Workshop track - ICLR 2017

DANCE DANCE CONVOLUTION

Chris Donahue

Department of Music

University of California, San Diego

9500 Gilman Drive La Jolla, CA 92093, USA
cdonahueQucsd.edu

Zachary C. Lipton, Julian McAuley
Department of Computer Science

University of California, San Diego

9500 Gilman Drive La Jolla, CA 92093, USA
{zlipton, jmcauley}@cs.ucsd.edu

ABSTRACT

Dance Dance Revolution (DDR) is a popular rhythm-based video game. Players
perform steps on a dance platform in synchronization with music as directed by
on-screen step charts. While many step charts are available in standardized packs,
users may grow tired of existing charts, or wish to dance to a song for which no
chart exists. We introduce the task of learning to choreograph. Given a raw audio
track, the goal is to produce a new step chart. This task decomposes naturally
into two subtasks: deciding when to place steps and deciding which steps to se-
lect. We demonstrate deep learning solutions for both tasks and establish strong

benchmarks for future work.

1 INTRODUCTION

Dance Dance Revolution (DDR) is a popu-
lar rhythm-based video game with millions of
players worldwide 2006). Players
perform steps atop a dance platform, containing
four buttons, each labeled with an arrow. An
on-screen step chart prompts players to step on
the buttons at specific, musically salient points
in time. Scores depend upon both hitting the
right buttons and hitting them at the right time.
Step charts vary in difficulty with harder charts
containing more steps and more complex se-
quences.

Despite the game’s popularity, players have
some reasonable complaints: For one, packs are
limited to songs with favorable licenses, mean-
ing players may be unable to dance to their fa-
vorite songs. Even when charts are available,
players may tire of repeatedly performing the
same charts. Although players can produce
their own charts, the process is painstaking and
requires significant expertise.

Sampled Choreography

R N2

Step Selection Predictions

0 — . ? e 8 vy
00 02 04 06 08 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Figure 1:

feat. Mistajam - Sleaze.

This paper introduces learning to choreograph, the task of producing a step chart from raw au-

dio. We break the problem into two subtasks: First, step placement consists of identifying a set of
timestamps in the song at which to place steps. This process can be conditioned on a user-specified

difficulty level. Second, step selection consists of choosing which steps to place at each timestamp.
Running these two steps in sequence yields a playable step chart (Figure |I|

For both prediction stages of learning to choreograph, we demonstrate the superior performance
of neural networks over strong alternatives. Our best model for step placement jointly learns con-

volutional neural network (CNN) representations and a recurrent neural network (RNN), which

! Demonstration video showing human choreography and the output of Dance Dance Convolution side-by-

side: https://youtu.be/yUc30237p9M

Proposed learning to choreograph
pipeline for four seconds of the song Knife Party

https://youtu.be/yUc3O237p9M

Workshop track - ICLR 2017

integrates information across consecutive time slices. Our best model for step selection consists
of a conditional LSTM generative model which receives high-level rhythm features as auxiliary
information.

2 METHODS

Before applying our step placement algorithms, we transform raw audio samples into perceptually-
informed representations. Music files arrive as lossy encodings at 44.1kHz. We decode the audio
files into stereo PCM and average the two channels to produce a monophonic representation. We
then compute a multiple-timescale short-time Fourier transform (STFT) using window lengths of
23ms, 46ms, and 93ms and a stride of 10ms. We reduce the dimensionality of the STFT magnitude
spectrum by applying a Mel-scale filterbank yielding 80 frequency bands. Then we scale the filter
outputs logarithmically in accordance with human perception of loudness. Finally, we prepend and
append seven frames of past and future context to each frame.

2.1 STEP PLACEMENT

We consider several models to address the step
placement task. Each model’s output consists

of a single sigmoid unit which estimates the e i
probability that a step is placed. For all models, 5 :

we augment the audio features with a one-hot MLPE
representation of difficulty. i ‘ Fully connected ‘

Following state-of-the-art work on musical on-

set detection (Schliiter & Bock, 2014), we l—’{ LSTM (t-1) H LST™ ‘
adopt a convolutional neural network (CNN) RNN: t
architecture. This model consists of two convo- ' LSTM (t-1) LST™M H

lutional layers followed by two fully connected
layers. Our first convolutional layer has 10 fil-
ter kernels that are 7-wide in time and 3-wide

Flatten frequency . .
and channel axes

One-hot difficulty

in frequency. The second layer has 20 filter ker- (% Conv 3x3
nels that are 3-wide in time and 3-wide in fre- CNN
quency. We apply 1D max-pooling after each ([] Cowv7ma

convolutional layer, only in the frequency di-
mension, with a width and stride of 3. Both
convolutional layers use rectified linear units
(ReLU) (Glorot et al.). Following the convo-
lutional layers, we add two fully connected lay- Figure 2: CNN/RNN/MLP model used for
ers with ReLU activation functions and 256 and difficulty-conditioned step placement

128 nodes respectively.

