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Abstract

In cross-border e-commerce, search relevance modeling faces the
dual challenge of extreme linguistic diversity and fine-grained se-
mantic nuances. Existing approaches typically rely on scaling up
a single monolithic Large Language Model (LLM). However, our
empirical analysis reveals that single models suffer from uneven
capability distributions across regions. For example, excelling in
English while underperforming in specific Southeast Asian lan-
guages. In this work, we shift the paradigm from scaling a sin-
gle model to orchestrating heterogeneous experts. We propose a
scalable Coarse-grained Mixture-of-Experts (MoE) framework that
leverages the inherent complementarity of distinct open-source
LLMs (e.g., Qwen, Gemma) without expensive pre-training. Un-
like standard token-level MoE, our framework dynamically routes
entire queries to specialized experts and, crucially, employs an
Information-Preserving Concatenation Fusion strategy. We theo-
retically posit that preserving the distinct embedding manifolds of
heterogeneous experts—rather than compressing them via weighted
averaging—is essential for capturing complex relevance signals in a
multi-model latent space. On datasets spanning six Southeast Asian
markets, our MoE improves AUC by 0.72 percentage points over a
dense baseline with the same active parameters. Meanwhile, the
optimized pipeline achieves 13.72 queries per second (QPS), a 9%
throughput improvement.

CCS Concepts

» Applied computing — Online shopping; - Computing method-
ologies — Natural language generation; » Information systems
— Query intent.
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1 Introduction

In the rapidly expanding landscape of cross-border e-commerce,
search relevance modeling serves as the linchpin for both user
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Figure 1: Radar chart showing the AUC performance of three
base models across multiple country-language tasks. Differ-
ent models exhibit distinct capability skews (e.g., Qwen excels
in ID-en, Sailor in TH-th), highlighting the potential for com-
plementarity through a Mixture-of-Experts approach.

experience and platform revenue. Unlike standard web search, e-
commerce queries in Southeast Asian markets are characterized
by extreme brevity, intent ambiguity, and, crucially, a highly frag-
mented linguistic distribution. A single platform must often process
English queries requiring deep semantic reasoning while simulta-
neously handling local languages (e.g., Thai, Indonesian) where
syntactic exactness and local entity recognition are paramount.
Traditionally, the industry has relied on scaling up monolithic
Pre-trained Language Models (PLMs), such as BERT-based encoders
or larger unified LLMs, to address this diversity. However, this "one-
model-fits-all" paradigm faces a steep curve of diminishing returns.
Training a single massive model to master all linguistic nuances
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and domain-specific knowledge (e.g., local brands, slang) is not
only computationally prohibitive but often leads to the "curse of
multilingualism," where optimizing for high-resource languages
can inadvertently degrade performance on low-resource ones due
to capacity dilution [1].

Our empirical analysis (Figure 1) shows that even with iden-
tical fine-tuning data/objectives, different LLMs (Gemmaz2-9B[8],
Qwen2.5-14B[9], Sailor2-20B[2]) vary in performance across lan-
guages/regions. For example, Sailor2-20B (larger scale, Southeast
Asian languages pre-training) does not outperform others in some
languages, while Qwen2.5-14B excels in Indonesian-English and
Singapore-Vietnamese. This suggests that differences in pre-training
corpora, vocabulary design, and language coverage lead each model
to internalize distinct regional language capabilities, which remain
complementary even under identical fine-tuning. This observation
drives our core hypothesis: Instead of forcing a single model to
learn everything, can we orchestrate a mixture of specialized, het-
erogeneous experts to achieve a Pareto-optimal balance between
performance and cost?

To leverage this complementarity, we propose a lightweight
LLM-based Mixture-of-Experts (MoE) framework that integrates
fine-tuned LLMs as independent experts without additional fine-
tuning. The routing module dynamically assigns each input to the
most suitable experts, and their representations are fused at the
embedding level, leveraging both the improvements within each
expert and the complementary strengths across models. We explore
various routing strategies, including rule-based, pseudo-label, and
end-to-end (soft/hard) approaches, and find that End-to-end Hard
Routing delivers the best overall balance.

