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Abstract

We introduce a novel run-time method for sig-
nificantly reducing the accuracy loss associ-
ated with quantizing BERT-like models to 8-
bit integers. Existing methods for quantizing
models either modify the training procedure,
or they require an additional calibration step to
adjust parameters that also requires a selected
held-out dataset. Our method permits taking
advantage of quantization without the need for
these adjustments. We present results on sev-
eral NLP tasks demonstrating the usefulness of
this technique.

1 Introduction

Transformer-based Neural Networks (NN) such
as BERT (Devlin et al., 2018), RoBERTa (Liu
et al., 2019) and XLM-R (Conneau et al., 2019),
pre-trained on large amounts of data, have led to
state-of-the-art (SOTA) results on many NLP tasks
such as machine translation (Zhu et al., 2019), text
classification (Wang et al., 2018) and question an-
swering (Kwiatkowski et al., 2019; Clark et al.,
2020). However, run-time inference of such large
models is very costly due to their large computa-
tional requirements. In addition, deploying these
models on smaller footprint mobile devices (Ravi
and Kozareva, 2021) or cost-effective (Sanh et al.,
2019; Jiao et al., 2020) CPU based machines re-
quire aggressive optimization techniques for both
speed and network size. One popular technique
is NN quantization (Gholami et al., 2021; Kim
et al., 2021; Zafrir et al., 2019), where network
weights and activations are transformed from 32-bit
floating-point representations to integers (typically
8-bit). Running inference using integer operations
has two key advantages. First, the model size foot-
print is considerably reduced e.g. 8-bit quantization
shrinks models by a factor of four. Second, infer-
ence throughput is significantly increased by us-
ing more efficient integer-based ‘“‘single instruction
multiple data” (SIMD) (Hennessy and Patterson,

2012) instructions while improving memory band-
width utilization, which is typically a bottleneck
limiting computational throughput for NNs (Quinn
and Ballesteros, 2018).

Fundamentally, quantization leads to a quantita-
tive loss of information due to the lowered numeri-
cal precision. As a result, applying integer quanti-
zation directly to NN models leads to considerable
drop in accuracy (Zafrir et al., 2019). However, by
carefully adjusting the quatization parameters such
as the clipping thresholds, the accuracy loss can be
significantly reduced, if not eliminated.

The majority of quantization research (Gholami
et al., 2021) involve a mix of quantization-aware
training (QAT) and post-training calibration tech-
niques with varying complexities to resolve the
quantization performance gap. In (Kim et al., 2021;
Choi et al., 2018; Zhou et al., 2017; Choi et al.,
2018; Krishnamoorthi, 2018; Louizos et al., 2019;
McKinstry et al., 2019) detail techniques for QAT
as well as approaches wehre the quantization pa-
rameters are optimized using statistics gathered
during training. While these approaches typically
close the gap in the quantized model accuracy, they
requires access to the training pipeline as well as
the training data. In addition, these methods are not
applicable to black-box models where both train-
ing procedures and data are not available. Also
these methods may be affected by training insta-
bilities, increasing the complexity of the training
regimes such as in (Krishnamoorthi, 2018). Post-
training approaches such as (Migacz, 2017; Bhan-
dare et al., 2019) require calibration techniques on
selected datasets. For example, in (Migacz, 2017)
KL-divergence (Kullback and Leibler, 1951) be-
tween the unquantized and quantized activations
on each layer was used to tune the quantization
clipping thresholds. Special care needs to be taken
when selecting a calibration dataset; as it needs to
be diverse enough but yet task specific. In certain
cases this leads to low accuracy, or even unpre-



dictable behaviour, if the run-time input deviates
from the calibration dataset.

Two methods that share our high-level goals of
eliminating the need for training datasets are in-
troduced in (Nagel et al., 2019; Cai et al., 2020).
These methods are implemented with CNN-based
(Gehring et al., 2017) networks, and are used for im-
age classification and object detection tasks. (Nagel
et al., 2019) reduces the quantization error by re-
scaling the weights of consecutive CNN layers
while taking advantage of the equivariance prop-
erty of the piece-wise linear ReLU function. (Cai
et al., 2020), on the other hand, tunes the quanti-
zation parameters using synthetic data generated
utilizing mean and variance statistics obtained from
the batch normalization layers of the model it-
self. While both methods are applicable for mainly
CNN-based networks, our algorithm is consider-
ably simpler to implement and targets transformers
(Vaswani et al., 2017); particularly SOTA NLP net-
works with BERT-like (Devlin et al., 2018; Liu
et al., 2019) pre-trained representations.