To improve upon the CNN, we propose a C-LSTM model (Figure [2), combining a convolutional
encoding with an LSTM-RNN (Hochreiter & Schmidhuber, |1997) that integrates information across
longer windows of time. Our C-LSTM contains two convolutional layers (of the same shape as the
CNN) applied across the full unrolling length. The output of the second convolutional layer is a 3D
tensor, which we flatten along the channel and frequency axes (preserving the temporal dimension).
The flattened features at each time step then become the inputs to a two-layer LSTM with 200 nodes
per layer. We train this model using 100 unrollings for backpropagation through time.

2.2 STEP SELECTION

We treat the step selection task as a sequence generation problem. Our approach follows related
work in language modeling where RNNs are well-known to produce coherent text that captures
long-range relationships (Mikolov et al., 2010; |Sutskever et al., [201 1 [Sundermeyer et al., 2012).

Our LSTM model passes over the ground truth step placements and predicts the next token given
the previous sequence of tokens. The output is a softmax distribution over the game’s 256 possible
steps. As inputs, we use a more compact bag-of-arrows representation containing 16 features (4 per

Workshop track - ICLR 2017

arrow) to depict the previous step. For each arrow, the 4 corresponding features represent the states
on, off, hold, and release. We add an additional feature that functions as a start token to denote the
first step of a chart. For this task, our LSTM consists of 2 layers of 128 cells each. We use 64 steps
of unrolling, an average of 100 seconds for the easiest charts and 9 seconds for the hardest.

To inform our LSTM of the non-uniform rhythmic spacing of the step placements, we provide the
following two pieces of auxiliary information: (1) A-beat adds two features representing the number
of beats since the previous and until the next step; (2) beat phase adds four features representing
which sixteenth note subdivision of the beat the current step most closely aligns to.

3 EXPERIMENTS

We collected a dataset consisting of 203 songs, labeled by 9 annotators. One particularly prolific
annotator, Fraxtil, annotated 90 of these songs for all five difficulty levels. The remaining songs are
from a large multi-author collection called In The Groove (ITG). In total, across all five difficulty
settings, we obtain around 35 hours of annotated audio and 350,000 steps. E] We augment our
dataset for step selection by synthesizing mirror images of each chart (i.e., interchanging left and
right) which we found to improve performance for all models

For step placement, we compare the performance of our proposed CNN and C-LSTM models
against a logistic regressor (LogReg) and a 2-layer MLP. For step selection, we compare our pro-
posed LSTM model against a fixed-window MLP and an n-gram model using modified Kneser-Ney
smoothing (Chen & Goodman, [1998) with backoff. Both the MLP (MLP5) and n-gram model
(KNS) predict the next step from four steps of history and the MLP received the same auxiliary
information as the LSTM. We also show the performance of an LSTM model trained with only 5
steps of unrolling (LSTMS5) to demonstrate the advantage of longer context.

Model Dataset | PPL AUC F-score Model Dataset | PPL Acc.
LogReg Fraxtil 1.205 0.601 0.609 KNS5 Fraxtil 3.681 0.528
MLP Fraxtil 1.097 0.659 0.665 MLP5 Fraxtil 3428 0.557
CNN Fraxtil 1.082 0.671 0.678 LSTMS5 Fraxtil 3.185 0.581
C-LSTM Fraxtil 1.070 0.682 0.681 LSTM64 Fraxtil 3.011 0.613
LogReg ITG 1.123 0.599 0.634 KNS5 ITG 5.847 0.356
MLP ITG 1.090 0.637 0.671 MLP5 ITG 4786 0.401
CNN ITG 1.083 0.677 0.689 LSTMS ITG 4447 0441
C-LSTM ITG 1.072 0.680 0.697 LSTM64 ITG 4342 0.444
Table 1: Perplexity, area under curve and F- Table 2: Perplexity and per-token accuracy as-
score assessed for the step placement task. sessed for the step selection task.