Another key design decision in our framework is the embedded
fusion strategy, which has often been overlooked in previous work.
Traditional ensemble methods typically employ Weighted average
(Scalar Mixing) to combine expert outputs. However, we argue that
simply averaging embeddings from heterogeneous architectures
(with distinct latent manifolds and tokenizer spaces) causes destruc-
tive interference. Since the basis vectors of Expert A and Expert B
are not naturally aligned, a linear combination often collapses dis-
tinct semantic signals into noise. To address this, we introduce an
Information-Preserving Concatenation mechanism. By preserving
the full dimensionality of expert outputs in a concatenated space,
we allow the downstream classifier to learn a non-linear decision
boundary, effectively acting as a discriminator that learns which
expert to trust for specific feature subspaces (e.g., relying on Qwen
for syntax and Gemma for attributes).

Furthermore, to ensure industrial viability, we implement an
asynchronous batch inference pipeline, decoupling heavy expert
computation from real-time routing logic. This allows us to deploy
powerful LLM experts within strict latency constraints.

Our main contributions are summarized as follows.

e Architectural Insight: We identify the distinct comple-
mentarity between heterogeneous LLMs in cross-border e-
commerce and propose a framework to exploit this diversity
without expensive continued pre-training.

e Manifold-Preserving Fusion: We theoretically and empir-
ically demonstrate that concatenation-based fusion outper-
forms traditional scalar mixing by preserving the distinct
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Figure 2: Overview of the proposed sparsely-activated
Mixture-of-Experts (MoE) framework for multilingual e-
commerce search. The routing module dynamically selects
top-k LLM experts based on query, nation, and item title;
their hidden representations are projected and concatenated
in the fusion module for relevance prediction. The bottom
part shows the architectures of the routing and fusion mod-
ules, including soft and hard routing strategies.

geometric structures of heterogeneous expert embeddings,
resolving the issue of feature misalignment.

¢ Industrial Effectiveness: Validated on a large-scale real-
world dataset spanning six markets, our approach achieves a
0.72 percentage point AUC gain over parameter-equivalent
dense baselines and significantly improves throughput via
an optimized asynchronous pipeline.

2 Methodology
2.1 Framework Overview

To address the challenges of linguistic diversity and semantic com-
plexity in cross-border e-commerce, we propose a scalable Coarse-
grained Mixture-of-Experts (MoE) framework. Unlike standard
token-level MoE architectures that activate experts for each to-
ken generation step, our framework operates at the request level,
dynamically routing entire queries to specialized Large Language
Models (LLMs) and fusing their semantic representations.

Notation. We use lowercase bold letters (e.g., x,h) to denote
vectors and uppercase bold letters (e.g., W) for matrices. Sets are
denoted by calligraphic letters (e.g., S). N denotes the total number
of experts and k denotes the number of active experts per query.

Architecture Overview. As illustrated in Figure 2, the inference
pipeline consists of three decoupled stages designed to balance
effectiveness and efficiency:

(1) Dynamic Routing: A lightweight routing module analyzes
the input tuple (q,t,c) and selects a sparse subset of top-k experts,
Sk € {1,...,N}, where k < N, from a set of N heterogeneous
LLM experts. This sparsity ensures that computational resources
are allocated only to the most suitable models for a given region or
language.
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(2) Expert Inference: The selected experts process the input
in parallel. For each selected expert i € Sy, we extract the last-
token hidden state h; from its final transformer layer. This vector
encapsulates the expert’s semantic understanding of the query-item
pair.

(3) Representation Fusion: The distinct hidden states {h;|i €
Sk} are aggregated by a fusion module FF into a unified relevance
score. A critical challenge here is integrating representations from
heterogeneous feature spaces, which we address via a manifold-
preserving strategy.

