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Abstract

Much of the focus in the design of deep neural networks had been on improving1

accuracy, leading to more powerful yet highly complex network architectures that2

are difficult to deploy in practical scenarios. As a result, there has been a recent3

interest in the design of quantitative metrics for evaluating deep neural networks4

that accounts for more than just model accuracy as the sole indicator of network5

performance. In this study, we continue the conversation towards universal metrics6

for evaluating the performance of deep neural networks for practical on-device edge7

usage by introducing NetScore, a new metric designed specifically to provide a8

quantitative assessment of the balance between accuracy, computational complexity,9

and network architecture complexity of a deep neural network. In what is one of10

the largest comparative analysis between deep neural networks in literature, the11

NetScore metric, the top-1 accuracy metric, and the popular information density12

metric were compared across a diverse set of 60 different deep convolutional neural13

networks for image classification on the ImageNet Large Scale Visual Recognition14

Challenge (ILSVRC 2012) dataset. The evaluation results across these three metrics15

for this diverse set of networks are presented in this study to act as a reference16

guide for practitioners in the field.17

1 Introduction18

There has been a recent urge in both research and industrial interests in deep learning [4], with deep19

neural networks such as deep convolutional neural networks [6, 5] demonstrating state-of-the-art20

performance across a wide variety of applications [19, 22, 11]. However, the practical industrial21

deployment bottlenecks associated with the powerful yet highly complex deep neural networks in22

research literature has become even increasingly visible, and as a result, the design of deep neural23

networks that strike a strong balance between accuracy and complexity become a very hot area of24

research focus [18, 14, 34, 33, 26, 28, 36]. One of the key challenges in designing practical deep25

neural networks lies in the difficulties with assessing how well a particular network architecture26

is striking that balance. One of the most widely cited metrics is the information density metric27

proposed by [1], which attempts to measure the relative amount of accuracy given network size.28

However, information density does not account for computational requirements for performing29

network inference (e.g., MobileNet [14] has more parameters than SqueezeNet [18] but has lower30

computational requirements for network inference). Therefore, the exploration and investigation31

towards universal performance metrics that account for accuracy, architectural complexity, and32

computational complexity is highly desired as it has the potential to improve network model search33

and design. In this study, we introduce NetScore, a new metric designed specifically to provide a34

quantitative assessment of the balance between accuracy, computational complexity, and network35

architecture complexity of a deep neural network.36
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2 NetScore: Design Principles37

The proposed NetScore metric (denoted here as Ω) for assessing the performance of a deep neural38

network N for practical usage can be defined as:39

Ω(N ) = 20 log

(
a(N )

α

p(N )
β
m(N )

γ

)
(1)

40
where a(N ) is the accuracy of the network, p(N ) is the number of parameters in the network,41

m(N ) is the number of multiply–accumulate (MAC) operations performed during network inference,42

and α, β, γ are coefficients that control the influence of accuracy, architectural complexity, and43

computational complexity of the network on Ω.44

Control coefficients We set α = 2 to better emphasize the importance of model accuracy in45

assessing the overall performance of a network in practical usage, as networks that have unreasonably46

low accuracy remain unusable in practical scenarios, regardless how small or fast the network is.47

Furthermore, we set β = 0.5 and γ = 0.5 since, while architectural and computational complexity are48

both very important factors to assessing the overall performance of a network in practical scenarios,49

the most important metric remains the model accuracy given that, as eluded to before, networks50

with unreasonably low model accuracy are not useful in practical scenarios regardless of size and51

speed. Given these coefficients, NetScore is in the units of squared percentage accuracy per root52

parameter per root MAC operation, and represents the capacity of a network architecture to utilize its53

full learning and computing capacity.54

Logarithmic scaling: A difficulty in comparing the overall performance of different deep neural55

networks with each other is their great diversity in their model accuracy, architectural complexity, and56

computational complexity. This makes the dynamic range of the performance metric quite large and57

unwieldy for practitioners to compare for model search and design purposes. To account for this large58

dynamic range, we take inspiration from the field of signal processing; in particular, the logarithmic59

scale commonly used to express the ratio between one value of a property to another. Here, we60

transform the ratio between the model accuracy property (a(N )) and the model architectural and61

computational complexity (p(N ) and m(N )) into the logarithmic scale to reduce the dynamic range62

to within a more readily interpretable range.63

3 Experimental Results and Discussion64

To get a better sense regarding the overall performance of the huge wealth of deep convolutional65

neural networks introduced in research literature in the context of practical usage, we perform a large-66

scale comparative analysis across a diverse set of 60 different deep convolutional neural networks67

designed for image classification using the following quantitative performance metrics: i) top-168

accuracy, ii) information density, and iii) the proposed NetScore metric. The dataset of choice for69

the comparative analysis in this study is the ImageNet Large Scale Visual Recognition Challenge70

(ILSVRC 2012) dataset [23], which consists of 1000 different classes. To the best of the author’s71

knowledge, this comparative analysis is one of the largest in research literature and the hope is that72

the results presented in this study can act as a reference guide for practitioners in the field.73

The set of deep convolutional neural networks being evaluated in this study are: AlexNet [19],74

AmoebaNet-A (4, 50) [24], AmoebaNet-A (6, 190) [24], AmoebaNet-A (6, 204) [24], AmoebaNet-75

