Local dominance unveils clusters in networks
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Abstract

Clusters or communities can provide a coarse-grained description of complex systems at multiple scales, but their detection
remains challenging in practice. Community detection methods often define communities as dense subgraphs, or subgraphs with
few connections in-between, via concepts such as the cut, conductance, or modularity. Here we consider another perspective
built on the notion of local dominance, where low-degree nodes are assigned to the basin of influence of high-degree nodes, and
design an efficient algorithm based on local information. Local dominance gives rises to community centers, and uncovers local
hierarchies in the network. Community centers have a larger degree than their neighbors and are sufficiently distant from other
centers. The strength of our framework is demonstrated on synthesized and empirical networks with ground-truth community
labels. The notion of local dominance and the associated asymmetric relations between nodes are not restricted to community
detection, and can be utilised in clustering problems, as we illustrate on networks derived from vector data.

More specifically, in this paper, we propose a community detection algorithm in networks, Local Search (LS), that explicitly
uses the notion of local dominance and identifies community centres based on local information. In our method, every node
is given at most one parent node deemed to be higher up in a partial ranking. Nodes that have a dominant position in their
immediate neighborhood' or even beyond are identified as local leaders'. This defines a rooted tree that spans the network and
gives rise to community centers that are local leaders' with both a larger degree than the nodes in their basin of attraction and a
relatively long distance to other local leaders higher up in the ranking. Our approach possesses several interesting properties.
Firstly, it provides a new perspective on community detection and delivers community centres and a hierarchy within the
community and even a hierarchy among communities as an explicit part of our algorithm, and so mimics advantageous features
of the methods based on embedding data in a metric space. Secondly, the identification of communities through local dominance
is highly efficient, as it uses purely local topological information and breadth-first search, and runs in linear time. The method
does not require the heuristic optimization of an objective function that relies on a global null model’>~” or computationally
costly spreading dynamics®~'°. Also, our method does not rely on a similarity measure for which there is an wide choice, with
an associated uncertainty and variability in results, such as is found in hierarchical clustering based methods''~'#. Finally, LS is
not as susceptible to noise as most methods'>1®, and is less therefore susceptible to finding spurious communities in random
graph model realisations'”.

We demonstrate the strength of LS on several classical but challenging synthetic benchmarks and on standard empirical
networks with known ground-truth community labels. Our numerical evaluation also includes network representations derived
from vector data. As the LS method naturally provides community centres and local hierarchies, it creates an explicit analogy
with the notion of cluster centres and distances within clusters that are found in vector clustering methods. Moreover, we also
show that applying LS on discretised version of data cloud points outperforms classical unsupervised vector data clustering
methods on benchmarks'®.
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Figure 1. Schematic illustration of the Local Search (LS) algorithm. (A) An example network where digits on nodes and
size of nodes indicate the degree. (B) The identification of local leaders based on local dominance by creating a forest of DAGs
as indicated by short dashed directed edges. For each node u, it points to any adjacent neighbor v with &, > k,, and

k, = max{k;|z € V(u)}, where V(u) is the set of neighboring nodes. In this example, nodes are traversed by their
lexicographical order, when node b is traversed, it points to m as k,, = max{k;|z € V(b)} > ky; later, when m is traversed, it has
no out-going link, and so m is identified as a local leader: it does not point to any of its followers and its remaining neighbors
all have smaller degrees. When there are more than one neighbor with the same largest degree, more than one directed edge is
temporarily added, e.g., node ¢ points to both b and m as k; = k,, = max{k;|z € V(c)} > k.; nodes d and [ also have more than
one outgoing link. The local leaders, which are potential community centers, are f, m, and p (indicated by dark grey color). (C)
Each node randomly retains just one out-going edge shown as a short dashed directed edge (e.g., ¢ can point to b or m with an
equal probability, similarly for / and d). Then, for each local leader u, a local-BFS is performed to find its nearest local leader
with k, > k,, and the shortest path length on network d,,,, Vv is designated by /,,. Here, p — f with [, =2, and f — m with

Iy = 4. In (C), short-dash arrows and long-dash arrows correspond to pure followers (whose [, = 1) and local leaders (whose
I, > 2), respectively. Each node has at most one out-going link (# — v), which can go beyond direct connections. The local
leader(s) with the maximal degree has no out-going link (here node m). (D) The corresponding tree structure formed by local
dominance. The scale on the left is a visual aid for calculating /; between connected nodes in the DAG. (E) The scatter plot of
k; and [; for all nodes. Community centers are of both a larger degree k; and a longer /;. (F) The decision graph for
quantitatively determining community centers (indicated by triangles) based on the product of rescaled degree k; and rescaled
distance [; (see more details in Supplementary Note 1.2). Community centers can be detected by a visual inspection for obvious
gaps or sophisticated automatic detection methods. Here, two centers, nodes m and f, are identified. The color of nodes in (C)
and (D) represents the community partition, and community centers are highlighted by a darker hue of the same color.
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