The overall training objective minimizes the discrepancy be-
tween ¢ and ground truth y, regularized by a load-balancing term
to prevent routing collapse. The details of the routing and fusion
mechanisms are described in Section 2.2 and Section 2.3, respec-
tively

2.2 Dynamic Sparse Routing

The routing module balances predictive performance and computa-
tional efficiency. We considered four strategies:

Rule-based routing assigns each query to a single expert based
on handcrafted criteria (e.g., language). It is non-parametric, incurs
no additional cost, but is rigid and limited to top-1 selection.

Pseudo-label routing uses a two-stage pipeline: first, LLMs
infer pseudo-labels for the best-performing expert per sample; then
a lightweight router is trained to predict these labels, followed by
training the fusion module to align models.

End-to-end soft routing outputs a probability distribution over
all N experts and applies an entropy minimization regularizer to
encourage sparsity. This encourages sharper expert selection and
model specialization. During inference, only experts exceeding a
threshold are activated. Soft routing may suffer from threshold
sensitivity and train-inference mismatch.

End-to-end hard routing directly selects the top-k experts (e.g.,
k = 2) and incorporates a load balancing loss to prevent routing
collapse. Differences in pre-training corpora and architectures pro-
duce heterogeneous hidden representations across experts. Early
in training, the fusion module may overfit to the easiest expert,
causing vanishing gradients for the router. To mitigate this, we
adopt a load balancing loss [4]:

N
Lig=N- ) pipi 1
i=1
where p; is the fraction of samples routed to expert i, and p; = 1/N
is the ideal uniform usage. This stabilizes training, ensures diverse
expert utilization, and maintains consistency between training and
inference. Hard routing also provides predictable latency and avoids
threshold tuning, which we adopt as the default.

2.3 Manifold-Preserving Fusion Strategy

A crucial challenge in utilizing heterogeneous experts lies in the
aggregation of their output. While standard MoE architectures
typically employ Scalar Mixing (Weighted Averaging), defined as
hyix = 2, wihy, we demonstrate that this approach is theoretically
suboptimal for aggregating heterogeneous LLMs.

The Misalignment Problem and Destructive Interference.
Scalar mixing relies on the strong assumption that the latent spaces

of all experts are isomorphic and semantically aligned—i.e., the
i-th dimension of Expert A’s embedding vector encodes the same
semantic feature as the i-th dimension of Expert B.

However, for heterogeneous models (e.g., Qwen vs. Gemma)
pre-trained on distinct corpora with different tokenizers and ar-
chitectures, the latent manifolds are topologically distinct. Even
if projected to the same dimensionality, the basis vectors are not
naturally aligned. Consequently, performing a linear combination
on these unaligned vectors leads to destructive interference, where
a distinct feature signal in one expert (e.g., a specific syntax pat-
tern) may be cancelled out or diluted by noise from another expert
in the same dimension. This results in a "feature collapse" where
fine-grained semantic information is lost during aggregation.

Manifold Preservation via Concatenation. To address this,
we propose a Manifold-Preserving Fusion strategy. Instead of col-
lapsing the representations into a shared lower-dimensional space,
we construct a joint representation space by concatenating the
selected expert embeddings.

First, for each selected expert i, we extract its final transformer
layer’s last-token hidden state h; € R% and project it to a normal-
ized space:

h; = W;h; + b, h] € RY (2)
Where W; € R¥% projects the expert-specific dimension d; to a
shared dimension d.

Then, we form the joint representation z by concatenating the

projected embeddings:

z=[h;h)y;...;hj] e RF 3)

Geometrically, this operation preserves the intrinsic manifold struc-
ture of each expert within independent subspaces of z, avoiding
the destructive interference inherent in averaging.

Non-linear Decision Boundary. To extract relevant signals
from this preserved high-dimensional space, we employ a light-
weight classifier (MLP) as a non-linear discriminator to predict the
relevance score #:

§ = 0(We - ReLU(W,z +b,) +b,) )

Unlike a simple dot-product attention mechanism used in scalar
mixing, this learnable MLP allows the model to capture cross-expert
interactions (e.g., "if Expert A detects high semantic relevance AND
Expert B detects brand mismatch, then label as negative"). This
enables the system to effectively select the most reliable signal
source for the specific query instance without suffering information
loss.

