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Abstract
Neural Ordinary Differential Equations (ODEs)
are elegant reinterpretations of deep networks
where continuous time can replace the discrete
notion of depth, ODE solvers perform forward
propagation, and the adjoint method enables ef-
ficient, constant memory backpropagation. Neu-
ral ODEs are universal approximators only when
they are non-autonomous, that is, the dynamics de-
pends explicitly on time. We propose a novel fam-
ily of Neural ODEs with time-varying weights,
where time-dependence is non-parametric, and
the smoothness of weight trajectories can be ex-
plicitly controlled to allow a tradeoff between
expressiveness and efficiency. Using this en-
hanced expressiveness, we outperform previous
Neural ODE variants in both speed and represen-
tational capacity, ultimately outperforming stan-
dard ResNet and CNN models on select image
classification and video prediction tasks.

1. Introduction & Related Work
The most general Neural ODEs are nonlinear dynamical
systems of the form,

ẋ = f(x, t, θ) (1)

parameterized by θ ∈ Rk and evolving over an input space
x ∈ Rn. The observation that Euler integration of this ODE,

xt+dt = xt + f(xt, t, θ)dt

resembles residual blocks in ResNets establishes a simple
but profound connection between the worlds of deep learn-
ing and differential equations (Chen et al., 2018; Haber
& Ruthotto, 2017). The evolution of an initial condition
x0 ∈ Rn from t0 to t is given by the integral expression,

xt(θ) = x0 +

∫ t

t0

f(x(s), s, θ)ds.

The corresponding flow operator defined by,

φt(x0; θ) = xt(θ),

is a parametric map from Rn 7→ Rn. As such, it pro-
vides a hypothesis space for function estimation in machine
learning, and may be viewed as the continuous limit of
ResNet-like architectures (He et al., 2016).

Reversible deep architectures enable a layer’s activations to
be re-derived from the next layer’s activations, eliminating
the need to store them in memory (Gomez et al., 2017). For a
Neural ODE, by construction a reversible map, loss function
gradients can be computed via the adjoint sensitivity method
with constant memory cost independent of depth. This
decoupling of depth and memory has major implications for
applications involving large video and 3D datasets.

When time dependence is dropped from Eqn 1, the system
becomes autonomous (Khalil & Grizzle, 2002). Irrespec-
tive of number of parameters, an autonomous Neural ODE
cannot be a universal approximator since two trajectories
cannot intersect, a consequence of each x being uniquely
associated to a ẋ with no time-dependence. As a result,
simple continuous, differentiable and invertible maps such
as h(x) = −x, x ∈ R cannot be represented by the flow op-
erators of autonomous systems (Dupont et al., 2019). Note
that this is a price of continuity: residual blocks which are
discrete dynamical systems can generate discrete points at
unit-time intervals side-stepping trajectory crossing.

For continuous systems, it is easy to see that allowing flows
to be time-varying is sufficient to resolve this issue (Zhang
et al., 2019). Such non-autonomous systems turn out to be
universal and can equivalently be expressed as autonomous
systems evolving on an extended input space with dimen-
sionality increased by one. This idea of augmenting the
dimensionality of the input space of an autonomous system
was explored in (Dupont et al., 2019), which further high-
lighted the representational capacity limitations of purely
autonomous systems. Despite the crucial role of time in
Neural ODE approximation capabilities, the dominant ap-
proach in the literature is simply to append time to other
inputs, giving it no special status. Instead, in this work, we:

1. Introduce new, explicit constructions of non-autonomous
Neural ODEs (NANODEs) of the form

ẋ = f(x, θ(t;α)), (2)

where hidden units are rich functions of time with their
own parameters, α. This non-autonomous treatment frees
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Non-Autonomous Neural ODEs

the weights for each hidden layer to vary in complex ways
with time t, allowing trajectories to cross. (Sec. 2.3). We
explore a flexible mechanism for varying expressiveness
while adhering to a given memory limit. (Sec. 3.1).

2. We then use the above framework to outperform previous
Neural ODE variants and standard ResNet and CNN base-
lines on CIFAR classification and video prediction tasks.