Our experiments demonstrate that on both the step placement (Table[I)) and the step selection (Table
[2) tasks, deep neural network models outperform traditional baselines. For the step placement task,
the best performing method by all metrics is the C-LSTM. For the step selection task, LSTMs
outperform other models.

Data augmentation and the inclusion of A-beat and beat phase side information give a significant
increase in performance to both the MLP and LSTMs for step selection. For example, the LSTM64
model trained on the Fraxtil dataset without side information or data augmentation only achieves
a PPL of 3.526 and accuracy of 0.562. Step selection models perform better on the single-author
Fraxtil dataset in comparison to the multi-author ITG. Author style tends to be distinctive and thus
a collection of single-author sequences is more predictable.

4 RELATED WORK

A few prior systems attempt automatic synthesis of step charts (O’ Keeffe}, 2003; |Nogajl [2005)), how-
ever neither establishes a reproducible evaluation methodology or learns the semantics of steps from
data. The most closely related work to our step placement task is concerned with onset detection

2All data shall be made available at publication time

Workshop track - ICLR 2017

(Bello et al., [2005; IDixonl |2006), which has previously been attempted with deep neural networks
(Eyben et al.l |2010; |Schliiter & Bockl [2014). Our step selection task most closely resembles con-
ditional language modeling. A recent wave of work in RNNs for language modeling began with
(Mikolov et al.,2010; Sutskever et al.,|2011). Inspired by this work, several recent papers extend the
methods to polyphonic music generation and transcription (Boulanger-Lewandowski et al., 2012;
Chu et al.| [2016; |Sigtia et al.,|2016). To our knowledge, ours is the first paper to attempt end-to-end
DDR choreography from raw audio with deep learning.

REFERENCES

Juan Pablo Bello, Laurent Daudet, Samer Abdallah, Chris Duxbury, Mike Davies, and Mark B
Sandler. A tutorial on onset detection in music signals. IEEE Transactions on speech and audio
processing, 2005.

Nicolas Boulanger-Lewandowski, Yoshua Bengio, and Pascal Vincent. Modeling temporal depen-
dencies in high-dimensional sequences: Application to polyphonic music generation and tran-
scription. arXiv:1206.6392, 2012.

Stanley F Chen and Joshua Goodman. An empirical study of smoothing techniques for language
modeling. Technical Report TR-10-98, Harvard University, 1998.

Hang Chu, Raquel Urtasun, and Sanja Fidler. Song from pi: A musically plausible network for pop
music generation. arXiv:1611.03477,2016.

Simon Dixon. Onset detection revisited. In Proceedings of the 9th International Conference on
Digital Audio Effects. Citeseer, 2006.

Florian Eyben, Sebastian Bock, Bjorn W Schuller, and Alex Graves. Universal onset detection with
bidirectional long short-term memory neural networks. In ISMIR, 2010.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In
AISTATS, year=2011.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation, 1997.

Johanna Hoysniemi. International survey on the dance dance revolution game. Computers in Enter-
tainment (CIE), 2006.

Tomas Mikolov, Martin Karafiit, Lukas Burget, Jan Cernocky, and Sanjeev Khudanpur. Recurrent
neural network based language model. In Interspeech, 2010.

Adam Nogaj. A genetic algorithm for determining optimal step patterns in dance dance revolution.
Technical report, State University of New York at Fredonia, 2005.

Karl O’Keeffe. Dancing monkeys (automated creation of step files for dance dance revolution).
Technical report, Imperial College London, 2003.

Jan Schliiter and Sebastian Bock. Improved musical onset detection with convolutional neural net-
works. In 2014 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2014.

Siddharth Sigtia, Emmanouil Benetos, and Simon Dixon. An end-to-end neural network for poly-
phonic piano music transcription. IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 2016.

Martin Sundermeyer, Ralf Schliiter, and Hermann Ney. Lstm neural networks for language model-
ing. In Interspeech, 2012.

Ilya Sutskever, James Martens, and Geoffrey E Hinton. Generating text with recurrent neural net-
works. In ICML, 2011.

	Introduction
	Methods
	Step Placement
	Step Selection

	Experiments
	Related Work

