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ABSTRACT

Although reinforcement learning methods can achieve impressive results in sim-
ulation, the real world presents two major challenges: generating samples is
exceedingly expensive, and unexpected perturbations or unseen situations cause
proficient but specialized policies to fail at test time. Given that it is impractical
to train separate policies to accommodate all situations the agent may see in the
real world, this work proposes to learn how to quickly and effectively adapt online
to new tasks. To enable sample-efficient learning, we consider learning online
adaptation in the context of model-based reinforcement learning. Our approach
uses meta-learning to train a dynamics model prior such that, when combined with
recent data, this prior can be rapidly adapted to the local context. Our experiments
demonstrate online adaptation for continuous control tasks on both simulated and
real-world agents. We first show simulated agents adapting their behavior online
to novel terrains, crippled body parts, and highly-dynamic environments. We also
illustrate the importance of incorporating online adaptation into autonomous agents
that operate in the real world by applying our method to a real dynamic legged
millirobot. We demonstrate the agent’s learned ability to quickly adapt online to a
missing leg, adjust to novel terrains and slopes, account for miscalibration or errors
in pose estimation, and compensate for pulling payloads.1

1 INTRODUCTION

Both model-based and model-free reinforcement learning (RL) methods generally operate in one
of two regimes: all training is performed in advance, producing a model or policy that can be used
at test-time to make decisions in settings that approximately match those seen during training; or,
training is performed online (e.g., as in the case of online temporal-difference learning), in which
case the agent can slowly modify its behavior as it interacts with the environment. However, in both
of these cases, dynamic changes such as failure of a robot’s components, encountering a new terrain,
environmental factors such as lighting and wind, or other unexpected perturbations, can cause the
agent to fail. In contrast, humans can rapidly adapt their behavior to unseen physical perturbations
and changes in their dynamics (Braun et al., 2009): adults can learn to walk on crutches in just a few
seconds, people can adapt almost instantaneously to picking up an object that is unexpectedly heavy,
and children that can walk on carpet and grass can quickly figure out how to walk on ice without
having to relearn how to walk. How is this possible? If an agent has encountered a large number of
perturbations in the past, it can in principle use that experience to learn how to adapt. In this work,
we propose a meta-learning approach for learning online adaptation.

Motivated by the ability to tackle real-world applications, we specifically develop a model-based
meta-reinforcement learning algorithm. In this setting, data for updating the model is readily available
at every timestep in the form of recent experiences. But more crucially, the meta-training process
for training such an adaptive model can be much more sample efficient than model-free meta-RL
approaches (Duan et al., 2016; Wang et al., 2016; Finn et al., 2017). Further, our approach foregoes

1Videos available at: https://sites.google.com/berkeley.edu/metaadaptivecontrol
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Figure 1: We implement our sample-efficient meta-reinforcement learning algorithm on a real legged millirobot,
enabling online adaptation to new tasks and unexpected occurrences such as losing a leg (shown here), novel
terrains and slopes, errors in pose estimation, and pulling payloads.

the episodic framework on which model-free meta-RL approaches rely on, where tasks are pre-defined
to be different rewards or environments, and tasks exist at the trajectory level only. Instead, our
method considers each timestep to potentially be a new “task, " where any detail or setting could have
changed at any timestep. This view induces a more general meta-RL problem setting by allowing
the notion of a task to represent anything from existing in a different part of the state space, to
experiencing disturbances, or attempting to achieve a new goal.

Learning to adapt a model alleviates a central challenge of model-based reinforcement learning: the
problem of acquiring a global model that is accurate throughout the entire state space. Furthermore,
even if it were practical to train a globally accurate dynamics model, the dynamics inherently change
as a function of uncontrollable and often unobservable environmental factors, such as those mentioned
above. If we have a model that can adapt online, it need not be perfect everywhere a priori. This
property has previously been exploited by adaptive control methods (Åström and Wittenmark, 2013;
Sastry and Isidori, 1989; Pastor et al., 2011; Meier et al., 2016); but, scaling such methods to
complex tasks and nonlinear systems is exceptionally difficult. Even when working with deep neural
networks, which have been used to model complex nonlinear systems (Kurutach et al., 2018), it is
exceptionally difficult to enable adaptation, since such models typically require large amounts of
data and many gradient steps to learn effectively. By specifically training a neural network model
to require only a small amount of experience to adapt, we can enable effective online adaptation in
complex environments while putting less pressure on needing a perfect global model.

The primary contribution of our work is an efficient meta reinforcement learning approach that
achieves online adaptation in dynamic environments. To the best knowledge of the authors, this
is the first meta-reinforcement learning algorithm to be applied in a real robotic system. Our
algorithm efficiently trains a global model that is capable to use its recent experiences to quickly
adapt, achieving fast online adaptation in dynamic environments. We evaluate two versions of our
approach, recurrence-based adaptive learner (ReBAL) and gradient-based adaptive learner (GrBAL)
on stochastic and simulated continuous control tasks with complex contact dynamics (Fig. 2). In
our experiments, we show a quadrupedal “ant” adapting to the failure of different legs, as well as
a “half-cheetah" robot adapting to the failure off different joints, navigating terrains with different
slopes, and walking on floating platforms of varying buoyancy. Our model-based meta RL method
attains substantial improvement over prior approaches, including standard model-based methods,
online model-adaptive methods, model-free methods, and prior meta-reinforcement learning methods,
when trained with similar amounts of data. In all experiments, meta-training across multiple tasks is
sample efficient, using only the equivalent of 1.5− 3 hours of real-world experience, roughly 10×
less than what model-free methods require to learn a single task. Finally, we demonstrate GrBAL
on a real dynamic legged millirobot (see Fig 2). To highlight not only the sample efficiency of our
meta model-based reinforcement learning approach, but also the importance of fast online adaptation
in the real world, we show the agent’s learned ability to adapt online to tasks such as a missing leg,
novel terrains and slopes, miscalibration or errors in pose estimation, and new payloads to be pulled.