2. Methods: Neural ODEs & Time
2.1. Resnets & Autonomous Neural ODEs

Consider the case of a standard Neural Network with hidden
states given by ht+1 := σ(Wtht) . The linear transforma-
tion of each layer, Wtht, is a matrix multiplication between
a weight matrix Wt ∈ RN×N and a vector ht ∈ RN .

In a Deep Neural Network, the weight matrices Wt are
composed of N ×N scalar weights, wij ∈ R. The hidden
dynamics can be rewritten as ht+1 := f(ht, θt), where θt
are learned parameters encoding the weight matrices.

Unconstrained ResNet (Uncon-Resnet): Residual Neural
Networks (ResNets) iteratively apply additive non-linear
residuals to a hidden state:

ht+1 = ht + f(ht, θt), (3)

where t ∈ {0...T} and θt are the parameters of each Resid-
ual Block. This can be viewed as a discretization of the
Initial Value Problem (IVP):

hT = h0 +

∫ T

0

f(hs, θs)ds (4)

Constrained ResNet (Con-Resnet): In the Neural ODE
used in the classification experiments in (Chen et al., 2018),
a function ḣt = f(ht; θ) specifies the derivative and is ap-
proximated by a given Neural Network block. This block is
defined independent of time, so weights are shared across
steps. Through a dynamical systems lens, this Neural ODE
approximates an autonomous nonlinear dynamical system.
This Neural ODE is analogous to a Constrained ResNet with
shared weights between blocks.

2.2. Non-Autonomous Neural ODEs - Time Appended
State

By contrast to an autonomous system, consider the general
non-autonomous system of the form, ẋ = f(x, t, θ), where
θ are the parameters. For simplicity, let us discuss the case
where f is specified by a single linear neural net layer with
an activation function σ.

Recall that in an autonomous system there is no time de-
pendence, so at each time t, ẋ = σ(Wx), and θ := W ∈
RN×N for x ∈ RN .

Time Appended (AppNODE): In works by Chen et al.
(2018) and Dupont et al. (2019), we see a limited vari-
ant of a non-autonomous system that one might call semi-
autonomous as time t is simply added in: ẋ = σ(W [x, t]).
In this case, W ∈ RN×(N+1). Each layer can take the
node corresponding to t and decide to use it to adjust other
weights, but there is no explicit requirement or regulariza-
tion to force or encourage the network to do this.

Let us consider an alternative: making the weights them-
selves explicit functions of time. For clarity, everything
hereon is our novel contribution unless otherwise noted.

2.3. Non-Autonomous ODEs - Weights as a Function of
Time

In a Neural ODE, the discretization of the ODE solver is
roughly analogous to depth in a standard Neural Network.
This connection is most intuitive in the discrete, as opposed
to adaptive, ODE solver case, where the integral in Equation
4 is approximated by a discretization:

∫ T

0

f(hs, θs)ds ≈
T/∆t∑
t=0

f(ht, θt)∆t. (5)

For Non-Autonomous Neural ODE (NANODE) where
weights θt are themselves functions of time, θ(t;α), with
parameters α, the question arises of what kinds of func-
tions to use to specify θ(t;α). We consider the following
framings to be natural to explore.

2.3.1. BASES FOR TIME VARYING DYNAMICS

Framed in terms of a dense network block σ(Wh), we can
make the weight matrix a function of time, W →Wt by as-
sociating each Wt,ij element in the time-dependent weight
matrix with a function Wt,ij = φ(t, α). This function, φ,
can be defined by numerous bases.

Bucketed Time (B-NANODE): Here, we consider piece-
wise constant weights. We initialize a vector ~b ∈ Rd to
represent each Wij over t (i.e., fixing i, j). In the simplest
case, if our discretization (depth) L and d are the same, then
we can map each time t to an index in ~b to select distinct
parameters over time. For d < L, we can group parameters
between successive times to have partial weight-sharing.

Polynomial (Poly-NANODE): We define φ(t, α) as the out-
put of a (d− 1)-degree polynomial with learned coefficients
α ∈ Rd, i.e.

