et al., 2017)
for the positions 1≤ i≤m and the time-step 1≤ t≤T separately for each vector-dimension 1≤j≤d,
and summing:

P t
i,2j =sin(i/100002j/d)+sin(t/100002j/d) (6)

P t
i,2j+1 =cos(i/100002j/d)+cos(t/100002j/d). (7)

3

Published as a conference paper at ICLR 2019

Input Sequence

Embed Input Symbols

Multihead Self-Attention

Transition Function Multihead Attention

Target Sequence (right-shifted by one)

Embed Target Symbols

Multihead Self-Attention

Transition Function

Softmax

Output Probabilities

After T steps

After T steps

For T steps

For T steps

Recurrent
Encoder
Block

Recurrent
Decoder
Block

Figure 2: The recurrent blocks of the Universal Transformer encoder and decoder. This diagram omits
position and time-step encodings as well as dropout, residual connections and layer normalization.
A complete version can be found in Appendix A. The Universal Transformer with dynamic halting
determines the number of steps T for each position individually using ACT (Graves, 2016).

After T steps (each updating all positions of the input sequence in parallel), the final output of the
Universal Transformer encoder is a matrix of d-dimensional vector representations HT ∈Rm×d for
the m symbols of the input sequence.

DECODER: The decoder shares the same basic recurrent structure of the encoder. However, after
the self-attention function, the decoder additionally also attends to the final encoder representation
HT of each position in the input sequence using the same multihead dot-product attention function
from Equation 2, but with queries Q obtained from projecting the decoder representations, and keys
and values (K and V) obtained from projecting the encoder representations (this process is akin to
standard attention (Bahdanau et al., 2014)).

Like the Transformer model, the UT is autoregressive (Graves, 2013). Trained using teacher-forcing, at
generation time it produces its output one symbol at a time, with the decoder consuming the previously
produced output positions. During training, the decoder input is the target output, shifted to the right
by one position. The decoder self-attention distributions are further masked so that the model can
only attend to positions to the left of any predicted symbol. Finally, the per-symbol target distributions
are obtained by applying an affine transformation O ∈ Rd×V from the final decoder state to the
output vocabulary size V , followed by a softmax which yields an (m×V)-dimensional output matrix
normalized over its rows:

p
(
ypos|y[1:pos−1],H

T
)

= SOFTMAX(OHT)1 (8)

To generate from the model, the encoder is run once for the conditioning input sequence. Then the
decoder is run repeatedly, consuming all already-generated symbols, while generating one additional
distribution over the vocabulary for the symbol at the next output position per iteration. We then
typically sample or select the highest probability symbol as the next symbol.

2.2 DYNAMIC HALTING

In sequence processing systems, certain symbols (e.g. some words or phonemes) are usually more
ambiguous than others. It is therefore reasonable to allocate more processing resources to these
more ambiguous symbols. Adaptive Computation Time (ACT) (Graves, 2016) is a mechanism for
dynamically modulating the number of computational steps needed to process each input symbol

1Note that T here denotes time-step T and not the transpose operation.

4

Published as a conference paper at ICLR 2019

Model 10K examples 1K examples

train single train joint train single train joint

Previous best results:

QRNet (Seo et al., 2016) 0.3 (0/20) - - -
Sparse DNC (Rae et al., 2016) - 2.9 (1/20) - -
GA+MAGE Dhingra et al. (2017) - - 8.7 (5/20) -
MemN2N Sukhbaatar et al. (2015) - - - 12.4 (11/20)

Our Results:

Transformer (Vaswani et al., 2017) 15.2 (10/20) 22.1 (12/20) 21.8 (5/20) 26.8 (14/20)
Universal Transformer (this work) 0.23 (0/20) 0.47 (0/20) 5.31 (5/20) 8.50 (8/20)
UT w/ dynamic halting (this work) 0.21 (0/20) 0.29 (0/20) 4.55 (3/20) 7.78 (5/20)

Table 1: Average error and number of failed tasks (> 5% error) out of 20 (in parentheses; lower is
better in both cases) on the bAbI dataset under the different training/evaluation setups. We indicate
state-of-the-art where available for each, or ‘-’ otherwise.

(called the “ponder time”) in standard recurrent neural networks based on a scalar halting probability
predicted by the model at each step.

Inspired by the interpretation of Universal Transformers as applying self-attentive RNNs in parallel
to all positions in the sequence, we also add a dynamic ACT halting mechanism to each position (i.e. to
each per-symbol self-attentive RNN; see Appendix C for more details). Once the per-symbol recurrent
block halts, its state is simply copied to the next step until all blocks halt, or we reach a maximum number
of steps. The final output of the encoder is then the final layer of representations produced in this way.

3 EXPERIMENTS AND ANALYSIS

We evaluated the Universal Transformer on a range of algorithmic and language understanding tasks,
as well as on machine translation. We describe these tasks and datasets in more detail in Appendix D.

3.1 BABI QUESTION-ANSWERING

The bAbi question answering dataset (Weston et al., 2015) consists of 20 different tasks, where the
goal is to answer a question given a number of English sentences that encode potentially multiple
supporting facts. The goal is to measure various forms of language understanding by requiring a
certain type of reasoning over the linguistic facts presented in each story. A standard Transformer
does not achieve good results on this task2. However, we have designed a model based on the Universal
Transformer which achieves state-of-the-art results on this task.

To encode the input, similar to Henaff et al. (2016), we first encode each fact in the story by applying a
learned multiplicative positional mask to each word’s embedding, and summing up all embeddings. We
embed the question in the same way, and then feed the (Universal) Transformer with these embeddings
of the facts and questions.

As originally proposed, models can either be trained on each task separately (“train single”) or jointly
on all tasks (“train joint”). Table 1 summarizes our results. We conducted 10 runs with different
initializations and picked the best model based on performance on the validation set, similar to previous
work. Both the UT and UT with dynamic halting achieve state-of-the-art results on all tasks in terms
of average error and number of failed tasks3, in both the 10K and 1K training regime (see Appendix E
for breakdown by task).

To understand the working of the model better, we analyzed both the attention distributions and the
average ACT ponder times for this task (see Appendix F for details). First, we observe that the attention
distributions start out very uniform, but get progressively sharper in later steps around the correct
supporting facts that are required to answer each question, which is indeed very similar to how humans
would solve the task. Second, with dynamic halting we observe that the average ponder time (i.e. depth

2We experimented with different hyper-parameters and different network sizes, but it always overfits.
3Defined as >5% error.