2 RELATED WORK

Advances in learning control policies have shown success on numerous complex and high dimensional
tasks (Schulman et al., 2015; Lillicrap et al., 2015; Mnih et al., 2015; Levine et al., 2016; Silver et al.,
2017). While reinforcement learning algorithms provide a framework for learning new tasks, they
primarily focus on mastery of individual skills, rather than generalizing and quickly adapting to new
scenarios. Furthermore, model-free approaches (Peters and Schaal, 2008) require large amounts of
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system interaction to learn successful control policies, which often makes them impractical for real-
world systems. In contrast, model-based methods attain superior sample efficiency by first learning a
model of system dynamics, and then using that model to optimize a policy (Deisenroth et al., 2013;
Lenz et al., 2015; Levine et al., 2016; Nagabandi et al., 2017b; Williams et al., 2017). Our approach
alleviates the need to learn a single global model by allowing the model to be adapted automatically
to different scenarios online based on recent observations. A key challenge with model-based RL
approaches is the difficulty of learning a global model that is accurate for the entire state space. Prior
model-based approaches tackled this problem by incorporating model uncertainty using Gaussian
Processes (GPs) (Ko and Fox, 2009; Deisenroth and Rasmussen, 2011; Doerr et al., 2017). However,
these methods make additional assumptions on the system (such as smoothness), and does not scale
to high dimensional environments. Chua et al. (2018) has recently showed that neural networks
models can also benefit from incorporating uncertainty, and it can lead to model-based methods that
attain model-free performance with a significant reduction on sample complexity. Our approach is
orthogonal to theirs, and can benefit from incorporating such uncertainty.

Prior online adaptation approaches (Tanaskovic et al., 2013; Aswani et al., 2012) have aimed to learn
an approximate global model and then adapt it at test time. Dynamic evaluation algorithms (Rei,
2015; Krause et al., 2017; 2016; Fortunato et al., 2017), for example, learn an approximate global
distribution at training time and adapt those model parameters at test time to fit the current local
distribution via gradient descent. There exists extensive prior work on online adaptation in model-
based reinforcement learning and adaptive control (Sastry and Isidori, 1989). In contrast from inverse
model adaptation (Kelouwani et al., 2012; Underwood and Husain, 2010; Pastor et al., 2011; Meier
et al., 2016; Meier and Schaal, 2016; Rai et al., 2017), we are concerned in the problem of adapting
the forward model, closely related to online system identification (Manganiello et al., 2014). Work in
model adaptation (Levine and Koltun, 2013; Gu et al., 2016; Fu et al., 2015; Weinstein and Botvinick,
2017) has shown that a perfect global model is not necessary, and prior knowledge can be fine-tuned
to handle small changes. These methods, however, face a mismatch between what the model is
trained for and how it is used at test time. In this paper, we bridge this gap by explicitly training a
model for fast and effective adaptation. As a result, our model achieves more effective adaptation
compared to these prior works, as validated in our experiments.

Our problem setting relates to meta-learning, a long-standing problem of interest in machine learn-
ing that is concerned with enabling artificial agents to efficiently learn new tasks by learning to
learn (Thrun and Pratt, 1998; Schmidhuber and Huber, 1991; Naik and Mammone, 1992; Lake
et al., 2015). A meta-learner can control learning through approaches such as deciding the learner’s
architecture (Baker et al., 2016), or by prescribing an optimization algorithm or update rule for
the learner (Bengio et al., 1990; Schmidhuber, 1992; Younger et al., 2001; Andrychowicz et al.,
2016; Li and Malik, 2016; Ravi and Larochelle, 2018). Another popular meta-learning approach
involves simply unrolling a recurrent neural network (RNN) that ingests the data (Santoro et al.,
2016; Munkhdalai and Yu, 2017; Munkhdalai et al., 2017; Mishra et al., 2017) and learns internal
representations of the algorithms themselves, one instantiation of our approach (ReBAL) builds on
top of these methods. On the other hand, the other instantiation of our method (GrBAL) builds on top
of MAML (Finn et al., 2017). GrBAL differs from the supervised version of MAML in that MAML
assumes access to a hand-designed distribution of tasks. Instead, one of our primary contributions
is the online formulation of meta-learning, where tasks correspond to temporal segments, enabling
“tasks” to be constructed automatically from the experience in the environment.

Meta-learning in the context of reinforcement learning has largely focused on model-free ap-
proaches (Duan et al., 2016; Wang et al., 2016; Sung et al., 2017; Al-Shedivat et al., 2017). However,
these algorithms present even more (meta-)training sample complexity than non-meta model-free
RL methods, which precludes them from real-world applications. Recent work (Sæmundsson et al.,
2018) has developed a model-based meta RL algorithm, framing meta-learning as a hierarchical latent
variable model, training for episodic adaptation to dynamics changes; the modeling is done with
GPs, and results are shown on the cart-pole and double-pendulum agents. In contrast, we propose
an approach for learning online adaptation of high-capacity neural network dynamics models; we
present two instantiations of this general approach and show results on both simulated agents and a
real legged robot.
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3 PRELIMINARIES

In this section, we present model-based reinforcement learning, introduce the meta-learning formula-
tion, and describe the two main meta-learning approaches.

3.1 MODEL-BASED REINFORCEMENT LEARNING

Reinforcement learning agents aim to perform actions that maximize some notion of cumu-
lative reward. Concretely, consider a Markov decision process (MDP) defined by the tuple
(S,A, p, r, γ, ρ0, H). Here, S is the set of states, A is the set of actions, p(s′|s,a) is the state
transition distribution, r : S × A → R is a bounded reward function, ρ0 : S → R+ is the initial
state distribution, γ is the discount factor, and H is the horizon. A trajectory segment is denoted
by τ(i, j) := (si,ai, ..., sj ,aj , sj+1). Finally, the sum of expected rewards from a trajectory is the
return. In this framework, RL aims to find a policy π : S → A that prescribes the optimal action to
take from each state in order to maximize the expected return.

Model-based RL aims to solve this problem by learning the transition distribution p(s′|s,a), which is
also referred to as the dynamics model. This can be done using a function approximator p̂θ(s′|s,a)
to approximate the dynamics, where the weights θ are optimized to maximize the log-likelihood
of the observed data D. In practice, this model is then used in the process of action selection by
either producing data points from which to train a policy, or by producing predictions and dynamics
constraints to be optimized by a controller.