In this work, we present a method that utilizes
the Interquartile Range (IQR) (Tukey et al., 1977;
Rousseeuw and Croux, 1993), which is a measure
of statistical dispersion, to clip the activations dy-
namically during inference time. Our method en-
sures that at least 75% of the token-wise extreme
activations are not modified, while leaving the re-
maining 25% to be statistically modified as out-
liers, leading to a robust behaviour while consider-
ably improving quantization accuracy. Our method
works for any transformer-based “trained” model
and does not require any form of training or calibra-
tion. Overall, our contributions can be summarized
as follows:

e We propose a novel “ready-to-use” inference-
time dynamic quantization method that does
not require sophisticated re-training/fine-
tuning and additional calibration strategies.

e Empirically our proposed model demonstrates
both effectiveness and robustness on several
different NLP benchmark tasks.

e Further, contrary to prior work, experiments
suggest that our proposed method works both
for monolingual and multilingual transformer
architectures out-of-the-box.

2 Methodology
2.1 Backgound

Existing approaches to speeding up inference for
Transformers mostly focus on GEneral Matrix Mul-
tiply (GEMM) operations. Fast GEMM implemen-
tations routinely use GPU and CPU specific SIMD
instructions, to execute many multiplications and
additions in parallel. They also optimize memory
access patterns to make the best use of available
memory bandwidth. Integer quantization speeds
up the GEMM operations by increasing the amount
of data transferred with each memory transaction.
They also take advantage of denser SIMD instruc-
tions. For example, 8-bit quantization packs four
times the data per memory transaction compared
to 32-bit floating point values. Many CPUs also
support 8 bit SIMD multiplication operations, pro-
viding faster as well as cost-effective computation.

2.1.1 Uniform Quantization

Dynamic quantization for inference quantizes acti-
vations at run time. The model weights are typ-
ically quantized once ahead of execution. Let
M € R™*™ be a matrix of either an activation
or parameter weights. The quantization scale (QS)
is obtained as:

S = M(i, ). 1
Q Vie?}??fmﬂ (4,7)] (1
vie{l,...,n}

The matrix M is then quantized to M € Z™*™ as

follows: ,
- 2°/2 -1

M—ln‘u( Qs M), 2)
where b is the number of integerization bits, typ-
ically 8, and the function int is the element-wise
integer conversion operator; e.g. a floor function.
The reason for the subtraction by 1 in (2) is to en-
sure that the quantization range is equally spread
around zero. In the case of 8-bits, the range be-
comes +£127. This formulation also results in a
symmetric form of uniform quantization, where the
quantization is evenly split around zero. This can
be modified by adding a zero-shift resulting in an
asymmetric quantization (Krishnamoorthi, 2018),
which may particularly be useful for certain acti-
vation functions such as ReLLU (Nair and Hinton,
2010) and GELU (Hendrycks and Gimpel, 2016).
While non-uniform quantization (Gholami et al.,
2021) has been explored to better capture weight
and activation distribution with variable step sizes,



uniform quantization leads to more efficient imple-
mentation on current hardware such as GPUs and
CPUs with acceptable accuracy. Once matrices are
quantized, GEMM operations can be performed
using integer arithmetic allowing the use of fast
SIMD instruction sets.

Quantization lowers numberical precision which
leads to loss of information. Examining (1) shows
how the QS can increase precision errors if it takes
extreme values that largely deviate from the ma-
jority activations. Therefore, the activation tensor
must be clipped to reduce the quantization error;
however, excessive clipping can lead to distortions
in the activation which also leads to drops in accu-
racy.

In the following section, we will outline a
method that chooses better QS values for each acti-
vation tensor dynamically during inference, with-
out any modification on the training pipeline or any
requirement for calibration procedures.

2.2 Interquartile Range Clipping

If we consider the extreme values in the activations
as outliers in a distribution, there is a substantial
amount of research for identifying outliers (Ben-
Gal, 2005; Hodge and Austin, 2004). Our solution
makes use of a low complexity univariate statistical-
based method for outlier detection referred to as the
Interquartile Range (IQR) method originally pro-
posed by Tukey (Tukey et al., 1977). IQR is also
considered a robust statistical measure (Rousseeuw
et al., 2011) of the data spread, with the notion
of robustness being defined using the concept of
a breakdown point (Rousseeuw and Croux, 1993;
Rousseeuw et al., 2011). The breakdown point is
the minimum number of data that can be arbitrar-
ily replaced while keeping the statistical measure
bounded. The sample mean and variance has a 0
breakdown point, leaving these measures to be sus-
ceptible to any outliers; on the other hand, the IQR
has a 25% breakdown point.