5

Published as a conference paper at ICLR 2019

Figure 3: Ponder time of UT with dynamic halting for encoding facts in a story and question in a bAbI
task requiring three supporting facts.

of the per-symbol recurrent processing chain) over all positions in all samples in the test data for tasks
requiring three supporting facts is higher (3.8±2.2) than for tasks requiring only two (3.1±1.1), which
is in turn higher than for tasks requiring only one supporting fact (2.3±0.8). This indicates that the
model adjusts the number of processing steps with the number of supporting facts required to answer
the questions. Finally, we observe that the histogram of ponder times at different positions is more
uniform in tasks requiring only one supporting fact compared to two and three, and likewise for tasks
requiring two compared to three. Especially for tasks requiring three supporting facts, many positions
halt at step 1 or 2 already and only a few get transformed for more steps (see for example Fig 3). This
is particularly interesting as the length of stories is indeed much higher in this setting, with more
irrelevant facts which the model seems to successfully learn to ignore in this way.

Similar to dynamic memory networks (Kumar et al., 2016), there is an iterative attention process in
UTs that allows the model to condition its attention over memory on the result of previous iterations.
Appendix F presents some examples illustrating that there is a notion of temporal states in UT, where
the model updates its states (memory) in each step based on the output of previous steps, and this chain
of updates can also be viewed as steps in a multi-hop reasoning process.

3.2 SUBJECT-VERB AGREEMENT

Next, we consider the task of predicting number-agreement between subjects and verbs in English
sentences (Linzen et al., 2016). This task acts as a proxy for measuring the ability of a model to
capture hierarchical (dependency) structure in natural language sentences. We use the dataset provided
by (Linzen et al., 2016) and follow their experimental protocol of solving the task using a language mod-
eling training setup, i.e. a next word prediction objective, followed by calculating the ranking accuracy
of the target verb at test time. We evaluated our model on subsets of the test data with different task dif-
ficulty, measured in terms of agreement attractors – the number of intervening nouns with the opposite
number from the subject (meant to confuse the model). For example, given the sentence The keys to the
cabinet4, the objective during training is to predict the verb are (plural). At test time, we then evaluate
the ranking accuracy of the agreement attractors: i.e. the goal is to rank are higher than is in this case.

Our results are summarized in Table 2. The best LSTM with attention from the literature achieves
99.18% on this task (Yogatama et al., 2018), outperforming a vanilla Transformer (Tran et al., 2018).
UTs significantly outperform standard Transformers, and achieve an average result comparable to the
current state of the art (99.2%). However, we see that UTs (and particularly with dynamic halting) per-
form progressively better than all other models as the number of attractors increases (see the last row, ∆).

3.3 LAMBADA LANGUAGE MODELING

The LAMBADA task (Paperno et al., 2016) is a language modeling task consisting of predicting a
missing target word given a broader context of 4-5 preceding sentences. The dataset was specifically
designed so that humans are able to accurately predict the target word when shown the full context,
but not when only shown the target sentence in which it appears. It therefore goes beyond language

4Cabinet (singular) is an agreement attractor in this case.

6

Published as a conference paper at ICLR 2019

Model Number of attractors

0 1 2 3 4 5 Total

Previous best results (Yogatama et al., 2018):

Best Stack-RNN 0.994 0.979 0.965 0.935 0.916 0.880 0.992
Best LSTM 0.993 0.972 0.950 0.922 0.900 0.842 0.991
Best Attention 0.994 0.977 0.959 0.929 0.907 0.842 0.992

Our results:

Transformer 0.973 0.941 0.932 0.917 0.901 0.883 0.962
Universal Transformer 0.993 0.971 0.969 0.940 0.921 0.892 0.992
UT w/ ACT 0.994 0.969 0.967 0.944 0.932 0.907 0.992

∆ (UT w/ ACT - Best) 0 -0.008 0.002 0.009 0.016 0.027 -

Table 2: Accuracy on the subject-verb agreement number prediction task (higher is better).

Model LM Perplexity & (Accuracy) RC Accuracy

control dev test control dev test

Neural Cache (Grave et al., 2016) 129 139 - - - -
Dhingra et al. Dhingra et al. (2018) - - - - - 0.5569

Transformer 142 (0.19) 5122 (0.0) 7321 (0.0) 0.4102 0.4401 0.3988
LSTM 138 (0.23) 4966 (0.0) 5174 (0.0) 0.1103 0.2316 0.2007
UT base, 6 steps (fixed) 131 (0.32) 279 (0.18) 319 (0.17) 0.4801 0.5422 0.5216
UT w/ dynamic halting 130 (0.32) 134 (0.22) 142 (0.19) 0.4603 0.5831 0.5625

UT base, 8 steps (fixed) 129(0.32) 192 (0.21) 202 (0.18) - - -
UT base, 9 steps (fixed) 129(0.33) 214 (0.21) 239 (0.17) - - -

Table 3: LAMBADA language modeling (LM) perplexity (lower better) with accuracy in parentheses
(higher better), and Reading Comprehension (RC) accuracy results (higher better). ‘-’ indicates no
reported results in that setting.

modeling, and tests the ability of a model to incorporate broader discourse and longer term context
when predicting the target word.

The task is evaluated in two settings: as language modeling (the standard setup) and as reading
comprehension. In the former (more challenging) case, a model is simply trained for next-word
prediction on the training data, and evaluated on the target words at test time (i.e. the model is trained
to predict all words, not specifically challenging target words). In the latter setting, introduced by Chu
et al. Chu et al. (2017), the target sentence (minus the last word) is used as query for selecting the target
word from the context sentences. Note that the target word appears in the context 81% of the time,
making this setup much simpler. However the task is impossible in the remaining 19% of the cases.

The results are shown in Table 3. Universal Transformer achieves state-of-the-art results in both
the language modeling and reading comprehension setup, outperforming both LSTMs and vanilla
Transformers. Note that the control set was constructed similar to the LAMBADA development and
test sets, but without filtering them in any way, so achieving good results on this set shows a model’s
strength in standard language modeling.