Wt,ij = φ(t, α) = αT z(t), (6)
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where z is the monomial basis or a better conditioned basis
like Chebyshev or Legendre polynomials. For the monomial
basis, we have:

Wt,ij = φ(t, α) =

d−1∑
n=0

αnt
n. (7)

As we increase d, each Wt,ij function’s expressiveness in-
creases, allowing W to vary in complex ways over time.

Note that using 1-degree polynomials is analogous to aug-
menting the state with scalar value t. Augmenting the
state in this way is therefore strictly less general than the
above non-autonomous construction. If we were to re-
frame our non-autonomous system to be autonomous, where
x ∈ Rn+1 instead of x ∈ Rn, by simply letting xn+1 = t
and x′n+1 = 1, we arrive at the augmented case (Dupont
et al., 2019). We note that trajectories can now cross over
each other.

While this standard polynomial construction is intuitive, we
found it difficult to train. The output magnitude of a standard
polynomial can vary greatly and higher order polynomials
are very sensitive to small changes in t. This motivates the
trigonometric construction below.

Trigonometric Polynomials (T-NANODE): We define Wt

as a finite linear combination of basis functions sin(nt) and
cos(nt), with where n ∈ N+:

Wt,ij = φ(t, α) = a0 +

d∑
n=1

an cos(nt) +

d∑
n=1

bn sin(nt)

(8)
with per Wij learnable coefficients:

α = [a0, a1, ..., an, b0, b1, ...bn].

These polynomials are widely used, for example, in the
interpolation of periodic functions and in discrete Fourier
transforms. Trigonometric polynomials have bounded mag-
nitude, so can parameterize kernels that are less susceptible
to inciting vanishing/exploding gradient issues that hinder
optimization (Bengio et al., 1994).

3. Experiments
We conduct a suite of experiments to demonstrate the effec-
tiveness of our NANODE approach.

3.1. Image Classification

We first consider the task of image classification using resid-
ual flow architectures defined by successive bottleneck resid-
ual blocks. As baselines, we trained two ResNet variants:
1) Uncon-ResNet and 2) Con-ResNet (described in Section

Table 1. Comparison of various architectures for CIFAR-10 and
CIFAR-100 image classification tasks. Trigonometric NANODE
(T-NANODE-10) outperforms an Autonomous NODE (Auto), as
well as the largest Unconstrained ResNet we could train on a single
GPU. All the NANODE architectures have a significantly smaller
activation memory footprint (ACT. MEM) than the equivalent Un-
constrained Resnet. Bucket NANODE (B-NANODE) tended to
perform worse than T-NANODE for order < depth. Results aver-
aged across 3 runs, distribution info in supplementary materials.

MODEL CIFAR10
ACC (%)

CIFAR100
ACC (%)

ACT.
MEM (GB)

PARAM
MEM (GB)

AUTO 82.98 50.33 0.3 2.8E-4
APPNODE 83.20 60.68 0.3 2.8E-4

CON. RESNET 82.35 54.69 3.0 2.8E-4
UNCON. RESNET 86.72 60.91 3.0 2.8E-3
B-NANODE-10 84.38 51.66 0.3 2.8E-3
T-NANODE-10 90.10 66.49 0.3 5.6E-3

B-NANODE-100 93.22 64.06 0.3 2.8E-2

2.1). Uncon-ResNet is a standard ResNet architecture where
the weight of each ResNet block are not tied to the weights
of other ResNet blocks. Con-ResNet is a ResNet architec-
ture where the weights of each ResNet block are constrained
to all utilize the same set of parameters, resembling an au-
tonomous Neural ODE, where the weight at each step are
fixed.

In addition to these baselines, we train several NANODE
variants, shown in Figures 1 and 2. Each NANODE has
bases φ of varying orders parameterizing their hidden unit
dynamics. Our experiments demonstrate that by making the
hidden unit dynamics non-autonomous, we can retain much
of the memory benefit of an autonomous ODE (Auto) while
achieving performance comparable to that of an Uncon-
strained ResNet. Furthermore, the memory efficiency bene-
fits granted via the adjoint method allow us to train models
significantly ”deeper” than the Unconstrained ResNets and
outperform them, as shown in Table 1. In Figures 1 and 2,
we show how we can leverage the order d ofWt,ij = φ(t, α)
to vary the NANODE’s representational capacity. This al-
lows us to elegantly trade off between expressiveness and
parameter-efficiency. It is worth noting that parameters typi-
cally require far less memory than activations in the CNN
or ResNet context. For a reversible architecture such as
our NANODEs, with activation memory complexity O(1),
we only need to store our parameters, and the activations
of a single Block. However, a standard ResNet with O(L)
activation memory complexity must store activations for all
L layers. As shown in Table 1, this means that, for a given
memory budget, we can train much wider and deeper neural
networks.