3.2 META-LEARNING

Meta-learning is concerned with automatically learning learning algorithms that are more efficient
and effective than learning from scratch. These algorithms leverage data from previous tasks to
acquire a learning procedure that can quickly adapt to new tasks. These methods operate under the
assumption that the previous meta-training tasks and the new meta-test tasks are drawn from the
same task distribution ρ(T ) and share a common structure that can be exploited for fast learning.
In the supervised learning setting, we aim to learn a function fθ with parameters θ that minimizes
a supervised loss LT . Then, the goal of meta-learning is to find a learning procedure, denoted as
θ′ = uψ(Dtr

T ,θ), that can learn a range of tasks T from small datasets Dtr
T .

We can formalize this meta-learning problem setting as optimizing for the parameters of the learning
procedure θ,ψ as follows:

min
θ,ψ

ET ∼ρ(T )

[
L(Dtest

T ,θ′)
]

s.t. θ′ = uψ(Dtr
T ,θ) (1)

where Dtr
T ,Dtest

T are sampled without replacement from the meta-training dataset DT .

Once meta-training optimizes for the parameters θ∗,ψ∗, the learning procedure uψ(·,θ) can then
be used to learn new held-out tasks from small amounts of data. We will also refer to the learning
procedure u as the update function.

Gradient-based meta-learning. Model-agnostic meta-learning (MAML) (Finn et al., 2017) aims
to learn the initial parameters of a neural network such that taking one or several gradient descent
steps from this initialization leads to effective generalization (or few-shot generalization) to new tasks.
Then, when presented with new tasks, the model with the meta-learned initialization can be quickly
fine-tuned using a few data points from the new tasks. Using the notation from before, MAML uses
gradient descent as a learning algorithm:

uψ(Dtr
T ,θ) = θ − α∇θL(Dtr

T ,θ) (2)
The learning rate α may be a learnable paramter (in which case ψ = α) or fixed as a hyperparameter,
leading toψ = ∅. Despite the update rule being fixed, a learned initialization of an overparameterized
deep network followed by gradient descent is as expressive as update rules represented by deep
recurrent networks (Finn and Levine, 2017).

Recurrence-based meta-learning. Another approach to meta-learning is to use recurrent models.
In this case, the update function is always learned, and ψ corresponds to the weights of the recurrent
model that update the hidden state. The parameters θ of the prediction model correspond to the
remainder of the weights of the recurrent model and the hidden state. Both gradient-based and
recurrence-based meta-learning methods have been used for meta model-free RL (Finn et al., 2017;
Duan et al., 2016). We will build upon these ideas to develop a meta model-based RL algorithm that
enables adaptation in dynamic environments, in an online way.
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4 META-LEARNING FOR ONLINE MODEL ADAPTATION

In this section, we present our approach for meta-learning for online model adaptation. As explained
in Section 3.2, standard meta-learning formulations require the learned model θ∗,ψ∗ to learn
using M data points from some new “task.” In prior gradient-based and model-based meta-RL
approaches (Finn et al., 2017; Sæmundsson et al., 2018), the M has corresponded to M trajectories,
leading to episodic adaptation.

Our notion of task is slightly more fluid, where every segment of a trajectory can be considered to
be a different “task,” and observations from the past M timesteps (rather than the past M episodes)
can be considered as providing information about the current task setting. Since changes in system
dynamics, terrain details, or other environmental changes can occur at any time, we consider (at
every time step) the problem of adapting the model using the M past time steps to predict the next K
timesteps. In this setting, M and K are pre-specified hyperparameters; see appendix for a sensitivity
analysis of these parameters.

In this work, we use the notion of environment E to denote different settings or configurations of a
particular problem, ranging from malfunctions in the system’s joints to the state of external distur-
bances. We assume a distribution of environments ρ(E) that share some common structure, such as
the same observation and action space, but may differ in their dynamics pE(s′|s,a). We denote a tra-
jectory segment by τE(i, j), which represents a sequence of states and actions (si,ai, ..., sj ,aj , sj+1)
sampled within an environment E . Our algorithm assumes that the environment is locally consistent,
in that every segment of length j − i has the same environment. Even though this assumption is not
always correct, it allows us to learn to adapt from data without knowing when the environment has
changed. Due to the fast nature of our adaptation (less than a second), this assumption is seldom
violated.

We pose the meta-RL problem in this setting as an optimization over (θ, ψ) with respect to a
maximum likelihood meta-objective. The meta-objective is the likelihood of the data under a
predictive model p̂θ′(s′|s,a) with parameters θ′, where θ′ = uψ(τE(t−M, t− 1),θ) corresponds
to model parameters that were updated using the past M data points. Concretely, this corresponds to
the following optimization:

min
θ,ψ

EτE(t−M,t+K)∼D
[
L(τE(t, t+K),θ′E)

]
s.t.: θ′E = uψ(τE(t−M, t− 1),θ), (3)

In that τE(t − M, t + K) ∼ D corresponds to trajectory segments sampled from our previous
experience, and the loss L corresponds to the negative log likelihood of the data under the model:

L(τE(t, t+K),θ′E) , −
1

K

t+K∑
k=t

log p̂θ′E (sk+1|sk,ak). (4)

In the meta-objective in Equation 3, note that the past M points are used to adapt θ into θ′, and the
loss of this θ′ is evaluated on the future K points. Thus, we use the past M timesteps to provide
insight into how to adapt our model to perform well for nearby future timesteps. As outlined in
Algorithm 1, the update rule uψ for the inner update and a gradient step on θ for the outer update
allow us to optimize this meta-objective of adaptation. Thus, we achieve fast adaptation at test time
by being able to fine-tune the model using just M data points.

While we focus on reinforcement learning problems in our experiments, this meta-learning approach
could be used for a learning to adapt online in a variety of sequence modeling domains. We present
our algorithm using both a recurrence and a gradient-based meta-learner, as we discuss next.

Gradient-Based Adaptive Learner (GrBAL). GrBAL uses a gradient-based meta-learning to
perform online adaptation; in particular, we use MAML (Finn et al., 2017). In this case, our update
rule is prescribed by gradient descent ( 5.)