Training Loss. The model is trained end-to-end. We employ the
standard Cross-Entropy loss for the relevance classification task:

Lop=-g >, (ylogi+(1-y)log1-9) ()
(gt.y)eB
where 8 is the training batch. The final objective combines this
with the load balancing loss Ly p (defined in Eq. 1) to ensure expert
diversity:

Ltotal = Leg + ALLg (6)

where A is a hyperparameter that balances task performance and
expert utilization.
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Table 1: Overall and per-market AUC (%) and QPS for all baselines and our proposed MoE. Bold indicates the best, underline the
second-best. Our Proposed MoE achieves the best relevance performance across most markets while maintaining competitive
throughput compared to dense baselines. Note that "Full Fusion" lags behind MoE, validating the effectiveness of sparse routing.

AUC (M) QPs (1)

Model Overall D MY PH SG TH VN
Qwen2.5-14B 91.40 86.08 92.44 88.99 93.62 93.82 93.41 28.34
Gemma2-9B 91.40 86.35 93.71 89.49 93.09 94.00 92.94 36.76
Qwen+Gemma Fusion 91.88 86.76 93.47 89.68 93.61 94.27 93.74 16.01
Sailor2-20B 91.82 87.63 92.40 89.24 93.14 94.65 93.64 21.90
Qwen2.5-32B 91.71 86.43 92.57 89.58 93.83 94.08 93.55 12.55
Full Fusion (Concat) 92.41 87.89 93.70 90.25 93.75 9494 94.13 6.94
Pl‘OpOSed MoE 92.49 88.33 9356 90.45 93.62 95.00 94.10 13.72

2.4 Offline Batch Inference with
Resource-Efficient Scheduling

Integrating multiple large LLMs as independent experts introduces
substantial computational overhead during inference, particularly
in real-world e-commerce environments with high query volumes
and strict latency requirements. To address this, we design an offline
batch inference pipeline that leverages multi-stream asynchronous
execution and resource-efficient scheduling, ensuring high through-
put while preserving relevance accuracy.

Design Principles. The pipeline is built on three principles:
(1) sparsity-aware computation, activating only a top-k subset of
experts per query; (2) parallel execution, overlapping computation
and memory operations across experts to exploit GPU-level concur-
rency; and (3) scalable scheduling, dynamically allocating resources
to balance load among heterogeneous experts.

Three-Stage Workflow. Inference proceeds in three decoupled
stages. (1) Bulk Routing Stage: The router processes queries in
large batches and selects the top-k experts for each query based on
query text, region, and item metadata. By precomputing or caching
routing decisions where applicable, this stage introduces minimal
overhead and enables sparse activation of experts, which reduces
memory and compute requirements. (2) Expert-Specific Batch
Inference Stage: Queries assigned to the same expert are grouped
into batches for parallel execution. Each expert independently per-
forms forward propagation on its batch, and multiple experts can
run concurrently on separate devices or asynchronously on the
same device. This stage exploits GPU parallelism and allows dy-
namic resource allocation, where faster experts can assist slower
ones, improving cluster-level utilization and overall throughput. (3)
Late-Stage Fusion: After expert inference, the hidden states are
aggregated and fused according to the selected fusion strategy (e.g.,
projection and concatenation). This stage involves only lightweight
linear transformations and a small classifier, and can be efficiently
executed on lower-cost devices. The design ensures that hetero-
geneous representations from different LLMs are preserved and
combined without loss of complementary knowledge.

