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Abstract

We introduce a novel run-time method for sig-001
nificantly reducing the accuracy loss associ-002
ated with quantizing BERT-like models to 8-003
bit integers. Existing methods for quantizing004
models either modify the training procedure,005
or they require an additional calibration step to006
adjust parameters that also requires a selected007
held-out dataset. Our method permits taking008
advantage of quantization without the need for009
these adjustments. We present results on sev-010
eral NLP tasks demonstrating the usefulness of011
this technique.012

1 Introduction013

Transformer-based Neural Networks (NN) such014

as BERT (Devlin et al., 2018), RoBERTa (Liu015

et al., 2019) and XLM-R (Conneau et al., 2019),016

pre-trained on large amounts of data, have led to017

state-of-the-art (SOTA) results on many NLP tasks018

such as machine translation (Zhu et al., 2019), text019

classification (Wang et al., 2018) and question an-020

swering (Kwiatkowski et al., 2019; Clark et al.,021

2020). However, run-time inference of such large022

models is very costly due to their large computa-023

tional requirements. In addition, deploying these024

models on smaller footprint mobile devices (Ravi025

and Kozareva, 2021) or cost-effective (Sanh et al.,026

2019; Jiao et al., 2020) CPU based machines re-027

quire aggressive optimization techniques for both028

speed and network size. One popular technique029

is NN quantization (Gholami et al., 2021; Kim030

et al., 2021; Zafrir et al., 2019), where network031

weights and activations are transformed from 32-bit032

floating-point representations to integers (typically033

8-bit). Running inference using integer operations034

has two key advantages. First, the model size foot-035

print is considerably reduced e.g. 8-bit quantization036

shrinks models by a factor of four. Second, infer-037

ence throughput is significantly increased by us-038

ing more efficient integer-based “single instruction039

multiple data” (SIMD) (Hennessy and Patterson,040

2012) instructions while improving memory band- 041

width utilization, which is typically a bottleneck 042

limiting computational throughput for NNs (Quinn 043

and Ballesteros, 2018). 044

Fundamentally, quantization leads to a quantita- 045

tive loss of information due to the lowered numeri- 046

cal precision. As a result, applying integer quanti- 047

zation directly to NN models leads to considerable 048

drop in accuracy (Zafrir et al., 2019). However, by 049

carefully adjusting the quatization parameters such 050

as the clipping thresholds, the accuracy loss can be 051

significantly reduced, if not eliminated. 052

The majority of quantization research (Gholami 053

et al., 2021) involve a mix of quantization-aware 054

training (QAT) and post-training calibration tech- 055

niques with varying complexities to resolve the 056

quantization performance gap. In (Kim et al., 2021; 057

Choi et al., 2018; Zhou et al., 2017; Choi et al., 058

2018; Krishnamoorthi, 2018; Louizos et al., 2019; 059

McKinstry et al., 2019) detail techniques for QAT 060

as well as approaches wehre the quantization pa- 061

rameters are optimized using statistics gathered 062

during training. While these approaches typically 063

close the gap in the quantized model accuracy, they 064

requires access to the training pipeline as well as 065

the training data. In addition, these methods are not 066

applicable to black-box models where both train- 067

ing procedures and data are not available. Also 068

these methods may be affected by training insta- 069

bilities, increasing the complexity of the training 070

regimes such as in (Krishnamoorthi, 2018). Post- 071

training approaches such as (Migacz, 2017; Bhan- 072

dare et al., 2019) require calibration techniques on 073

selected datasets. For example, in (Migacz, 2017) 074

KL-divergence (Kullback and Leibler, 1951) be- 075

tween the unquantized and quantized activations 076

on each layer was used to tune the quantization 077

clipping thresholds. Special care needs to be taken 078

when selecting a calibration dataset; as it needs to 079

be diverse enough but yet task specific. In certain 080

cases this leads to low accuracy, or even unpre- 081
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dictable behaviour, if the run-time input deviates082