Our best fixed UT results used 6 steps. However, the average number of steps that the best UT with
dynamic halting took on the test data over all positions and examples was 8.2±2.1. In order to see if
the dynamic model did better simply because it took more steps, we trained two fixed UT models with
8 and 9 steps respectively (see last two rows). Interestingly, these two models achieve better results
compared to the model with 6 steps, but do not outperform the UT with dynamic halting. This leads
us to believe that dynamic halting may act as a useful regularizer for the model via incentivizing a
smaller numbers of steps for some of the input symbols, while allowing more computation for others.

3.4 ALGORITHMIC TASKS

We trained UTs on three algorithmic tasks, namely Copy, Reverse, and (integer) Addition, all on
strings composed of decimal symbols (‘0’-‘9’). In all the experiments, we train the models on
sequences of length 40 and evaluated on sequences of length 400 (Kaiser & Sutskever, 2016). We

7

Published as a conference paper at ICLR 2019

Model Copy Reverse Addition

char-acc seq-acc char-acc seq-acc char-acc seq-acc

LSTM 0.45 0.09 0.66 0.11 0.08 0.0
Transformer 0.53 0.03 0.13 0.06 0.07 0.0
Universal Transformer 0.91 0.35 0.96 0.46 0.34 0.02
Neural GPU∗ 1.0 1.0 1.0 1.0 1.0 1.0

Table 4: Accuracy (higher better) on the algorithmic tasks. ∗Note that the Neural GPU was trained with
a special curriculum to obtain the perfect result, while other models are trained without any curriculum.

Copy Double Reverse

Model char-acc seq-acc char-acc seq-acc char-acc seq-acc

LSTM 0.78 0.11 0.51 0.047 0.91 0.32
Transformer 0.98 0.63 0.94 0.55 0.81 0.26
Universal Transformer 1.0 1.0 1.0 1.0 1.0 1.0

Table 5: Character-level (char-acc) and sequence-level accuracy (seq-acc) results on the Memorization
LTE tasks, with maximum length of 55.

Program Control Addition

Model char-acc seq-acc char-acc seq-acc char-acc seq-acc

LSTM 0.53 0.12 0.68 0.21 0.83 0.11
Transformer 0.71 0.29 0.93 0.66 1.0 1.0
Universal Transformer 0.89 0.63 1.0 1.0 1.0 1.0

Table 6: Character-level (char-acc) and sequence-level accuracy (seq-acc) results on the Program
Evaluation LTE tasks with maximum nesting of 2 and length of 5.

train UTs using positions starting with randomized offsets to further encourage the model to learn
position-relative transformations. Results are shown in Table 4. The UT outperforms both LSTM and
vanilla Transformer by a wide margin on all three tasks. The Neural GPU reports perfect results on this
task (Kaiser & Sutskever, 2016), however we note that this result required a special curriculum-based
training protocol which was not used for other models.

3.5 LEARNING TO EXECUTE (LTE)

As another class of sequence-to-sequence learning problems, we also evaluate UTs on tasks
indicating the ability of a model to learn to execute computer programs, as proposed in (Zaremba &
Sutskever, 2015). These tasks include program evaluation tasks (program, control, and addition), and
memorization tasks (copy, double, and reverse).

We use the mix-strategy discussed in (Zaremba & Sutskever, 2015) to generate the datasets.
Unlike (Zaremba & Sutskever, 2015), we do not use any curriculum learning strategy during training
and we make no use of target sequences at test time. Tables 5 and 6 present the performance of an
LSTM model, Transformer, and Universal Transformer on the program evaluation and memorization
tasks, respectively. UT achieves perfect scores in all the memorization tasks and also outperforms
both LSTMs and Transformers in all program evaluation tasks by a wide margin.

3.6 MACHINE TRANSLATION

We trained a UT on the WMT 2014 English-German translation task using the same setup as reported in
(Vaswani et al., 2017) in order to evaluate its performance on a large-scale sequence-to-sequence task.
Results are summarized in Table 7. The UT with a fully-connected recurrent transition function (instead
of separable convolution) and without ACT improves by 0.9 BLEU over a Transformer and 0.5 BLEU
over a Weighted Transformer with approximately the same number of parameters (Ahmed et al., 2017).

8

Published as a conference paper at ICLR 2019

Model BLEU

Universal Transformer small 26.8
Transformer base (Vaswani et al., 2017) 28.0
Weighted Transformer base (Ahmed et al., 2017) 28.4
Universal Transformer base 28.9

Table 7: Machine translation results on the WMT14 En-De translation task trained on 8xP100 GPUs
in comparable training setups. All base results have the same number of parameters.

4 DISCUSSION

When running for a fixed number of steps, the Universal Transformer is equivalent to a multi-layer
Transformer with tied parameters across all its layers. This is partly similar to the Recursive
Transformer, which ties the weights of its self-attention layers across depth (Gulcehre et al., 2018)5.
However, as the per-symbol recurrent transition functions can be applied any number of times, another
and possibly more informative way of characterizing the UT is as a block of parallel RNNs (one for
each symbol, with shared parameters) evolving per-symbol hidden states concurrently, generated at
each step by attending to the sequence of hidden states at the previous step. In this way, it is related
to architectures such as the Neural GPU (Kaiser & Sutskever, 2016) and the Neural Turing Machine
(Graves et al., 2014). UTs thereby retain the attractive computational efficiency of the original feed-
forward Transformer model, but with the added recurrent inductive bias of RNNs. Furthermore, using
a dynamic halting mechanism, UTs can choose the number of processing steps based on the input data.

The connection between the Universal Transformer and other sequence models is apparent from
the architecture: if we limited the recurrent steps to one, it would be a Transformer. But it is more
interesting to consider the relationship between the Universal Transformer and RNNs and other
networks where recurrence happens over the time dimension. Superficially these models may seem
closely related since they are recurrent as well. But there is a crucial difference: time-recurrent models
like RNNs cannot access memory in the recurrent steps. This makes them computationally more similar
to automata, since the only memory available in the recurrent part is a fixed-size state vector. UTs on
the other hand can attend to the whole previous layer, allowing it to access memory in the recurrent step.