B (3, 62) [24], AmoebaNet-B (6, 190) [24], AmoebaNet-C (4, 50) [24], AmoebaNet-C (6,76

228) [24], CondenseNet (G=C=4) [16], CondenseNet (G=C=8) [16], DenseNet-121 (k=32) [17],77

DenseNet-169 (k=32) [17], DenseNet-161 (k=48) [17], DenseNet-201 (k=32) [17], DPN-131 [2],78

GoogleNet [31], IGC-L100M2 [35], IGC-L16M16 [35], IGC-L100M2 [35], Inception-ResNetv2 [30],79

Inceptionv2 [32], Inceptionv3 [32], Inceptionv4 [30], MobileNetv1 (1.0-224) [14], MobileNetv1 (1.0-80

192) [14], MobileNetv1 (1.0-160) [14], MobileNetv1 (1.0-128) [14], MobileNetv1 (0.75-224) [14],81

MobileNetv2 [26], MobileNetv2 (1.4) [26], NASNet-A (4 @ 1056) [38], NASNet-A (6 @ 4132) [38],82

NASNet-B (4 @ 1536) [38], NiN [20], OverFeat [27], PNASNet-5 (4, 216) [21], PolyNet [37],83

PreResNet-152 [13], PreResNet-200 [13], PyramidNet-101 (alpha=250) [9], PyramidNet-20084

(alpha=300) [9], PyramidNet-200 (alpha=450) [9], ResNet-152 [12], ResNet-50 [12], ResNet-85

101 [12], ResNeXt-101, SENet [15], ShuffleNet (1.5) [36], ShuffleNet (x2) [36], SimpleNet [10],86

SqueezeNet [18], SqueezeNetv1.1 [18], SqueezeNext (1.0-23v5) [7], SqueezeNext (2.0-23) [7],87

SqueezeNext (2.0-23v5) [7], TinyDarkNet [25], VGG16 [29], Xception [3], ZynqNet [8]. In this88

study, the units used for p(N ) and m(N ) are in M-Params (millions of parameters) and G-MACs89

(billions of MAC operations), respectively.90
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Figure 1: Top-1 accuracy, information density, and NetScore across 60 different deep convolutional
neural networks for the ILSVRC 2012 dataset. Units are in %/M-Params for information density.
The top-1 accuracies across 60 different networks (shown in Fig. 1(left)) clearly illustrate the sig-91

nificant progress made in network design for image classification over the past six years, with the92

difference between the network with the highest top-1 accuracy in this study (i.e., AmoebaNet-C93

(6, 228)) and that of AlexNet exceeding 25%. The information densities across 60 different deep94

convolutional neural networks for the ILSVRC 2012 dataset, shown in Fig. 1(middle), clearly il-95

lustrates that the deep convolutional neural networks that were specifically designed for efficiency96

(e.g., MobileNetv1, MobileNetv2, ShuffleNet, SqueezeNet, Tiny DarkNet, and SqueezeNext) have97

significantly higher information densities compared to networks that were designed purely with accu-98

racy as a metric. More specifically, the SqueezeNext (1.0-23v5), Tiny DarkNet, and the SqueezeNet99

family of networks had the highest information density by a wide margin compared to the other tested100

deep convolutional neural networks, which can be attributed to their significantly lower architec-101

tural complexity in terms of number of network parameters. Another notable observation from the102

results in Fig. 1(middle) is that the dynamic range of the information density metric is quite large103

across the diverse set of 60 deep convolutional neural networks evaluated in this study. Finally, the104

NetScore across 60 different deep convolutional neural networks for the ILSVRC 2012 dataset is105

shown in Fig. 1(right). Similar to the trend observed in Fig. 1(middle), it can be clearly observed that106

many of the deep convolutional neural networks that were specifically designed for efficiency have107

significantly higher NetScores compared to networks that were designed purely with accuracy as a108

metric. However, what is interesting to observe is that the NetScore ranking amongst these efficient109

networks are quite different than that when using the information density metric. In particular, the top110

ranking deep convolutional neural networks with the highest NetScores are SqueezeNext (1.0-23v5),111

CondenseNet (G=C=8), and MobileNetv2.112

A number of examples illustrate the efficacy of NetScore over information density for providing a113

more complete profile of network efficiency and performance. For example, CondenseNet(G=C=8)114

has slightly lower information density than ZynqNet, but has ∼ 2× lower computational complexity115

and much higher accuracy. The NetScore, in this case, is much higher for CondenseNet(G=C=8)116

compared to ZynqNet (higher by >4 units). In another example, MobileNetv1(0.75-224) has more117

than 2× parameters than SqueezeNet, and thus has much lower information density. However,118

the computational complexity of SqueezeNet is > 26× greater than MobileNetv1(0.75-224) and119

accuracy much lower, and as such is reflected by a much higher NetScore for MobileNetv1(0.75-224)120

compared to SqueezeNet (higher by >14 units).121

The proposed NetScore metric, which by no means is perfect, could potentially be useful for guiding122

practitioners in model search and design and hopefully push the conversation towards better universal123

metrics for evaluating deep neural networks for use in practical scenarios. NetScore can, for example,124

be used to narrow down a selection of network architecture candidates from a huge number of network125

architectures available to evaluate deeper on target hardware for hardware-specific usage.126
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