from the calibration dataset.083

Two methods that share our high-level goals of084

eliminating the need for training datasets are in-085

troduced in (Nagel et al., 2019; Cai et al., 2020).086

These methods are implemented with CNN-based087

(Gehring et al., 2017) networks, and are used for im-088

age classification and object detection tasks. (Nagel089

et al., 2019) reduces the quantization error by re-090

scaling the weights of consecutive CNN layers091

while taking advantage of the equivariance prop-092

erty of the piece-wise linear ReLU function. (Cai093

et al., 2020), on the other hand, tunes the quanti-094

zation parameters using synthetic data generated095

utilizing mean and variance statistics obtained from096

the batch normalization layers of the model it-097

self. While both methods are applicable for mainly098

CNN-based networks, our algorithm is consider-099

ably simpler to implement and targets transformers100

(Vaswani et al., 2017); particularly SOTA NLP net-101

works with BERT-like (Devlin et al., 2018; Liu102

et al., 2019) pre-trained representations.103

In this work, we present a method that utilizes104

the Interquartile Range (IQR) (Tukey et al., 1977;105

Rousseeuw and Croux, 1993), which is a measure106

of statistical dispersion, to clip the activations dy-107

namically during inference time. Our method en-108

sures that at least 75% of the token-wise extreme109

activations are not modified, while leaving the re-110

maining 25% to be statistically modified as out-111

liers, leading to a robust behaviour while consider-112

ably improving quantization accuracy. Our method113

works for any transformer-based “trained” model114

and does not require any form of training or calibra-115

tion. Overall, our contributions can be summarized116

as follows:117

• We propose a novel “ready-to-use” inference-118

time dynamic quantization method that does119

not require sophisticated re-training/fine-120

tuning and additional calibration strategies.121

• Empirically our proposed model demonstrates122

both effectiveness and robustness on several123

different NLP benchmark tasks.124

• Further, contrary to prior work, experiments125

suggest that our proposed method works both126

for monolingual and multilingual transformer127

architectures out-of-the-box.128

2 Methodology 129

2.1 Backgound 130

Existing approaches to speeding up inference for 131

Transformers mostly focus on GEneral Matrix Mul- 132

tiply (GEMM) operations. Fast GEMM implemen- 133

tations routinely use GPU and CPU specific SIMD 134

instructions, to execute many multiplications and 135

additions in parallel. They also optimize memory 136

access patterns to make the best use of available 137

memory bandwidth. Integer quantization speeds 138

up the GEMM operations by increasing the amount 139

of data transferred with each memory transaction. 140

They also take advantage of denser SIMD instruc- 141

tions. For example, 8-bit quantization packs four 142

times the data per memory transaction compared 143

to 32-bit floating point values. Many CPUs also 144

support 8 bit SIMD multiplication operations, pro- 145

viding faster as well as cost-effective computation. 146

2.1.1 Uniform Quantization 147

Dynamic quantization for inference quantizes acti- 148

vations at run time. The model weights are typ- 149

ically quantized once ahead of execution. Let 150

M ∈ Rm×n be a matrix of either an activation 151

or parameter weights. The quantization scale (QS) 152

is obtained as: 153

QS = max
∀i∈{1,...,m}
∀j∈{1,...,n}

|M(i, j)|. (1) 154

The matrixM is then quantized to M̄ ∈ Zm×n as 155

follows: 156

M̄ = int

(
2b/2− 1

QS
M

)
, (2) 157

where b is the number of integerization bits, typ- 158

ically 8, and the function int is the element-wise 159

integer conversion operator; e.g. a floor function. 160

The reason for the subtraction by 1 in (2) is to en- 161

sure that the quantization range is equally spread 162

around zero. In the case of 8-bits, the range be- 163

comes ±127. This formulation also results in a 164

symmetric form of uniform quantization, where the 165

quantization is evenly split around zero. This can 166

be modified by adding a zero-shift resulting in an 167

asymmetric quantization (Krishnamoorthi, 2018), 168

which may particularly be useful for certain acti- 169

vation functions such as ReLU (Nair and Hinton, 170

2010) and GELU (Hendrycks and Gimpel, 2016). 171

While non-uniform quantization (Gholami et al., 172

2021) has been explored to better capture weight 173

and activation distribution with variable step sizes, 174
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uniform quantization leads to more efficient imple-175