Given sufficient memory the Universal Transformer is computationally universal – i.e. it belongs to
the class of models that can be used to simulate any Turing machine, thereby addressing a shortcoming
of the standard Transformer model 6. In addition to being theoretically appealing, our results show
that this added expressivity also leads to improved accuracy on several challenging sequence modeling
tasks. This closes the gap between practical sequence models competitive on large-scale tasks such
as machine translation, and computationally universal models such as the Neural Turing Machine
or the Neural GPU (Graves et al., 2014; Kaiser & Sutskever, 2016), which can be trained using gradient
descent to perform algorithmic tasks.

To show this, we can reduce a Neural GPU to a Universal Transformer. Ignoring the decoder and pa-
rameterizing the self-attention module, i.e. self-attention with the residual connection, to be the identity
function, we assume the transition function to be a convolution. If we now set the total number of
recurrent steps T to be equal to the input length, we obtain exactly a Neural GPU. Note that the last step
is where the Universal Transformer crucially differs from the vanilla Transformer whose depth cannot
scale dynamically with the size of the input. A similar relationship exists between the Universal Trans-
former and the Neural Turing Machine, whose single read/write operations per step can be expressed by
the global, parallel representation revisions of the Universal Transformer. In contrast to these models,
however, which only perform well on algorithmic tasks, the Universal Transformer also achieves
competitive results on realistic natural language tasks such as LAMBADA and machine translation.

Another related model architecture is that of end-to-end Memory Networks (Sukhbaatar et al.,
2015). In contrast to end-to-end memory networks, however, the Universal Transformer uses
memory corresponding to states aligned to individual positions of its inputs or outputs. Furthermore,
the Universal Transformer follows the encoder-decoder configuration and achieves competitive
performance in large-scale sequence-to-sequence tasks.

5Note that in UT both the self-attention and transition weights are tied across layers.
6Appendix B illustrates how UT is computationally more powerful than the standard Transformer.

9

Published as a conference paper at ICLR 2019

5 CONCLUSION

This paper introduces the Universal Transformer, a generalization of the Transformer model that
extends its theoretical capabilities and produces state-of-the-art results on a wide range of challenging
sequence modeling tasks, such as language understanding but also a variety of algorithmic tasks,
thereby addressing a key shortcoming of the standard Transformer. The Universal Transformer
combines the following key properties into one model:

Weight sharing: Following intuitions behind weight sharing found in CNNs and RNNs, we extend the
Transformer with a simple form of weight sharing that strikes an effective balance between inductive
bias and model expressivity, which we show extensively on both small and large-scale experiments.

Conditional computation: In our goal to build a computationally universal machine, we equipped the
Universal Transformer with the ability to halt or continue computation through a recently introduced
mechanism, which shows stronger results compared to the fixed-depth Universal Transformer.

We are enthusiastic about the recent developments on parallel-in-time sequence models. By adding
computational capacity and recurrence in processing depth, we hope that further improvements beyond
the basic Universal Transformer presented here will help us build learning algorithms that are both
more powerful, data efficient, and generalize beyond the current state-of-the-art.

The code used to train and evaluate Universal Transformers is available at https:
//github.com/tensorflow/tensor2tensor (Vaswani et al., 2018).

Acknowledgements We are grateful to Ashish Vaswani, Douglas Eck, and David Dohan for their
fruitful comments and inspiration.

REFERENCES

Karim Ahmed, Nitish Shirish Keskar, and Richard Socher. Weighted transformer network for machine translation.
arXiv preprint arXiv:1711.02132, 2017.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016. URL http://arxiv.org/abs/1607.06450.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning to align
and translate. CoRR, abs/1409.0473, 2014. URL http://arxiv.org/abs/1409.0473.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Fethi Bougares, Holger Schwenk, and Yoshua Bengio.
Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR,
abs/1406.1078, 2014. URL http://arxiv.org/abs/1406.1078.

Francois Chollet. Xception: Deep learning with depthwise separable convolutions. arXiv preprint
arXiv:1610.02357, 2016.

Zewei Chu, Hai Wang, Kevin Gimpel, and David McAllester. Broad context language modeling as reading
comprehension. In Proceedings of the 15th Conference of the European Chapter of the Association for
Computational Linguistics: Volume 2, Short Papers, volume 2, pp. 52–57, 2017.

Bhuwan Dhingra, Zhilin Yang, William W Cohen, and Ruslan Salakhutdinov. Linguistic knowledge as memory
for recurrent neural networks. arXiv preprint arXiv:1703.02620, 2017.

Bhuwan Dhingra, Qiao Jin, Zhilin Yang, William W Cohen, and Ruslan Salakhutdinov. Neural models for
reasoning over multiple mentions using coreference. arXiv preprint arXiv:1804.05922, 2018.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N. Dauphin. Convolutional sequence
to sequence learning. CoRR, abs/1705.03122, 2017. URL http://arxiv.org/abs/1705.03122.

Edouard Grave, Armand Joulin, and Nicolas Usunier. Improving neural language models with a continuous cache.
arXiv preprint arXiv:1612.04426, 2016.

Alex Graves. Generating sequences with recurrent neural networks. CoRR, abs/1308.0850, 2013. URL
http://arxiv.org/abs/1308.0850.

Alex Graves. Adaptive computation time for recurrent neural networks. arXiv preprint arXiv:1603.08983, 2016.

10

https://github.com/tensorflow/tensor2tensor
https://github.com/tensorflow/tensor2tensor
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1705.03122
http://arxiv.org/abs/1308.0850

Published as a conference paper at ICLR 2019

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. CoRR, abs/1410.5401, 2014. URL
http://arxiv.org/abs/1410.5401.

Caglar Gulcehre, Misha Denil, Mateusz Malinowski, Ali Razavi, Razvan Pascanu, Karl Moritz Hermann, Peter
Battaglia, Victor Bapst, David Raposo, Adam Santoro, et al. Hyperbolic attention networks. arXiv preprint
arXiv:1805.09786, 2018.

Mikael Henaff, Jason Weston, Arthur Szlam, Antoine Bordes, and Yann LeCun. Tracking the world state with
recurrent entity networks. arXiv preprint arXiv:1612.03969, 2016.

Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, and Jürgen Schmidhuber. Gradient flow in recurrent nets: the
difficulty of learning long-term dependencies. A Field Guide to Dynamical Recurrent Neural Networks, 2003.

A. Joulin and T. Mikolov. Inferring algorithmic patterns with stack-augmented recurrent nets. In Advances in
Neural Information Processing Systems, (NIPS), 2015.