3 Experiments

3.1 Dataset and Evaluation Metrics

We construct a large-scale multilingual e-commerce relevance dataset,
collected from real-world Alibaba Lazada search logs and annotated
by professional evaluators, covering six Southeast Asian markets:
Indonesia (ID), Malaysia (MY), Philippines (PH), Singapore (SG),
Thailand (TH), and Vietnam (VN). Each query-item pair is labeled
as Yes (relevant) or No (irrelevant). The dataset comprises 7.1M
training samples, 0.7M validation samples, and 46k test samples.
We use the Area Under the ROC Curve (AUC) as the primary ef-
fectiveness metric and Queries Per Second (QPS) as the efficiency
metric. QPS is measured on an NVIDIA H20 GPU and averaged
over 1,000 consecutive batches to ensure stable evaluation.

3.2 Experimental Settings

Base models—Qwenz2.5-14B, Gemma2-9B, Sailor2-20B, and Qwen2.5-
32B—are fine-tuned on the same training set using RSLora[5] with
rank r = 256 and scaling factor @ = 128. Training is conducted
for a single epoch with batch size 4 and learning rate 5 x 1076, fol-
lowing standard practice for large-scale relevance fine-tuning. The
MOoE framework, including the router, projection layers, and fusion
classifier, is trained with batch size 128, learning rate 1 X 1074, and
A =0.01 in Eq. 6, while all base LLMs remain frozen.

We include Qwen2.5-32B as a strong dense baseline, whose total
parameter count (32B) is comparable to the maximum active param-
eters of our MoE framework ( 34B for two experts). This enables
a fair comparison between a scaled-up homogeneous model and
our sparsely-activated heterogeneous MoE. Other baselines include
smaller individual models and a full fusion (Concat) variant that
concatenates all three experts’ embeddings without routing.

3.3 Main Results

Table 1 reports overall and per-market AUCs and QPS. Our MoE
achieves the highest overall AUC (92.49%), surpassing all single
models and the full fusion variant—proving its strong multilingual
relevance modeling. Across markets, it integrates expert strengths:
best performance in ID/PH/TH, and competitive scores in MY/SG/VN.
Notably, it outperforms the full fusion model in several regions
despite activating fewer experts, suggesting that full fusion may
introduce noise and limit effective use of each base model. In terms
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Table 2: Ablation studies on fusion and routing strategies.
Reported metrics are overall AUC (%) and QPS.

Method AUC (%) T QPS1T

Fusion strategies (Hard routing)

Weighted fusion 92.27 13.72
Concatenation 92.49 13.72

Routing strategies (Concat fusion)

Rule-based 91.94 24.44
Pseudo-label 91.57 34.47
Soft routing 92.09 16.01
Hard routing 92.49 13.72
Serial Hard routing 92.49 6.56

of efficiency, the MoE achieves a QPS of 13.72, exceeding the dense
Qwen2.5-32B (12.55) and substantially outperforming full fusion
(6.94), achieving a favorable relevance-throughput trade-off. We
also observe that Sailor2-20B, obtained by extending and further pre-
training Qwen2.5-14B, improves substantially over its base model.
Nevertheless, even a simple fusion of Qwen and Gemma yields
higher overall performance than Sailor2-20B, with much lower pre-
training cost. This indicates that combining complementary experts
through lightweight fusion can be more effective and efficient than
scaling a single model via continued pretraining.

3.4 Ablation Studies

To assess the contribution of individual components, we conduct
ablation studies on fusion strategies and routing mechanisms. All
variants are trained and evaluated under identical settings. Table 2
shows concatenation-based fusion outperforms weighted fusion by
0.22 AUC, as it preserves complementary features without prema-
ture compression. Among routing strategies, end-to-end hard rout-
ing achieves the highest effectiveness, whereas pseudo-label routing
attains the highest QPS but performs poorly because most samples
collapse to Gemma during training due to difficulty in learning
accurate pseudo labels. Soft routing suffers from a train-inference
mismatch, leading to suboptimal performance. We also include a
Serial Hard routing variant, where selected experts are processed
sequentially rather than in parallel. While it achieves the same AUC
as hard routing, the QPS drops significantly (from 13.72 to 6.56),
demonstrating that our optimized parallel inference pipeline nearly
doubles throughput while maintaining identical model outputs.
This highlights the effectiveness of the resource-efficient schedul-
ing and multi-stream batch execution in practical deployment.