mentation on current hardware such as GPUs and176

CPUs with acceptable accuracy. Once matrices are177

quantized, GEMM operations can be performed178

using integer arithmetic allowing the use of fast179

SIMD instruction sets.180

Quantization lowers numberical precision which181

leads to loss of information. Examining (1) shows182

how the QS can increase precision errors if it takes183

extreme values that largely deviate from the ma-184

jority activations. Therefore, the activation tensor185

must be clipped to reduce the quantization error;186

however, excessive clipping can lead to distortions187

in the activation which also leads to drops in accu-188

racy.189

In the following section, we will outline a190

method that chooses better QS values for each acti-191

vation tensor dynamically during inference, with-192

out any modification on the training pipeline or any193

requirement for calibration procedures.194

2.2 Interquartile Range Clipping195

If we consider the extreme values in the activations196

as outliers in a distribution, there is a substantial197

amount of research for identifying outliers (Ben-198

Gal, 2005; Hodge and Austin, 2004). Our solution199

makes use of a low complexity univariate statistical-200

based method for outlier detection referred to as the201

Interquartile Range (IQR) method originally pro-202

posed by Tukey (Tukey et al., 1977). IQR is also203

considered a robust statistical measure (Rousseeuw204

et al., 2011) of the data spread, with the notion205

of robustness being defined using the concept of206

a breakdown point (Rousseeuw and Croux, 1993;207

Rousseeuw et al., 2011). The breakdown point is208

the minimum number of data that can be arbitrar-209

ily replaced while keeping the statistical measure210

bounded. The sample mean and variance has a 0211

breakdown point, leaving these measures to be sus-212

ceptible to any outliers; on the other hand, the IQR213

has a 25% breakdown point.214

We introduce an algorithm that uses IQR to effi-215

ciently eliminate outliers from an activation tensor.216

It is worth noting that a direct implementation of217

the IQR method is too slow as it uses a sorting218

operation in order to identify the quartiles. The219

complexity of a naive implementation would be220

O(N logN) where N is the number of elements221

of the activation tensor. In the case of BERT-like222

models, N = L × H , where L is the sequence223

length and H is the hidden dimension; e.g. for224

BERT-Large, N = 512× 1024. To lower this com- 225

plexity, we obtain the IQR clipping threshold from 226

a reduced set formed by taking the maximums, in 227

absolute sense, along the H dimension. We will re- 228

fer to this algorithm as the Token-Maximums IQR 229

(TM-IQR) clipping. The resulting complexity of 230

the IQR clipping becomes O(N + L logL). Our 231

experiments show that adding this form of IQR 232

clipping slows inference only by 2%, which is neg- 233

ligible considering the resulting accuracy gains. 234

Algorithm 2 Activation clipping using TM-IQR

Input: Activation tensor A ∈ RL×H

L ← {1, 2, . . . , L}
H ← {1, 2, . . . , H}

1: M(i)← max
∀j∈H

|A(i, j)|, ∀i ∈ L

2: M ← sort(M)
3: q1← first-quartile(M)
4: q3← third-quartile(M)
5: t← q3 + 1.5(q3− q1)
6: A(i, j)← min(A(i, j), t), ∀(i,j)∈L×H
7: A(i, j)← max(A(i, j),−t), ∀(i,j)∈L×H