θ′E = uψ(τE(t−M, t− 1),θ) = θE +ψ∇θ
1

M

t−1∑
m=t−M

log p̂θE (sm+1|sm,am) (5)

Recurrence-Based Adaptive Learner (ReBAL). ReBAL, instead, utilizes a recurrent model,
which learns its own update rule (i.e., through its internal gating structure). In this case, ψ and uψ
correspond to the weights of the recurrent model that update its hidden state.
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Algorithm 1 Model-Based Meta-Reinforcement
Learning (train time)
Require: Distribution ρE over tasks
Require: Learning rate β ∈ R+

Require: Number of sampled tasks N , dataset D
Require: Task sampling frequency nS ∈ Z+

1: Randomly initialize θ
2: for i = 1, ... do
3: if i mod nS = 0 then
4: Sample E ∼ ρ(E)
5: Collect τE using Alg. 2
6: D ← D ∪ {τE}
7: end if
8: for j = 1 . . . N do
9: τE(t−M, t− 1), τE(t, t+K) ∼ D

10: θ′E ← uψ(τE(t−M, t− 1),θ)
11: Lj ← L(τE(t, t+K),θ′E)
12: end for

13: θ ← θ − β∇θ 1
N

N∑
j=1

Lj

14: ψ ← ψ − η∇ψ 1
N

N∑
j=1

Lj

15: end for
16: Return (θ, ψ) as (θ∗, ψ∗)

Algorithm 2 Online Model Adaptation
(test time)
Require: Meta-learned parameters θ∗,ψ∗
Require: controller(), H , r, nA

1: D ← ∅
2: for each timestep t do
3: θ′∗ ← uψ∗(D(t−M, t− 1),θ∗)
4: a← controller(θ′∗, r,H, nA)
5: Execute a, add result to D
6: end for
7: Return rollout D

Figure 2: Two real-world and four simulated en-
vironments on which our method is evaluated and
adaptation is crucial for success (e.g., adapting to
different slopes and leg failures)

5 MODEL-BASED META-REINFORCEMENT LEARNING

Now that we have discussed our approach for enabling online adaptation, we next propose how to
build upon this idea to develop a model-based meta-reinforcement learning algorithm. First, we
explain how the agent can use the adapted model to perform a task, given parameters θ∗ and ψ∗ from
optimizing the meta-learning objective.

Given θ∗ and ψ∗, we use the agent’s recent experience to adapt the model parameters: θ′∗ =
uψ∗(τ(t −M, t),θ∗). This results in a model p̂θ′∗ that better captures the local dynamics in the
current setting, task, or environment. This adapted model is then passed to our controller, along
with the reward function r and a planning horizon H . We use a planning H that is smaller than the
adaptation horizon K, since the adapted model is only valid within the current context. We use model
predictive path integral control (MPPI) (Williams et al., 2015), but, in principle, our model adaptation
approach is agnostic to the model predictive control (MPC) method used.

The use of MPC compensates for model inaccuracies by preventing accumulating errors, since we
replan at each time step using updated state information. MPC also allows for further benefits in
this setting of online adaptation, because the model p̂θ′E itself will also improve by the next time
step. After taking each step, we append the resulting state transition onto our dataset, reset the model
parameters back to θ∗, and repeat the entire planning process for each timestep. See Algorithm 2 for
this adaptation procedure. Finally, in addition to test-time, we also perform this online adaptation
procedure during the meta-training phase itself, to provide on-policy rollouts for meta-training. For
the complete meta-RL algorithm, see Algorithm 1.

6 EXPERIMENTS

Our evaluation aims to answer the following questions: (1) Is adaptation actually changing the model?
(2) Does our approach enable fast adaptation to varying dynamics, tasks, and environments, both
inside and outside of the training distribution? (3) How does our method’s performance compare to
that of other methods? (4) How do GrBAL and ReBAL compare? (5) How does meta model-based RL
compare to meta model-free RL in terms of sample efficiency and performance for these experiments?
(6) Can our method learn to adapt online on a real robot, and if so, how does it perform? We next
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present our set-up and results, motivated by these questions. Videos are available online2, and further
analysis is provided in the appendix. We first conduct a comparative evaluation of our algorithm,
on a variety of simulated robots using the MuJoCo physics engine (Todorov et al., 2012). For all of
our environments, we model the transition probabilities as Gaussian random variables with mean
parameterized by a neural network model (3 hidden layers of 512 units each and ReLU activations)
and fixed variance. In this case, maximum likelihood estimation corresponds to minimizing the mean
squared error. We now describe the setup of our environments (Fig. 2), where each agent requires
different types of adaptation to succeed at run-time:

Half-cheetah (HC): disabled joint. For each rollout during meta-training, we randomly sample
a joint to be disabled (i.e., the agent cannot apply torques to that joint). At test time, we evaluate
performance in two different situations: disabling a joint unseen during training, and switching
between disabled joints during a rollout. The former examines extrapolation to out-of-distribution
environments, and the latter tests fast adaptation to changing dynamics.

HC: sloped terrain. For each rollout during meta-training, we randomly select an upward or
downward slope of low steepness. At test time, we evaluate performance on unseen settings including
a gentle upward slope, a steep upward slope, and a steep hill that first goes up and then down.

HC: pier. In this experiment, the cheetah runs over a series of blocks that are floating on water.
Each block moves up and down when stepped on, and the changes in the dynamics are rapidly
changing due to each block having different damping and friction properties. The HC is meta-trained
by varying these block properties, and tested on a specific (randomly-selected) configuration of
properties.

Ant: crippled leg. For each meta-training rollout, we randomly sample a leg to cripple on this
quadrupedal robot. This causes unexpected and drastic changes to the underlying dynamics. We
evaluate this agent at test time by crippling a leg from outside of the training distribution, as well as
transitioning within a rollout from normal operation to having a crippled leg.

In the following sections, we evaluate our model-based meta-RL methods (GrBAL and ReBAL) in
comparison to several prior methods:

• Model-free RL (TRPO): To evaluate the importance of adaptation, we compare to a model-free
RL agent that is trained across environments E ∼ ρ(E) using TRPO (Schulman et al., 2015).

• Model-free meta-RL (MAML-RL): We compare to a state-of-the-art model-free meta-RL
method, MAML-RL (Finn et al., 2017).

• Model-based RL (MB): Similar to the model-free agent, we also compare to a single model-
based RL agent, to evaluate the importance of adaptation. This model is trained using supervised
model-error and iterative model bootstrapping.

• Model-based RL with dynamic evaluation (MB+DE): We compare to an agent trained with
model-based RL, as above. However, at test time, the model is adapted by taking a gradient step
at each timestep using the past M observations, akin to dynamic evaluation (Krause et al., 2017).
This final comparison evaluates the benefit of explicitly training for adaptability.