3.5 Geometric Interpretation: Manifold
Unfolding and Anisotropy

To intuitively demonstrate the effectiveness of our fusion strat-
egy, we visualize the latent representations of the test set using t-
SNE (t-Distributed Stochastic Neighbor Embedding). We randomly
sampled 45,000 instances from the test set, balanced between rel-
evant (Class 1, blue) and irrelevant (Class 0, red) samples. The
visualization compares the final embedding space generated by our

LSNE dim 2

LSNE dim 2

LSNE dim 1 ESNE gim 1

(a)

Figure 3: t-SNE Visualization of Embedding Spaces under Dif-
ferent Fusion Strategies. Comparison between (a) Concatena-
tion and (b) Weighted Fusion. The concatenation strategy (a)
yields a highly structured manifold with a clear separation
gap, effectively avoiding the class entanglement observed in
the weighted averaging approach (b).

Concatenation-based framework (Figure 3 (a)) against the Weighted
Fusion baseline (Figure 3(b)). All hyperparameters, including per-
plexity and learning rate, were kept consistent to ensure a fair
topological comparison. This topological separation visualized in
Figure 3 (a) serves as the geometric underpinning for the supe-
rior AUC scores reported in Table 2. The comparative visualization
reveals fundamental topological differences that align with our the-
oretical hypothesis of Manifold Preservation, providing a geometric
explanation for the performance gains reported in Table 2.

Manifold Unfolding: Topological Detachment vs. Entangle-
ment The most striking observation in Figure 3 (a) is the emergence
of a distinct, isolated subspace for Class 0 samples (visible as the
dense red cluster detached on the right). This phenomenon indicates
that our method successfully achieves "Manifold Unfolding" By
concatenating the representations ([ha;hg]), the system preserves
the full dimensionality of the heterogeneous expert spaces. This
allows the model to project conflicting samples into orthogonal
subspaces, creating a "clean gap" (white space) that makes the data
linearly separable for the subsequent MLP.

Beyond topology, these results illustrate the critical role of anisotropy

preservation. Pre-trained LLM embeddings are typically anisotropic,
encoding semantic information in specific, high-variance directions
("spikes"). When performing weighted averaging on unaligned ex-
perts, the dominant semantic direction of one model often acts as
noise to the other. This leads to destructive interference, where
sharp distinctive features are canceled out, pushing the distribution
towards isotropy (a more uniform, spherical distribution). The result
is the visual "smearing" seen in Figure 3(b) where the boundaries
between classes are softened.

Our Concatenation strategy maintains the orthogonal anisotropy
of the experts. The sharp, elongated separation seen in Figure 3(a)
proves that the high-variance semantic signals from both models are
preserved intact. This allows the downstream classifier to leverage
the "sharpest" features from either expert to define a precise decision
boundary, effectively resolving the "curse of multilingualism."

3.6 Online Deployment

In industrial search advertising systems, upon receiving a user
query, a Top-K subset of ads is selected from a vast inventory,
following a standard multi-stage pipeline: index — retrieval —
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Table 3: Online performance comparison of the distilled student model (ColBERT) trained by the strongest single teacher
(Sailor2) versus our Proposed MoE across six markets. "Bad Ratio" (|) indicates the percentage of irrelevant results (lower is

better), while "Online AUC" (1) measures ranking accuracy.

Bad Ratio (|)

AUC (1)

Model Overall D
Sailor2-20B 9.00 10.48

PH SG TH VN
9.63 745 806 9.65 90.39

Proposed MoE 8.55 10.26 8.45 9.32 690 7.47 8.90 91.28

prerank — rank — auction — rerank. At the retrieval stage, the
relevance scores serve dual purposes: filtering candidates for down-
stream stages and informing dynamic reserve prices in the auction
mechanism [3, 7], which balance user experience, platform revenue,
and advertiser ROL Accurate relevance estimation is therefore crit-
ical for both result quality and monetization efficacy.