Łukasz Kaiser and Ilya Sutskever. Neural GPUs learn algorithms. In International Conference on Learning
Representations (ICLR), 2016. URL https://arxiv.org/abs/1511.08228.

Łukasz Kaiser, Aidan N. Gomez, and Francois Chollet. Depthwise separable convolutions for neural machine
translation. CoRR, abs/1706.03059, 2017. URL http://arxiv.org/abs/1706.03059.

Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit Iyyer, James Bradbury, Ishaan Gulrajani, Victor Zhong, Romain
Paulus, and Richard Socher. Ask me anything: Dynamic memory networks for natural language processing.
In International Conference on Machine Learning, pp. 1378–1387, 2016.

Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua Bengio.
A structured self-attentive sentence embedding. arXiv preprint arXiv:1703.03130, 2017.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg. Assessing the ability of lstms to learn syntax-sensitive
dependencies. Transactions of the Association of Computational Linguistics, 4(1):521–535, 2016.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Ngoc Quan Pham, Raffaella Bernardi, Sandro Pezzelle,
Marco Baroni, Gemma Boleda, and Raquel Fernandez. The lambada dataset: Word prediction requiring a
broad discourse context. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), volume 1, pp. 1525–1534, 2016.

Ankur Parikh, Oscar Täckström, Dipanjan Das, and Jakob Uszkoreit. A decomposable atten-
tion model. In Empirical Methods in Natural Language Processing, 2016. URL https:
//arxiv.org/pdf/1606.01933.pdf.

Jack Rae, Jonathan J Hunt, Ivo Danihelka, Timothy Harley, Andrew W Senior, Gregory Wayne, Alex Graves,
and Tim Lillicrap. Scaling memory-augmented neural networks with sparse reads and writes. In Advances
in Neural Information Processing Systems, pp. 3621–3629, 2016.

Minjoon Seo, Sewon Min, Ali Farhadi, and Hannaneh Hajishirzi. Query-reduction networks for question
answering. arXiv preprint arXiv:1606.04582, 2016.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout:
a simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(1):
1929–1958, 2014.

Sainbayar Sukhbaatar, arthur szlam, Jason Weston, and Rob Fergus. End-to-end memory networks.
In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett (eds.), Advances in
Neural Information Processing Systems 28, pp. 2440–2448. Curran Associates, Inc., 2015. URL
http://papers.nips.cc/paper/5846-end-to-end-memory-networks.pdf.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural net-
works. In Advances in Neural Information Processing Systems, pp. 3104–3112, 2014. URL
http://arxiv.org/abs/1409.3215.

Ke Tran, Arianna Bisazza, and Christof Monz. The importance of being recurrent for modeling hierarchical
structure. In Proceedings of NAACL’18, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and
Illia Polosukhin. Attention is all you need. CoRR, 2017. URL http://arxiv.org/abs/1706.03762.

Ashish Vaswani, Samy Bengio, Eugene Brevdo, Francois Chollet, Aidan N. Gomez, Stephan Gouws, Llion
Jones, Łukasz Kaiser, Nal Kalchbrenner, Niki Parmar, Ryan Sepassi, Noam Shazeer, and Jakob Uszkoreit.
Tensor2tensor for neural machine translation. CoRR, abs/1803.07416, 2018.

11

http://arxiv.org/abs/1410.5401
https://arxiv.org/abs/1511.08228
http://arxiv.org/abs/1706.03059
https://arxiv.org/pdf/1606.01933.pdf
https://arxiv.org/pdf/1606.01933.pdf
http://papers.nips.cc/paper/5846-end-to-end-memory-networks.pdf
http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1706.03762

Published as a conference paper at ICLR 2019

Jason Weston, Antoine Bordes, Sumit Chopra, Alexander M Rush, Bart van Merriënboer, Armand Joulin, and
Tomas Mikolov. Towards ai-complete question answering: A set of prerequisite toy tasks. arXiv preprint
arXiv:1502.05698, 2015.

Dani Yogatama, Yishu Miao, Gabor Melis, Wang Ling, Adhiguna Kuncoro, Chris Dyer, and Phil Blunsom.
Memory architectures in recurrent neural network language models. In International Conference on Learning
Representations, 2018. URL https://openreview.net/forum?id=SkFqf0lAZ.

Wojciech Zaremba and Ilya Sutskever. Learning to execute. CoRR, abs/1410.4615, 2015. URL
http://arxiv.org/abs/1410.4615.

12

https://openreview.net/forum?id=SkFqf0lAZ
http://arxiv.org/abs/1410.4615

Published as a conference paper at ICLR 2019

APPENDIX A DETAILED SCHEMA OF THE UNIVERSAL TRANSFORMER

Input Sequence

Embed Input Symbols

Position embedding

Timestep embedding

Multihead Self-Attention

Transition Function

Dropout

Layer Normalization

Dropout

Layer Normalization

+

+

+

+

Multihead Attention

Target Sequence (right-shifted by one)

Embed Target Symbols

Position embedding

Timestep embedding

Multihead Self-Attention

Transition Function

Dropout

Layer Normalization

Dropout

Layer Normalization

+

+

+

+

Dropout

Layer Normalization

+

Softmax

Output Probabilities

After T steps

After T steps

For T steps

For T steps

Recurrent
Encoder
Block

Recurrent
Decoder
Block

Figure 4: The Universal Transformer with position and step embeddings as well as dropout and layer
normalization.

APPENDIX B ON THE COMPUTATIONAL POWER OF UT VS TRANSFORMER

With respect to their computational power, the key difference between the Transformer and the Universal
Transformer lies in the number of sequential steps of computation (i.e. in depth). While a standard Transformer
executes a total number of operations that scales with the input size, the number of sequential operations is
constant, independent of the input size and determined solely by the number of layers. Assuming finite precision,
this property implies that the standard Transformer cannot be computationally universal. When choosing a number
of steps as a function of the input length, however, the Universal Transformer does not suffer from this limitation.
Note that this holds independently of whether or not adaptive computation time is employed but does assume
a non-constant, even if possibly deterministic, number of steps. Varying the number of steps dynamically after
training is enabled by sharing weights across sequential computation steps in the Universal Transformer.