All model-based approaches (MB, MB+DE, GrBAL, and ReBAL) use model bootstrapping, use the
same neural network architecture, and use the same planner within experiments: MPPI (Williams
et al., 2015) for the simulated experiments and random shooting (RS) (Nagabandi et al., 2017a) for
the real-world experiments.

6.1 EFFECT OF ADAPTATION

First, we analyze the effect of the model adaptation, and show results from test-time runs on three
environments: HC pier, HC sloped terrain with a steep up/down hill, and ant crippled leg with the
chosen leg not seen as crippled during training. Figure 3 displays the distribution shift between the
pre-update and post-update model prediction errors of three GrBAL runs, showing that using the
past M timesteps to update θ∗ (pre) into θ′∗ (post) does indeed reduce model error on predicting the
following K timesteps.

2Videos available at: https://sites.google.com/berkeley.edu/metaadaptivecontrol
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6.2 PERFORMANCE AND META-TRAINING SAMPLE EFFICIENCY

Figure 3: Histogram of normalized K-step model prediction
errors of GrBAL, showing the improvement of the post-update
model’s predictions over the pre-update ones.

We first study the sample efficiency of the
meta-training process. Figure 4 shows the
average return across test environments
w.r.t. the amount of data used for meta-
training. We (meta-)train the model-free
methods (TRPO and MAML-RL) until con-
vergence, using the equivalent of about two
days of real-world experience. In contrast,
we meta-train the model-based methods (in-
cluding our approach) using the equivalent
of 1.5-3 hours of real-world experience.
Our methods result in superior or equiv-
alent performance to the model-free agent
that is trained with 1000 times more data.
Our methods also surpass the performance
of the non-meta-learned model-based ap-
proaches. Finally, our performance closely matches the high asymptotic performance of the model-
free meta-RL method for half-cheetah disabled, and achieves a suboptimal performance for ant
crippled but, again, it does so with the equivalent of 1000 times less data. Note that this suboptimality
in asymptotic performance is a known issue with model-based methods, and thus an interesting
direction for future efforts. The improvement in sample efficiency from using model-based methods
matches prior findings (Deisenroth and Rasmussen, 2011; Nagabandi et al., 2017a; Kurutach et al.,
2018); the most important evaluation, which we discuss in more detail next, is the ability for our
method to adapt online to drastic dynamics changes in only a handful of timesteps.

Figure 4: Compared to model-free RL, model-free meta-RL, and model-based RL methods, our model-based
meta-RL methods achieve good performance with 1000× less data. Dotted lines indicate performance at
convergence. For MB+DE+MPPI, we perform dynamic evaluation at test time on the final MB+MPPI model.

6.3 TEST-TIME PERFORMANCE: ONLINE ADAPTATION & GENERALIZATION

In our second comparative evaluation, we evaluate final test time performance both GrBAL and Re-
BAL in comparison to the aforementioned methods. In the interest of developing efficient algorithms
for real-world applications, we operate all methods in the low data regime for all experiments: the
amount of data available (meta-)training is fixed across methods, and roughly corresponds to 1.5-3
hours of real-world experience depending on the domain. We also provide the performance of a
MB oracle, which is trained using unlimited data from only the given test environment (rather than
needing to generalize to various training environments).

In these experiments, note that all agents were meta-trained on a distribution of tasks/environments
(as detailed above), but we then evaluate their adaptation ability on unseen environments at test time.
We test the ability of each approach to adapt to sudden changes in the environment, as well as to
generalize beyond the training environments. We evaluate the fast adaptation (F.A.) component on
the HC disabled joint, ant crippled leg, and the HC pier. On the first two, we cause a joint/leg of the
robot to malfunction in the middle of a rollout. We evaluate the generalization component also on the
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tasks of HC disabled joint and ant crippled leg, but this time, the leg/joint that malfunctions has not
been seen as crippled during training. The last environment that we test generalization on is the HC
slopped terrain for a hill, where the agent has to run up and down a steep slope, which is outside of
the gentle slopes that it experienced during training. The results, shown in Fig. 5, show returns that
are normalized such that the MB oracle achieves a return of 1.

Figure 5: Simulated results in a variety of
dynamic test environments. GrBAL outper-
forms other methods, even the MB oracle,
in all experiments where fast adaptation is
necessary. These results highlight the dif-
ficulty of training a global model, and the
importance of adaptation.

In all experiments, due to low quantity of training data,
TRPO performs poorly. Although MB+DE achieves better
generalization than MB, the slow nature of its adaptation
causes it to fall behind MB in the environments that require
fast adaptation. On the other hand, our approach surpasses
the other approaches in all of the experiments. In fact, in
the HC pier and the fast adaptation of ant environments,
our approach surpasses the model-based oracle. This re-
sult showcases the importance of adaptation in stochastic
environments, where even a model trained with a lot of
data cannot be robust to unexpected occurrences or distur-
bances. ReBAL displays its strengths on scenarios where
longer sequential inputs allow it to better asses current en-
vironment settings, but overall, GrBAL seems to perform
better for both generalization and fast adaptation.

6.4 REAL-WORLD RESULTS

To test our meta model-based RL method’s sample effi-
ciency, as well as its ability to perform fast and effective
online adaptation, we applied GrBAL to a real legged millirobot, comparing it to model-based RL
(MB) and model-based RL with dynamic evaluation (MB+DE). Due to the cost of running real robot
experiments, we chose the better performing method (i.e., GrBAL) to evaluate on the real robot. This
small 6-legged robot, as shown in Fig. 1 and Fig. 2, presents a modeling and control challenge in the
form of highly stochastic and dynamic movement. This robot is an excellent candidate for online
adaptation for many reasons: the rapid manufacturing techniques and numerous custom-design steps
used to construct this robot make it impossible to reproduce the same dynamics each time, its linkages
and other body parts deteriorate over time, and it moves very quickly and dynamically with

The state space of the robot is a 24-dimensional vector, including center of mass positions and
velocities, center of mass pose and angular velocities, back-EMF readings of motors, encoder
readings of leg motor angles and velocities, and battery voltage. We define the action space to be
velocity setpoints of the rotating legs. The action space has a dimension of two, since one motor on
each side is coupled to all three of the legs on that side. All experiments are conducted in a motion
capture room. Computation is done on an external computer, and the velocity setpoints are streamed
over radio at 10 Hz to be executed by a PID controller on the microcontroller on-board of the robot.