We introduce an algorithm that uses IQR to effi-
ciently eliminate outliers from an activation tensor.
It is worth noting that a direct implementation of
the IQR method is too slow as it uses a sorting
operation in order to identify the quartiles. The
complexity of a naive implementation would be
O(N log N) where N is the number of elements
of the activation tensor. In the case of BERT-like
models, N = L x H, where L is the sequence
length and H is the hidden dimension; e.g. for

BERT-Large, N = 512 x 1024. To lower this com-
plexity, we obtain the IQR clipping threshold from
a reduced set formed by taking the maximums, in
absolute sense, along the H dimension. We will re-
fer to this algorithm as the Token-Maximums IQR
(TM-IQR) clipping. The resulting complexity of
the IQR clipping becomes O(N + Llog L). Our
experiments show that adding this form of IQR
clipping slows inference only by 2%, which is neg-
ligible considering the resulting accuracy gains.

Algorithm 2 Activation clipping using TM-IQR

Input: Activation tensor A € RE*H
L+ {1,2,...,L}
H<+{1,2,...,H}
s M(i) + \5?23&‘“4(1’7”’% el
: M «+ sort(M)
: ql < first-quartile(M)
g3 <+ third-quartile( M)
t+ g3+ 1.5(¢g3 —q1)
0 A(4,§) < min(A(7, §), 1), vGiecxH
L A(LS) — max(AG, ), —), vepeccn
Return: A

Algorithm 2 outlines the basic procedure of our
TM-IQR clipping. In Line 1 we compose the set of
token-maximum activations in the absolute sense.
Essentially, we are reducing the set of activations
to a smaller representative set that is guaranteed
to contain the top outliers. Lines 2 to 5 compute
the IQR threshold ¢ which is then used to clip the
activation tensor in lines 6 and 7.

It is important to note here that the TM-IQR
algorithm assigns a dynamic clip value for each
activation tensor as opposed to using a fixed value
for all run-time inference. Unlike fixed clipping
tuned by training datasets, we expect TM-IQR clip-
ping to be applied in a zero-shot approach across
multiple tasks while maintaining reasonable em-
pirical accuracy. This is due to the fact that our
clipping strategy guarantees that at least 75% of
the row-wise extreme activations are not impacted
by it, while a fixed clipping method does not of-
fer such guarantees for all types of input, as the
case when the input is not very aligned with train-
ing data. This has the important effect of limiting
the distortion error, which occurs when quantizing
activations with excessive clipping.

3 Experiments and Results

3.1 Experimental Setup

Engine: Our run-time inference engine, imple-
mented in C++, supports both FP32 and an op-



timized 8-bit integer quantized inference (I8). We
quantize model weights at load-time and dynami-
cally quantize activations at run-time. The TM-IQR
technique is a straightforward modification with a
small speed impact on the overall inference, up to
2%. For a speed comparison between CPU and
GPU, we run the quantized engine on 48 cores of
an Intel Xeon Platinum 8260. Each core handles
one input at a time. The throughput is about 33%
of the speed of an NVidia V100 using a batch size
of 128 and input sequences of 512.

TM-IQR: The TM-IQR can be applied on the ac-
tivations before each quantized GEMM operation.
However our investigation revealed that the sec-
ond feed-forward, henceforth referred to as FF2,
GEMM operation contributes to the majority of the
quantization error. The input dimensions of FF2
is very wide, 4 x H, providing more of a chance
for saturation and integer numerical instability to
accumulate. In addition, the input to FF2 constitute
the activations of either a ReLU or a GELU non-
linearities. The range of such activation functions
is unbounded on the positive side, which further
increase the chance of saturations. Therefore, we
found it most effective to apply the TM-IQR to the
input activations of the FF2 GEMM operation.
Tasks: We test our proposed methods on GLUE
(Wang et al., 2018) and 2 popular question an-
swering (QA) tasks: Natural Questions (NQ)
(Kwiatkowski et al., 2019) and TyDI ' (Clark et al.,
2020). We train all our tasks using the publicly
available (Wolf et al., 2019). For all tasks, we run
5 seeds with default hyper-parameters (refer to A
for more details) except for QA for which we fol-
low (Alberti et al., 2019; Clark et al., 2020). Our
underlying pre-trained language model for GLUE
is BERT (cased) (Devlin et al., 2018) and XLM-
R (Conneau et al., 2019) for QA as they are both
mono and multilingual. Note our methods do not
need any fine-tuning once this step is done and
models are obtained.