In Figure 2, we also compare Bucket and Trigonometric
time treatments, the two best performing variants. We find
that the trigonometric treatment outperforms the piece-wise,
Bucket treatment for order less than the discretization, d <
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Figure 1. Increasing the order of the time-varying function defining
a NANODEs dynamics enhances its expressiveness. For these
NANODEs with discretization of 100 steps (dt = 0.01), as the
degree of the trigonometric basis scales from 1 to 30, the represen-
tational capacity of the network increases, as shown by its ability
to fit the training set. The threshold line represents the deepest
constrained ResNet baseline that we could train on a single GPU.
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Figure 2. Mirroring results on the training set, as we scale the order
of the Trigonometric Polynomial from 4 to 10, the expressiveness of
the network increases as shown by its generalization performance
on the test set. T-NANODE outperforms B-NANODE for order
d < discretization, suggesting the benefits of smoothness. Hori-
zontal lines illustrate how unconstrained and constrained ResNet
baselines, the largest we could train on a single GPU, compare.

L, suggesting the benefits of smoothness.

3.2. Video Prediction

Leveraging this memory scaling advantage, we consider the
problem of video prediction, whereby a model is tasked
with generating future frames conditioned upon some initial
observation frames. In deterministic settings, e.g. an object
sliding with a fixed velocity, a model has to infer the speed
and direction from the prior frames to accurately extrap-
olate. Standard video prediction models can be memory
intensive to train. Video tensor activations must contain an
additional time dimension that scales linearly as the number
of conditioning or generation frames increases. This makes
it difficult to simultaneously parameterize powerful models
with many filters, and learn long-horizon dynamics.

Experiments are conducted using the Moving MNIST (Sri-
vastava et al., 2015) and BAIR Robot Pushing Small (Finn
et al., 2016) video datasets. We used 2 conditioning frames
to predict 10 future ahead in both tasks. We train an Encoder-
Decoder Stochastic Video Generation (SVG) model with
a learned prior, based on Denton & Fergus (2018). The
baseline architecture contains VGG blocks (Simonyan &
Zisserman, 2014) of several dimension preserving CNN
blocks with 3× 3 filters and 1× 1 stride, followed by 2× 2
max-pooling operations with stride 2 × 2. For our NAN-
ODE alternative, we replace the 2 out of every 3 CNN layers

Table 2. Comparison in performance of different architectures on
both the MNIST and BAIR Robot Pushing Small (BRP) video
prediction datasets. The Evidence Lower Bound (ELBO) and
the memory footprint of the network’s activations and parameters
are shown. The NANODE model is able to significantly outper-
form the SVG and NODE models on both tasks, while keeping
a small activation memory (ACT. MEM) footprint similar to the
Autonomous NODE (Auto) architecture.

MODEL MNIST
(-ELBO)

BRP
(-ELBO)

ACT.
MEM (GB)

PARAM
MEM (GB)

AUTO 3.3E-5 9.0E-5 4.7 4.6E-3
SVG 2.2E-5 9.5E-5 4.9 4.6E-3

NANODE 8.5E-6 7.6E-5 4.7 1.9E-2

with a single NANODE block composed of trigonometric
polynomial basis φ(t, θij) of discretization dt = 0.33 and
order 3. We train this reversible model on a single GPU,
and are able to achieve faster convergence and lower final
loss on both tasks compared to the more memory intensive
baseline. Table 2 states the min loss achieved and memory
usage of the respective architectures. There is much poten-
tial to further improve these video prediction architectures
by pairing ideas regarding optimal width vs. depth scaling
(Tan & Le, 2019) with the arbitrary depth scaling ability and
expressiveness that NANODEs provide.
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