Return: A

Algorithm 2 outlines the basic procedure of our 235

TM-IQR clipping. In Line 1 we compose the set of 236

token-maximum activations in the absolute sense. 237

Essentially, we are reducing the set of activations 238

to a smaller representative set that is guaranteed 239

to contain the top outliers. Lines 2 to 5 compute 240

the IQR threshold t which is then used to clip the 241

activation tensor in lines 6 and 7. 242

It is important to note here that the TM-IQR 243

algorithm assigns a dynamic clip value for each 244

activation tensor as opposed to using a fixed value 245

for all run-time inference. Unlike fixed clipping 246

tuned by training datasets, we expect TM-IQR clip- 247

ping to be applied in a zero-shot approach across 248

multiple tasks while maintaining reasonable em- 249

pirical accuracy. This is due to the fact that our 250

clipping strategy guarantees that at least 75% of 251

the row-wise extreme activations are not impacted 252

by it, while a fixed clipping method does not of- 253

fer such guarantees for all types of input, as the 254

case when the input is not very aligned with train- 255

ing data. This has the important effect of limiting 256

the distortion error, which occurs when quantizing 257

activations with excessive clipping. 258

3 Experiments and Results 259

3.1 Experimental Setup 260

Engine: Our run-time inference engine, imple- 261

mented in C++, supports both FP32 and an op- 262
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timized 8-bit integer quantized inference (I8). We263

quantize model weights at load-time and dynami-264

cally quantize activations at run-time. The TM-IQR265

technique is a straightforward modification with a266

small speed impact on the overall inference, up to267

2%. For a speed comparison between CPU and268

GPU, we run the quantized engine on 48 cores of269

an Intel Xeon Platinum 8260. Each core handles270

one input at a time. The throughput is about 33%271

of the speed of an NVidia V100 using a batch size272

of 128 and input sequences of 512.273

TM-IQR: The TM-IQR can be applied on the ac-274

tivations before each quantized GEMM operation.275

However our investigation revealed that the sec-276

ond feed-forward, henceforth referred to as FF2,277

GEMM operation contributes to the majority of the278

quantization error. The input dimensions of FF2279

is very wide, 4 ×H , providing more of a chance280

for saturation and integer numerical instability to281

accumulate. In addition, the input to FF2 constitute282

the activations of either a ReLU or a GELU non-283

linearities. The range of such activation functions284

is unbounded on the positive side, which further285

increase the chance of saturations. Therefore, we286

found it most effective to apply the TM-IQR to the287

input activations of the FF2 GEMM operation.288

Tasks: We test our proposed methods on GLUE289

(Wang et al., 2018) and 2 popular question an-290

swering (QA) tasks: Natural Questions (NQ)291

(Kwiatkowski et al., 2019) and TyDI 1 (Clark et al.,292

2020). We train all our tasks using the publicly293

available (Wolf et al., 2019). For all tasks, we run294

5 seeds with default hyper-parameters (refer to A295

for more details) except for QA for which we fol-296

low (Alberti et al., 2019; Clark et al., 2020). Our297

underlying pre-trained language model for GLUE298

is BERT (cased) (Devlin et al., 2018) and XLM-299

R (Conneau et al., 2019) for QA as they are both300

mono and multilingual. Note our methods do not301

need any fine-tuning once this step is done and302

models are obtained.303

3.2 Results304

GLUE: Table 1 shows that IM-IQR is robust with305

an overall average score drop by only 0.2% for306

BERT-base and 0.5% for BERT-large compared to307

FP32. In fact, on all tasks, TM-IQR is within a308

small tolerance to FP32. Interestingly, TM-IQR309

does well for cases where I8 drop is large e.g.310

1Note that TyDI is multilingual among 11 typologically
diverse languages.