An intuitive example are functions whose execution requires the
sequential processing of each input element. In this case, for any
given choice of depth T , one can construct an input sequence of
length N > T that cannot be processed correctly by a standard
Transformer. With an appropriate, input-length dependent choice of
sequential steps, however, a Universal Transformer, RNNs or Neural
GPUs can execute such a function.

13

Published as a conference paper at ICLR 2019

APPENDIX C UT WITH DYNAMIC HALTING

We implement the dynamic halting based on ACT (Graves, 2016) as follows in TensorFlow. In each step of the UT
with dynamic halting, we are given the halting probabilities, remainders, number of updates up to that point, and
the previous state (all initialized as zeros), as well as a scalar threshold between 0 and 1 (a hyper-parameter). We
then compute the new state for each position and calculate the new per-position halting probabilities based on the
state for each position. The UT then decides to halt for some positions that crossed the threshold, and updates the
state of other positions until the model halts for all positions or reaches a predefined maximum number of steps:

1 # While−l oop s t o p s when t h i s p r e d i c a t e i s FALSE
2 # i . e . a l l ((p r o b a b i l i t y < t h r e s h o l d) & (c o u n t e r < max_s teps)) a r e f a l s e
3 d e f s h o u l d _ c o n t i n u e (u0 , u1 , h a l t i n g _ p r o b a b i l i t y , u2 , n_upda te s , u3) :
4 r e t u r n t f . r e d u c e _ a n y (
5 t f . l o g i c a l _ a n d (
6 t f . l e s s (h a l t i n g _ p r o b a b i l i t y , t h r e s h o l d) ,
7 t f . l e s s (n_upda te s , max_s teps)))
8 # Do w h i l e loop i t e r a t i o n s u n t i l p r e d i c a t e above i s f a l s e
9 (_ , _ , _ , r ema inde r , n_upda te s , n e w _ s t a t e) = t f . w h i l e _ l o o p (

10 s h o u l d _ c o n t i n u e , u t _ w i t h _ d y n a m i c _ h a l t i n g , (s t a t e ,
11 s t e p , h a l t i n g _ p r o b a b i l i t y , r e m a i n d e r s , n_upda te s , p r e v i o u s _ s t a t e))

Listing 1: UT with dynamic halting.

The following shows the computations in each step:

1 d e f u t _ w i t h _ d y n a m i c _ h a l t i n g (s t a t e , s t e p , h a l t i n g _ p r o b a b i l i t y ,
2 r e m a i n d e r s , n_upda t e s , p r e v i o u s _ s t a t e) :
3 # C a l c u l a t e t h e p r o b a b i l i t i e s based on t h e s t a t e
4 p = common_layers . dense (s t a t e , 1 , a c t i v a t i o n = t f . nn . s igmoid ,
5 u s e _ b i a s =True)
6 # Mask f o r i n p u t s which have n o t h a l t e d y e t
7 s t i l l _ r u n n i n g = t f . c a s t (
8 t f . l e s s (h a l t i n g _ p r o b a b i l i t y , 1 . 0) , t f . f l o a t 3 2)
9 # Mask of i n p u t s which h a l t e d a t t h i s s t e p

10 n e w _ h a l t e d = t f . c a s t (
11 t f . g r e a t e r (h a l t i n g _ p r o b a b i l i t y + p ∗ s t i l l _ r u n n i n g , t h r e s h o l d) ,
12 t f . f l o a t 3 2) ∗ s t i l l _ r u n n i n g
13 # Mask of i n p u t s which haven ’ t h a l t e d , and d idn ’ t h a l t t h i s s t e p
14 s t i l l _ r u n n i n g = t f . c a s t (
15 t f . l e s s _ e q u a l (h a l t i n g _ p r o b a b i l i t y + p ∗ s t i l l _ r u n n i n g ,
16 t h r e s h o l d) , t f . f l o a t 3 2) ∗ s t i l l _ r u n n i n g
17 # Add t h e h a l t i n g p r o b a b i l i t y f o r t h i s s t e p t o t h e h a l t i n g
18 # p r o b a b i l i t i e s f o r t h o s e i n p u t s which haven ’ t h a l t e d y e t
19 h a l t i n g _ p r o b a b i l i t y += p ∗ s t i l l _ r u n n i n g
20 # Compute r e m a i n d e r s f o r t h e i n p u t s which h a l t e d a t t h i s s t e p
21 r e m a i n d e r s += n e w _ h a l t e d ∗ (1 − h a l t i n g _ p r o b a b i l i t y)
22 # Add t h e r e m a i n d e r s t o t h o s e i n p u t s which h a l t e d a t t h i s s t e p
23 h a l t i n g _ p r o b a b i l i t y += n e w _ h a l t e d ∗ r e m a i n d e r s
24 # I n c r e m e n t n _ u p d a t e s f o r a l l i n p u t s which a r e s t i l l r u n n i n g
25 n _ u p d a t e s += s t i l l _ r u n n i n g + n e w _ h a l t e d
26 # Compute t h e w e i gh t t o be a p p l i e d t o t h e new s t a t e and o u t p u t :
27 # 0 when t h e i n p u t has a l r e a d y h a l t e d ,
28 # p when t h e i n p u t hasn ’ t h a l t e d ye t ,
29 # t h e r e m a i n d e r s when i t h a l t e d t h i s s t e p .
30 u p d a t e _ w e i g h t s = t f . expand_dims (p ∗ s t i l l _ r u n n i n g +
31 n e w _ h a l t e d ∗ r e m a i n d e r s , −1)
32 # Apply t r a n s f o r m a t i o n t o t h e s t a t e
33 t r a n s f o r m e d _ s t a t e = t r a n s i t i o n _ f u n c t i o n (s e l f _ a t t e n t i o n (s t a t e))
34 # I n t e r p o l a t e t r a n s f o r m e d and p r e v i o u s s t a t e s f o r non−h a l t e d i n p u t s
35 n e w _ s t a t e = ((t r a n s f o r m e d _ s t a t e ∗ u p d a t e _ w e i g h t s) +
36 (p r e v i o u s _ s t a t e ∗ (1 − u p d a t e _ w e i g h t s)))
37 s t e p += 1
38 r e t u r n (t r a n s f o r m e d _ s t a t e , s t e p , h a l t i n g _ p r o b a b i l i t y ,
39 r e m a i n d e r s , n_upda t e s , n e w _ s t a t e)

Listing 2: Computations in each step of the UT with dynamic halting.