However, industrial-scale retrieval involves tens to hundreds of
thousands of candidate items per query. Real-time inference with
large language models (LLMs) at this scale is computationally pro-
hibitive due to latency constraints. To leverage LLM semantics with-
out losing efficiency, we use offline knowledge distillation: LLMs
generate high-quality relevance labels on a billion-scale query-item
corpus to train a compact student model. We select ColBERT [6]
as the student model due to its strong representational capacity
and efficiency in late-interaction architectures. The distilled Col-
BERT model is deployed online, enabling fine-grained, low-latency
relevance scoring that meets the demands of real-time retrieval.

Online Evaluation. To verify whether the MoE is a better
teacher than single monolithic models, we compare the perfor-
mance of ColBERT students distilled from different teachers (Qwen,
Gemma, Sailor, and our MoE). We focus on two key metrics:

e Bad Ratio(|): The percentage of irrelevant items in the top
retrieval results, evaluated by human experts on a sampled
traffic set. Lower is better.

e Online AUC(T): The ranking capability of the student model
on the held-out test set.

Results. To validate the effectiveness of our framework in a
production setting, we benchmark the MoE-distilled student against
a student distilled from Sailor2-20B, which served as the strongest
single-model baseline in our offline experiments. As presented in
Table 3, the results demonstrate the comprehensive superiority of
the MoE teacher:

Universal Quality Improvement: The MoE-distilled student
achieves a significantly lower Overall Bad Ratio (8.55%) compared
to the Sailor baseline (9.00%), representing a relative reduction of
5%. Notably, our approach outperforms Sailor across all six mar-
kets, with the most substantial gains observed in Vietnam (9.65%
— 8.90%) and Thailand (8.06% — 7.47%). This confirms that the
MoE’s diverse expert knowledge is effectively transferred, mitigat-
ing the performance fluctuations often seen in single models across
different languages.

Enhanced Ranking Accuracy: Beyond filtering irrelevant re-
sults, the MoE teacher also imparts better ranking capabilities. The
Online AUC improves from 90.39% to 91.28%, indicating that the
student model has successfully learned the fine-grained semantic
nuances captured by the manifold-preserving fusion.

This result validates that the MoE teacher provides cleaner, more
robust supervision than single models, successfully transferring its
fine-grained multilingual understanding to the deployable student
model.

4 Conclusion

In this work, we propose an LLMs-based Mixture-of-Experts (MoE)
framework, which leverages the complementary advantages of
LLMs across languages/regions, shifting the paradigm from "scal-
ing a single model" to "coordinating heterogeneous experts." Our
empirical analysis highlights a key finding: traditional scalar mix-
ing methods applied to heterogeneous latent manifolds lead to de-
structive interference. In contrast, our manifold-preserving fusion
strategy—relying on feature concatenation and nonlinear discrimi-
nation—successfully preserves the unique inductive biases of each
expert, enabling the system to achieve Pareto-optimal performance.

Validated on large industrial datasets, our method achieved a
0.72 percentage point improvement in AUC, and the optimized of-
fline pipeline reduced GPU computation time by 35% and increased
QPS throughput by 9%. This demonstrates that lightweight coor-
dinated freezing of LLMs is a viable and cost-effective alternative
to expensive pre-training. Future work will explore multi-modal
integration and automated expert selection.

Limitations. Despite its effectiveness, our framework requires
loading multiple LLMs into VRAM, which, even with sparse acti-
vation, imposes high memory pressure compared to a single small
model. Additionally, the coarse-grained routing at the query level
may miss token-level nuances.

Future Work. We plan to explore: (1) Fine-grained Routing:
Investigating token-level or chunk-level expert selection for mixed-
language queries. (2) Multi-modal Experts: Integrating image en-
coders as experts to address queries where visual information is
crucial. (3) Model Compression: Applying quantization techniques
to further reduce the deployment cost of the expert pool.
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