We meta-train a dynamics model for this robot using the meta-objective described in Equation 3, and
we train it to adapt on entirely real-world data from three different training terrains: carpet, styrofoam,
and turf. We collect approximately 30 minutes of data from each of the three training terrains. This
data was entirely collected using a random policy, in conjunction with a safety policy, whose sole
purpose was to prevent the robot from exiting the area of interest.

Our first group of results (Table 1) show that, when data from a random policy is used to train a
dynamics model, both a model trained with a standard supervised learning objective (MB) and a
GrBAL model achieve comparable performance for executing desired trajectories on terrains from
the training distribution.

Next, we test the performance of our method on what it is intended for: fast online adaptation of the
learned model to enable successful execution of new, changing, or out-of-distribution environments
at test time. Similar to the comparisons above, we compare GrBAL to a model-based method (MB)
that involves neither meta-training nor online adaptation, as well as a dynamic evaluation method
that involves online adaptation of that MB model (MB+DE). Our results (Fig. 6) demonstrate that
GrBAL substantially outperforms MB and MB+DE, and, unlike MB and MB+DE, and that GrBAL
can quickly 1) adapt online to a missing leg, 2) adjust to novel terrains and slopes, 3) account
for miscalibration or errors in pose estimation, and 4) compensate for pulling payloads. None of
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Left Str Z-z F-8
Carpet GrBAL 4.07 3.26 7.08 5.28

MB 3.94 3.26 6.56 5.21
Styrofoam GrBAL 3.90 3.75 7.55 6.01

MB 4.09 4.06 7.48 6.54
Turf GrBAL 1.99 1.65 2.79 3.40

MB 1.87 1.69 3.52 2.61

Table 1: Trajectory following costs for real-world Gr-
BAL and MB results when tested on three terrains that
were seen during training. Tested here for left turn
(Left), straight line (Str), zig-zag (Z-z), and figure-8
shapes (F-8). The methods perform comparably, in-
dicating that online adaptation is not needed in the
training terrains, but including it is not detrimental. Figure 6: GrBAL clearly outperforms both MB and

MB+DE, when tested on environments that (1) re-
quire online adaptation, and/or (2) were never seen
during training.

these environments were seen during training time, but the agent’s ability to learn how to learn
enables it to quickly leverage its prior knowledge and fine-tune to adapt to new environments online.
Furthermore, the poor performance of the MB and MB+DE baselines demonstrate not only the
need for adaptation, but also the importance of good initial parameters to adapt from (in this case,
meta-learned parameters). The qualitative results of these experiments in Fig. 7 show that the robot
is able to use our method to adapt online and effectively follow the target trajectories, even in the
presence of new environments and unexpected perturbations at test time.

bounding-style gaits; hence, its dynamics are strongly dependent on the terrain or environment at
hand.

Figure 7: The dotted black line indicates the desired trajectory in the xy plane. By effectively adapting
online, our method prevents drift from a missing leg, prevents sliding sideways down a slope, accounts for pose
miscalibration errors, and adjusts to pulling payloads (left to right). Note that none of these tasks/environments
were seen during training time, and they require fast and effective online adaptation for success.

7 CONCLUSION

In this work, we present an approach for model-based meta-RL that enables fast, online adaptation
of large and expressive models in dynamic environments. We show that meta-learning a model for
online adaptation results in a method that is able to adapt to unseen situations or sudden and drastic
changes in the environment, and is also sample efficient to train. We provide two instantiations of our
approach (ReBAL and GrBAL), and we provide a comparison with other prior methods on a range
of continuous control tasks. Finally, we show that (compared to model-free meta-RL approaches),
our approach is practical for real-world applications, and that this capability to adapt quickly is
particularly important under complex real-world dynamics.

10



Published as a conference paper at ICLR 2019

REFERENCES

M. Al-Shedivat, T. Bansal, Y. Burda, I. Sutskever, I. Mordatch, and P. Abbeel. Continuous adaptation via
meta-learning in nonstationary and competitive environments. CoRR, abs/1710.03641, 2017.

M. Andrychowicz, M. Denil, S. G. Colmenarejo, M. W. Hoffman, D. Pfau, T. Schaul, and N. de Freitas. Learning
to learn by gradient descent by gradient descent. CoRR, abs/1606.04474, 2016.

K. J. Åström and B. Wittenmark. Adaptive control. Courier Corporation, 2013.

A. Aswani, P. Bouffard, and C. Tomlin. Extensions of learning-based model predictive control for real-time
application to a quadrotor helicopter. In American Control Conference (ACC), 2012. IEEE, 2012.

B. Baker, O. Gupta, N. Naik, and R. Raskar. Designing neural network architectures using reinforcement
learning. arXiv preprint arXiv:1611.02167, 2016.

Y. Bengio, S. Bengio, and J. Cloutier. Learning a synaptic learning rule. Université de Montréal, Département
d’informatique et de recherche opérationnelle, 1990.

D. A. Braun, A. Aertsen, D. M. Wolpert, and C. Mehring. Learning optimal adaptation strategies in unpredictable
motor tasks. Journal of Neuroscience, 2009.

K. Chua, R. Calandra, R. McAllister, and S. Levine. Deep reinforcement learning in a handful of trials using
probabilistic dynamics models. arXiv preprint arXiv:1805.12114, 2018.

M. Deisenroth and C. E. Rasmussen. Pilco: A model-based and data-efficient approach to policy search. In
International Conference on machine learning (ICML), pages 465–472, 2011.

M. P. Deisenroth, G. Neumann, J. Peters, et al. A survey on policy search for robotics. Foundations and Trends R©
in Robotics, 2(1–2):1–142, 2013.

A. Doerr, D. Nguyen-Tuong, A. Marco, S. Schaal, and S. Trimpe. Model-based policy search for automatic
tuning of multivariate PID controllers. CoRR, abs/1703.02899, 2017. URL http://arxiv.org/abs/
1703.02899.

Y. Duan, J. Schulman, X. Chen, P. L. Bartlett, I. Sutskever, and P. Abbeel. Rl$ˆ2$: Fast reinforcement learning
via slow reinforcement learning. CoRR, abs/1611.02779, 2016.

C. Finn and S. Levine. Meta-learning and universality: Deep representations and gradient descent can approxi-
mate any learning algorithm. CoRR, abs/1710.11622, 2017.