14

Published as a conference paper at ICLR 2019

APPENDIX D DESCRIPTION OF SOME OF THE TASKS/DATASETS

Here, we provide some additional details on the bAbI, subject-verb agreement, LAMBADA language modeling,
and learning to execute (LTE) tasks.

D.1 BABI QUESTION-ANSWERING

The bAbi question answering dataset (Weston et al., 2015) consists of 20 different synthetic tasks7. The aim
is that each task tests a unique aspect of language understanding and reasoning, including the ability of: reasoning
from supporting facts in a story, answering true/false type questions, counting, understanding negation and
indefinite knowledge, understanding coreferences, time reasoning, positional and size reasoning, path-finding, and
understanding motivations (to see examples for each of these tasks, please refer to Table 1 in (Weston et al., 2015)).

There are two versions of the dataset, one with 1k training examples and the other with 10k examples. It is
important for a model to be data-efficient to achieve good results using only the 1k training examples. Moreover,
the original idea is that a single model should be evaluated across all the tasks (not tuning per task), which is
the train joint setup in Table 1, and the tables presented in Appendix E.

D.2 SUBJECT-VERB AGREEMENT

Subject-verb agreement is the task of predicting number agreement between subject and verb in English sentences.
Succeeding in this task is a strong indicator that a model can learn to approximate syntactic structure and therefore
it was proposed by Linzen et al. (2016) as proxy for assessing the ability of different models to capture hierarchical
structure in natural language.

Two experimental setups were proposed by Linzen et al. (2016) for training a model on this task: 1) training
with a language modeling objective, i.e., next word prediction, and 2) as binary classification, i.e. predicting
the number of the verb given the sentence. In this paper, we use the language modeling objective, meaning that
we provide the model with an implicit supervision and evaluate based on the ranking accuracy of the correct
form of the verb compared to the incorrect form of the verb.

In this task, in order to have different levels of difficulty, “agreement attractors” are used, i.e. one or more
intervening nouns with the opposite number from the subject with the goal of confusing the model. In this case,
the model needs to correctly identify the head of the syntactic subject that corresponds to a given verb and ignore
the intervening attractors in order to predict the correct form of that verb. Here are some examples for this task
in which subjects and the corresponding verbs are in boldface and agreement attractors are underlined:

No attractor: The boy smiles.
One attractor: The number of men is not clear.
Two attractors: The ratio of men to women is not clear.
Three attractors: The ratio of men to women and children is not clear.

D.3 LAMBADA LANGUAGE MODELING

The LAMBADA task (Paperno et al., 2016) is a broad context language modeling task. In this task, given a
narrative passage, the goal is to predict the last word (target word) of the last sentence (target sentence) in the
passage. These passages are specifically selected in a way that human subjects are easily able to guess their last
word if they are exposed to a long passage, but not if they only see the target sentence preceding the target word8.
Here is a sample from the dataset:

Context:
“Yes, I thought I was going to lose the baby.”
“I was scared too,” he stated, sincerity flooding his eyes.
“You were?” “Yes, of course. Why do you even ask?”
“This baby wasn’t exactly planned for.”

Target sentence:
“Do you honestly think that I would want you to have a ________?”

Target word:
miscarriage

The LAMBADA task consists in predicting the target word given the whole passage (i.e., the context plus the
target sentence). A “control set” is also provided which was constructed by randomly sampling passages of the
same shape and size as the ones used to build LAMBADA, but without filtering them in any way. The control

7https://research.fb.com/downloads/babi
8http://clic.cimec.unitn.it/lambada/appendix_onefile.pdf

15

https://research.fb.com/downloads/babi
http://clic.cimec.unitn.it/lambada/appendix_onefile.pdf

Published as a conference paper at ICLR 2019

set is used to evaluate the models at standard language modeling before testing on the LAMBADA task, and
therefore to ensure that low performance on the latter cannot be attributed simply to poor language modeling.

The task is evaluated in two settings: as language modeling (the standard setup) and as reading comprehension.
In the former (more challenging) case, a model is simply trained for the next word prediction on the training
data, and evaluated on the target words at test time (i.e. the model is trained to predict all words, not specifically
challenging target words). In this paper, we report the results of the Universal Transformer in both setups.

D.4 LEARNING TO EXECUTE (LTE)

LTE is a set of tasks indicating the ability of a model to learn to execute computer programs and was proposed
by Zaremba & Sutskever (2015). These tasks include two subsets: 1) program evaluation tasks (program,
control, and addition) that are designed to assess the ability of models for understanding numerical operations,
if-statements, variable assignments, the compositionality of operations, and more, as well as 2) memorization
tasks (copy, double, and reverse).

The difficulty of the program evaluation tasks is parameterized by their length and nesting. The length parameter
is the number of digits in the integers that appear in the programs (so the integers are chosen uniformly from
[1, length]), and the nesting parameter is the number of times we are allowed to combine the operations with
each other. Higher values of nesting yield programs with deeper parse trees. For instance, here is a program that
is generated with length = 4 and nesting = 3.

Input:
j=8584
for x in range(8):
j+=920

b=(1500+j)
print((b+7567))

Target:
25011

16

Published as a conference paper at ICLR 2019

APPENDIX E BABI DETAILED RESULTS

Best seed run for each task (out of 10 runs)

Task id 10K 1K

train single train joint train single train joint

1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.5
3 0.4 1.2 3.7 5.4
4 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 0.5
6 0.0 0.0 0.0 0.5
7 0.0 0.0 0.0 3.2
8 0.0 0.0 0.0 1.6
9 0.0 0.0 0.0 0.2
10 0.0 0.0 0.0 0.4
11 0.0 0.0 0.0 0.1
12 0.0 0.0 0.0 0.0
13 0.0 0.0 0.0 0.6
14 0.0 0.0 0.0 3.8
15 0.0 0.0 0.0 5.9
16 0.4 1.2 5.8 15.4
17 0.6 0.2 32.0 42.9
18 0.0 0.0 0.0 4.1
19 2.8 3.1 47.1 68.2
20 0.0 0.0 2.4 2.4

avg err 0.21 0.29 4.55 7.78

failed 0 0 3 5

Average (±var) over all seeds (for 10 runs)