3.2 Results

GLUE: Table 1 shows that IM-IQR is robust with
an overall average score drop by only 0.2% for
BERT-base and 0.5% for BERT-large compared to
FP32. In fact, on all tasks, TM-IQR is within a
small tolerance to FP32. Interestingly, TM-IQR
does well for cases where I8 drop is large e.g.

"Note that TyDI is multilingual among 11 typologically
diverse languages.

Task | FP32 I8 TM-IQR
BERT-base-cased

MNLI 83.7(0.2) 823(0.5) 83.5(0.3)
MNLI-MM 84.1(0.1) 82.9(0.2) 83.8(0.2)
CoLA 58.0(1.4) 483(09) 57.7(1.6)
SST-2 92.3(0.3) 92.1(0.2) 92.0(0.4)
MRPC 88.5(1.2) 888(1.6) 88.5(1.5)
STS-B 88.3(0.8) 87.7(0.8) 88.1(0.8)
QQP 87.4(0.1) 86.2(0.3) 87.2(0.2)
QNLI 90.8 (0.2) 90.3(0.1) 90.5(0.2)
RTE 64.6 (1.0) 639(1.0) 64.9(1.6)

Average 82.0 80.3 81.8

BERT-large-cased

MNLI 86.4(0.1) 86.0(0.2) 86.0(0.1)
MNLI-MM 86.5(0.2) 86.3(0.1) 86.3(0.2)
CoLA 62.9 (0.8) 60.6(1.5) 62.1(1.2)
SST-2 93.3(0.5) 92.8(0.7) 92.9(0.4)
MRPC 90.5(0.5) 89.6(0.9) 90.5(0.7)
STS-B 89.6 (0.6) 87.4(1.2) 89.1(0.3)
QQP 88.3(0.2) 88.1(0.1) 88.1(0.1)
QNLI 924 (0.1) 91.9(0.1) 92.2(0.2)
RTE 69.8 (1.4) 64.0(2.00 68.5(1.7)

Average 84.4 83.0 84.0

Table 1: The TM-IQR clipping algorithm on GLUE
tasks with three computational modes, 32-bit floating-
point (FP32), 8-bit quantization (I8) and our algorithm
TM-IQR. Metric values are mean and standard devia-
tion (in parenthesis) over 5 seeds.

Task | FP32 18 I8IQR
XLM-R-base TyDI 67.7 629 67.0
XLM-R-large TyDI | 68.8  66.8 68.4
XLM-R-base NQ 54.6  48.0 534
XLM-R-large NQ 56.6 533 56.1

Table 2: Question Answering performance.

CoLA and RTE.

QA: On TyDI and NQ (Table 2), TM-IQR clearly
recovers most of the performance lost to dynamic
quantization and is superior to I8 by 1 point on
average. Similar to GLUE, TM-IQR still performs
well with the I8 drop being the highest.

4 Conclusion

We show that BERT-like models can be quantized
to 8-bit integers with good accuracy without the
need for modification to training procedures or ex-
tra data sets for parameter calibration. We present
a robust statistica based algorithm that dynamically
adjust the quantization clipping to maintain reason-
able accuracy. Our empirical results demonstrates
the effectiveness of our method on a number of
NLP monolingual and multilingual tasks, trained
on different BERT-like models for both sizes base
and large.
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A Evaluation on GLUE Task

For GLUE
publicly

experiments we use the
available open-source library
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PyTorch-Transformers (Wolf et al,
2019). We report standard metric on each task,
specifically: Accuracy is used for MNLI, MNLI-
MM (mismatch) (Williams et al., 2018), SST-2
(Socher et al., 2013), QNLI (Rajpurkar et al.,
2016), and RTE (Dagan et al., 2005). Mathews
correlation coefficient is used for CoLA (Warstadt
et al., 2019). F1 is used for MRPC (Dolan and
Brockett, 2005) and QQP (Iyer et al., 2017).
Finally, Pearson correlation coefficient is used
for STS-B (Cer et al., 2017), We use the default
hyper-parameter settings provided by the library,
specifically the learning rate is 2. x 107°, the
batch-size is 32 and the fine-tuning epochs 3,
except for MRPC where the the fine-tuning epochs
is 5. Similarly to (Kim et al., 2021) we exclude
WNLI (Levesque et al., 2012) since it showed
unstable results even on FP32 due to its small
dataset.