C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep networks. CoRR,
abs/1703.03400, 2017.

M. Fortunato, C. Blundell, and O. Vinyals. Bayesian recurrent neural networks. arXiv preprint arXiv:1704.02798,
2017.

J. Fu, S. Levine, and P. Abbeel. One-shot learning of manipulation skills with online dynamics adaptation and
neural network priors. CoRR, abs/1509.06841, 2015.

S. Gu, T. Lillicrap, I. Sutskever, and S. Levine. Continuous deep q-learning with model-based acceleration. In
International Conference on Machine Learning, pages 2829–2838, 2016.

S. Kelouwani, K. Adegnon, K. Agbossou, and Y. Dube. Online system identification and adaptive control for
pem fuel cell maximum efficiency tracking. IEEE Transactions on Energy Conversion, 27(3):580–592, 2012.

J. Ko and D. Fox. Gp-bayesfilters: Bayesian filtering using gaussian process prediction and observation models.
Autonomous Robots, 27(1):75–90, 2009.

B. Krause, L. Lu, I. Murray, and S. Renals. Multiplicative lstm for sequence modelling. arXiv preprint
arXiv:1609.07959, 2016.

B. Krause, E. Kahembwe, I. Murray, and S. Renals. Dynamic evaluation of neural sequence models. CoRR,
abs/1709.07432, 2017.

T. Kurutach, I. Clavera, Y. Duan, A. Tamar, and P. Abbeel. Model-ensemble trust-region policy optimization.
arXiv preprint arXiv:1802.10592, 2018.

B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. Human-level concept learning through probabilistic
program induction. Science, 2015.

11

http://arxiv.org/abs/1703.02899
http://arxiv.org/abs/1703.02899


Published as a conference paper at ICLR 2019

I. Lenz, R. A. Knepper, and A. Saxena. Deepmpc: Learning deep latent features for model predictive control. In
Robotics: Science and Systems, 2015.

S. Levine and V. Koltun. Guided policy search. In International Conference on Machine Learning, pages 1–9,
2013.

S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor policies. Journal of
Machine Learning Research (JMLR), 2016.

K. Li and J. Malik. Learning to optimize. arXiv preprint arXiv:1606.01885, 2016.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra. Continuous control
with deep reinforcement learning. CoRR, abs/1509.02971, 2015.

P. Manganiello, M. Ricco, G. Petrone, E. Monmasson, and G. Spagnuolo. Optimization of perturbative pv mppt
methods through online system identification. IEEE Trans. Industrial Electronics, 61(12):6812–6821, 2014.

F. Meier and S. Schaal. Drifting gaussian processes with varying neighborhood sizes for online model learning.
In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2016. IEEE, May
2016.

F. Meier, D. Kappler, N. Ratliff, and S. Schaal. Towards robust online inverse dynamics learning. In Proceedings
of the IEEE/RSJ Conference on Intelligent Robots and Systems. IEEE, 2016.

N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel. A simple neural attentive meta-learner. In NIPS 2017
Workshop on Meta-Learning, 2017.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K.
Fidjeland, G. Ostrovski, et al. Human-level control through deep reinforcement learning. Nature, 2015.

T. Munkhdalai and H. Yu. Meta networks. arXiv preprint arXiv:1703.00837, 2017.

T. Munkhdalai, X. Yuan, S. Mehri, T. Wang, and A. Trischler. Learning rapid-temporal adaptations. arXiv
preprint arXiv:1712.09926, 2017.

A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine. Neural network dynamics for model-based deep
reinforcement learning with model-free fine-tuning. CoRR, abs/1708.02596, 2017a.

A. Nagabandi, G. Yang, T. Asmar, R. Pandya, G. Kahn, S. Levine, and R. S. Fearing. Learning image-conditioned
dynamics models for control of under-actuated legged millirobots. arXiv preprint arXiv:1711.05253, 2017b.

D. K. Naik and R. Mammone. Meta-neural networks that learn by learning. In Neural Networks, 1992. IJCNN.,
International Joint Conference on, volume 1, pages 437–442. IEEE, 1992.

P. Pastor, L. Righetti, M. Kalakrishnan, and S. Schaal. Online movement adaptation based on previous sensor
experiences. In IEEE International Conference on Intelligent Robots and Systems (IROS), pages 365–371, 9
2011.

J. Peters and S. Schaal. Reinforcement learning of motor skills with policy gradients. Neural networks, 2008.

A. Rai, G. Sutanto, S. Schaal, and F. Meier. Learning feedback terms for reactive planning and control. In
Proceedings 2017 IEEE International Conference on Robotics and Automation (ICRA), Piscataway, NJ, USA,
May 2017. IEEE.

S. Ravi and H. Larochelle. Optimization as a model for few-shot learning. International Conference on Learning
Representations (ICLR), 2018.

M. Rei. Online representation learning in recurrent neural language models. CoRR, abs/1508.03854, 2015.

S. Sæmundsson, K. Hofmann, and M. P. Deisenroth. Meta reinforcement learning with latent variable gaussian
processes. arXiv preprint arXiv:1803.07551, 2018.

A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap. One-shot learning with memory-augmented
neural networks. arXiv preprint arXiv:1605.06065, 2016.

S. S. Sastry and A. Isidori. Adaptive control of linearizable systems. IEEE Transactions on Automatic Control,
1989.

J. Schmidhuber. Learning to control fast-weight memories: An alternative to dynamic recurrent networks.
Neural Computation, 1992.

12



Published as a conference paper at ICLR 2019

J. Schmidhuber and R. Huber. Learning to generate artificial fovea trajectories for target detection. International
Journal of Neural Systems, 1991.

J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel. Trust region policy optimization. CoRR,
abs/1502.05477, 2015.

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai,
A. Bolton, et al. Mastering the game of go without human knowledge. Nature, 2017.

F. Sung, L. Zhang, T. Xiang, T. Hospedales, and Y. Yang. Learning to learn: Meta-critic networks for sample
efficient learning. arXiv preprint arXiv:1706.09529, 2017.

M. Tanaskovic, L. Fagiano, R. Smith, P. Goulart, and M. Morari. Adaptive model predictive control for
constrained linear systems. In Control Conference (ECC), 2013 European. IEEE, 2013.