Task id 10K 1K

train single train joint train single train joint

1 0.0 ±0.0 0.0 ±0.0 0.2 ±0.3 0.1 ±0.2
2 0.2 ±0.4 1.7 ±2.6 3.2 ±4.1 4.3 ±11.6
3 1.8 ±1.8 4.6 ±7.3 9.1 ±12.7 14.3 ±18.1
4 0.1 ±0.1 0.2 ±0.1 0.3 ±0.3 0.4 ±0.6
5 0.2 ±0.3 0.8 ±0.5 1.1 ±1.3 4.3 ±5.6
6 0.1 ±0.2 0.1 ±0.2 1.2 ±2.1 0.8 ±0.4
7 0.3 ±0.5 1.1 ±1.5 0.0 ±0.0 4.1 ±2.9
8 0.3 ±0.2 0.5 ±1.1 0.1 ±0.2 3.9 ±4.2
9 0.0 ±0.0 0.0 ±0.0 0.1 ±0.1 0.3 ±0.3
10 0.1 ±0.2 0.5 ±0.4 0.7 ±0.8 1.3 ±1.6
11 0.0 ±0.0 0.1 ±0.1 0.4 ±0.8 0.3 ±0.9
12 0.2 ±0.1 0.4 ±0.4 0.6 ±0.9 0.3 ±0.4
13 0.2 ±0.5 0.3 ±0.4 0.8 ±0.9 1.1 ±0.9
14 1.8 ±2.6 1.3 ±1.6 0.1 ±0.2 4.7 ±5.2
15 2.1 ±3.4 1.6 ±2.8 0.3 ±0.5 10.3 ±8.6
16 1.9 ±2.2 0.9 ±1.3 9.1 ±8.1 34.1 ±22.8
17 1.6 ±0.8 1.4 ±3.4 43.7 ±18.6 51.1 ±12.9
18 0.3 ±0.4 0.7 ±1.4 2.3 ±3.6 12.8 ±9.0
19 3.4 ±4.0 6.1 ±7.3 50.2 ±8.4 73.1 ±23.9
20 0.0 ±0.0 0.0 ±0.0 3.2 ±2.5 2.6 ±2.8

avg 0.73 ±0.89 1.12 ±1.62 6.34 ±3.32 11.21 ±6.65

17

Published as a conference paper at ICLR 2019

APPENDIX F BABI ATTENTION VISUALIZATION

We present a visualization of the attention distributions on bAbI tasks for a couple of examples. The visualization
of attention weights is over different time steps based on different heads over all the facts in the story and a
question. Different color bars on the left side indicate attention weights based on different heads (4 heads in total).

An example from tasks 1: (requiring one supportive fact to solve)

Story:
John travelled to the hallway.
Mary journeyed to the bathroom.
Daniel went back to the bathroom.
John moved to the bedroom

Question:
Where is Mary?

Model’s output:
bathroom

(a) Step 1

(b) Step 2

(c) Step 3

(d) Step 4

Figure 5: Visualization of the attention distributions, when encoding the question: “Where is Mary?”.

18

Published as a conference paper at ICLR 2019

An example from tasks 2: (requiring two supportive facts to solve)

Story:
Sandra journeyed to the hallway.
Mary went to the bathroom.
Mary took the apple there.
Mary dropped the apple.

Question:
Where is the apple?

Model’s output:
bathroom

(a) Step 1

(b) Step 2

(c) Step 3

(d) Step 4

Figure 6: Visualization of the attention distributions, when encoding the question: “Where is the
apple?”.

19

Published as a conference paper at ICLR 2019

An example from tasks 2: (requiring two supportive facts to solve)

Story:
John went to the hallway.
John went back to the bathroom.
John grabbed the milk there.
Sandra went back to the office.
Sandra journeyed to the kitchen.
Sandra got the apple there.
Sandra dropped the apple there.
John dropped the milk.

Question:
Where is the milk?

Model’s output:
bathroom

(a) Step 1

(b) Step 2

(c) Step 3

(d) Step 4

Figure 7: Visualization of the attention distributions, when encoding the question: “Where is the milk?”.

20

Published as a conference paper at ICLR 2019

An example from tasks 3: (requiring three supportive facts to solve)

Story:
Mary got the milk.

John moved to the bedroom.
Daniel journeyed to the office.
John grabbed the apple there.
John got the football.
John journeyed to the garden.
Mary left the milk.
John left the football.
Daniel moved to the garden.
Daniel grabbed the football.
Mary moved to the hallway.
Mary went to the kitchen.
John put down the apple there.
John picked up the apple.
Sandra moved to the hallway.
Daniel left the football there.
Daniel took the football.
John travelled to the kitchen.
Daniel dropped the football.
John dropped the apple.
John grabbed the apple.
John went to the office.
Sandra went back to the bedroom.
Sandra took the milk.
John journeyed to the bathroom.
John travelled to the office.
Sandra left the milk.
Mary went to the bedroom.
Mary moved to the office.
John travelled to the hallway.
Sandra moved to the garden.
Mary moved to the kitchen.
Daniel took the football.
Mary journeyed to the bedroom.
Mary grabbed the milk there.
Mary discarded the milk.
John went to the garden.
John discarded the apple there.

Question:
Where was the apple before the bathroom?

Model’s output:
office

21

Published as a conference paper at ICLR 2019

(e) Step 1

(f) Step 2

22

Published as a conference paper at ICLR 2019

(g) Step 3

(h) Step 4

Figure 7: Visualization of the attention distributions, when encoding the question: “Where was the
apple before the bathroom?”.

23

	Introduction
	Model Description
	The Universal Transformer
	Dynamic Halting

	Experiments and Analysis
	bAbI Question-Answering
	Subject-Verb Agreement
	LAMBADA Language Modeling
	Algorithmic Tasks
	Learning to Execute (LTE)
	Machine Translation

	Discussion
	Conclusion
	Detailed Schema of the Universal Transformer
	On the Computational Power of UT vs Transformer
	UT with Dynamic Halting
	Description of some of the Tasks/Datasets
	bAbI Question-Answering
	Subject-Verb Agreement
	LAMBADA Language Modeling
	Learning to Execute (LTE)

	bAbI Detailed Results
	bAbI Attention Visualization