Task FP32 I8 TM-IQR
BERT-base-cased
MNLI 83.7 (0.2) 82.3 (0.5) 83.5 (0.3)
MNLI-MM 84.1 (0.1) 82.9 (0.2) 83.8 (0.2)
CoLA 58.0 (1.4) 48.3 (0.9) 57.7 (1.6)
SST-2 92.3 (0.3) 92.1 (0.2) 92.0 (0.4)
MRPC 88.5 (1.2) 88.8 (1.6) 88.5 (1.5)
STS-B 88.3 (0.8) 87.7 (0.8) 88.1 (0.8)
QQP 87.4 (0.1) 86.2 (0.3) 87.2 (0.2)
QNLI 90.8 (0.2) 90.3 (0.1) 90.5 (0.2)
RTE 64.6 (1.0) 63.9 (1.0) 64.9 (1.6)

Average 82.0 80.3 81.8
BERT-large-cased
MNLI 86.4 (0.1) 86.0 (0.2) 86.0 (0.1)
MNLI-MM 86.5 (0.2) 86.3 (0.1) 86.3 (0.2)
CoLA 62.9 (0.8) 60.6 (1.5) 62.1 (1.2)
SST-2 93.3 (0.5) 92.8 (0.7) 92.9 (0.4)
MRPC 90.5 (0.5) 89.6 (0.9) 90.5 (0.7)
STS-B 89.6 (0.6) 87.4 (1.2) 89.1 (0.3)
QQP 88.3 (0.2) 88.1 (0.1) 88.1 (0.1)
QNLI 92.4 (0.1) 91.9 (0.1) 92.2 (0.2)
RTE 69.8 (1.4) 64.0 (2.0) 68.5 (1.7)

Average 84.4 83.0 84.0

Table 1: The TM-IQR clipping algorithm on GLUE
tasks with three computational modes, 32-bit floating-
point (FP32), 8-bit quantization (I8) and our algorithm
TM-IQR. Metric values are mean and standard devia-
tion (in parenthesis) over 5 seeds.

Task FP32 I8 I8-IQR
XLM-R-base TyDI 67.7 62.9 67.0
XLM-R-large TyDI 68.8 66.8 68.4
XLM-R-base NQ 54.6 48.0 53.4
XLM-R-large NQ 56.6 53.3 56.1

Table 2: Question Answering performance.

CoLA and RTE. 311

QA: On TyDI and NQ (Table 2), TM-IQR clearly 312

recovers most of the performance lost to dynamic 313

quantization and is superior to I8 by 1 point on 314

average. Similar to GLUE, TM-IQR still performs 315

well with the I8 drop being the highest. 316

4 Conclusion 317

We show that BERT-like models can be quantized 318

to 8-bit integers with good accuracy without the 319

need for modification to training procedures or ex- 320

tra data sets for parameter calibration. We present 321

a robust statistica based algorithm that dynamically 322

adjust the quantization clipping to maintain reason- 323

able accuracy. Our empirical results demonstrates 324

the effectiveness of our method on a number of 325

NLP monolingual and multilingual tasks, trained 326

on different BERT-like models for both sizes base 327

and large. 328
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PyTorch-Transformers (Wolf et al.,544

2019). We report standard metric on each task,545

specifically: Accuracy is used for MNLI, MNLI-546

MM (mismatch) (Williams et al., 2018), SST-2547

(Socher et al., 2013), QNLI (Rajpurkar et al.,548

2016), and RTE (Dagan et al., 2005). Mathews549

correlation coefficient is used for CoLA (Warstadt550

et al., 2019). F1 is used for MRPC (Dolan and551

Brockett, 2005) and QQP (Iyer et al., 2017).552

Finally, Pearson correlation coefficient is used553

for STS-B (Cer et al., 2017), We use the default554

hyper-parameter settings provided by the library,555

specifically the learning rate is 2. × 10−5, the556

batch-size is 32 and the fine-tuning epochs 3,557

except for MRPC where the the fine-tuning epochs558

is 5. Similarly to (Kim et al., 2021) we exclude559

WNLI (Levesque et al., 2012) since it showed560

unstable results even on FP32 due to its small561

dataset.562
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