S. Thrun and L. Pratt. Learning to learn: Introduction and overview. In Learning to learn. Springer, 1998.

E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In IROS, pages 5026–5033.
IEEE, 2012.

S. J. Underwood and I. Husain. Online parameter estimation and adaptive control of permanent-magnet
synchronous machines. IEEE Transactions on Industrial Electronics, 57(7):2435–2443, 2010.

J. X. Wang, Z. Kurth-Nelson, D. Tirumala, H. Soyer, J. Z. Leibo, R. Munos, C. Blundell, D. Kumaran, and
M. Botvinick. Learning to reinforcement learn. arXiv preprint arXiv:1611.05763, 2016.

A. Weinstein and M. Botvinick. Structure learning in motor control: A deep reinforcement learning model.
CoRR, abs/1706.06827, 2017.

G. Williams, A. Aldrich, and E. Theodorou. Model predictive path integral control using covariance variable
importance sampling. CoRR, abs/1509.01149, 2015.

G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots, and E. A. Theodorou. Information theo-
retic mpc for model-based reinforcement learning. In International Conference on Robotics and Automation
(ICRA), 2017.

A. S. Younger, S. Hochreiter, and P. R. Conwell. Meta-learning with backpropagation. In International Joint
Conference on Neural Networks. IEEE, 2001.

13



Published as a conference paper at ICLR 2019

A MODEL PREDICTION ERRORS: PRE-UPDATE VS. POST-UPDATE

In this section, we show the effect of adaptation in the case of GrBAL. In particular, we show the
histogram of the K step normalized error, as well as the per-timestep visualization of this error during
a trajectory. Across all tasks and environments, the post-updated model p̂θ′∗ achieves lower prediction
error than the pre-updted model p̂θ∗ .

Figure 8: Histogram of the K step normalized error across different tasks. GrBAL accomplishes lower model
error when using the parameters given by the update rule.

Figure 9: At each time-step we show the K step normalized error across different tasks. GrBAL accomplishes
lower model error using the parameters given by the update rule.
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Figure 10: Effect of the meta-training distribution on test performance

B EFFECT OF META-TRAINING DISTRIBUTION

To see how training distribution affects test performance, we ran an experiment that used GrBAL to
train models of the 7-DOF arm, where each model was trained on the same number of datapoints
during meta-training, but those datapoints came from different ranges of force perturbations. We
observe (in the plot below) that

1. Seeing more during training is helpful during testing — a model that saw a large range of force
perturbations during training performed the best

2. A model that saw no perturbation forces during training did the worst

3. The middle 3 models show comparable performance in the "constant force = 4" case, which is an
out-of-distribution task for those models. Thus, there is not actually a strong restriction on what needs
to be seen during training in order for adaptation to occur at train time (though there is a general trend
that more is better)
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C SENSITIVITY OF K AND M

In this section we analyze how sensitive is our algorithm w.r.t the hyperparameters K and M . In
all experiments of the paper, we set K equal to M . Figure 11 shows the average return of GrBAL
across meta-training iterations of our algorithm for different values of K = M . The performance
of the agent is largely unaffected for different values of these hyperparameters, suggesting that our
algorithm is not particularly sensitive to these values. For different agents, the optimal value for
these hyperparameters depends on various task details, such as the amount of information present in
the state (a fully-informed state variable precludes the need for additional past timesteps) and the
duration of a single timestep (a longer timestep duration makes it harder to predict more steps into
the future).

Figure 11: Learning curves, for different values of K = M , of GrBAL in the half-cheetah disabled and sloped
terrain environments. The x-axis shows data aggreation iterations during meta-training, whereas the y-axis shows
the average return achieved when running online adaptation with the meta-learned model from the particular
iteration. The curves suggest that GrBAL performance is fairly robust to the values of these hyperparameters.

D REWARD FUNCTIONS

For each MuJoCo agent, the same reward function is used across its various tasks. Table 2 shows the
reward functions used for each agent. We denote by xt the x-coordinate of the agent at time t, eet
refers to the position of the end-effector of the 7-DoF arm, and g corresponds to the position of the
desired goal.

Table 2: Reward functions

Reward function

Half-cheetah xt+1−xt

0.01 − 0.05‖at‖22
Ant xt+1−xt

0.0e − 0.005‖at‖22 + 0.05

7-DoF Arm −‖eet − g‖22
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E HYPERPARAMETERS

Below, we list the hyperparameters of our experiments. In all experiments we used a single gra-
dient step for the update rule of GrBAL. The learning rate (LR) of TRPO corresponds to the
Kullback–Leibler divergence constraint. # Task/itr corresponds to the number of tasks sampled
for collecting data to train the model or model, whereas # TS/itr is the total number of times steps
collected (for all tasks). Finally, T refers to the horizon of the task.

Table 3: Hyperparameters for the half-cheetah tasks

LR Inner LR Epochs K M Batch Size # Tasks/itr # TS/itr T nA Train H Train nA Test H Test

GrBAL 0.001 0.01 50 32 32 500 32 64000 1000 1000 10 2500 15

ReBAL 0.001 - 50 32 32 500 32 64000 1000 1000 10 2500 15

MB 0.001 - 50 - - 500 64 64000 1000 1000 10 2500 15

TRPO 0.05 - - - - 50000 50 50000 1000 - - - -

Table 4: Hyperparameters for the ant tasks

LR Inner LR Epochs K M Batch Size # Tasks/itr # TS/itr T nA Train H Train nA Test H Test

GrBAL 0.001 0.001 50 10 16 500 32 24000 500 1000 15 1000 15

ReBAL 0.001 - 50 32 16 500 32 32000 500 1000 15 1000 15

MB 0.001 - 70 - - 500 10 10000 500 1000 15 1000 15

TRPO 0.05 - - - - 50000 50 50000 500 - - - -

Table 5: Hyperparameters for the 7-DoF arm tasks

LR Inner LR Epochs K M Batch Size # Tasks/itr # TS/itr T na Train H Train na Test H Test

GrBAL 0.001 0.001 50 32 16 1500 32 24000 500 1000 15 1000 15

ReBAL 0.001 - 50 32 16 1500 32 24000 500 1000 15 1000 15

MB 0.001 - 70 - - 10000 10 10000 500 1000 15 1000 15

TRPO 0.05 - - - - 50000 50 50000 500 - - - -
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