EXPRESSIVE VALUE LEARNING FOR
SCALABLE OFFLINE REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning (RL) is a powerful paradigm for learning to make sequences of decisions.
However, RL has yet to be fully leveraged in robotics, principally due to its lack of scalability.
Offline RL offers a promising avenue by training agents on large, diverse datasets, avoiding the
costly real-world interactions of online RL. Scaling offline RL to increasingly complex datasets
requires expressive generative models such as diffusion and flow matching. However, existing
methods typically depend on either backpropagation through time (BPTT), which is computationally
prohibitive, or policy distillation, which introduces compounding errors and limits scalability to larger
base policies. In this paper, we consider the question of how to develop a scalable offline RL approach
without relying on distillation or backpropagation through time. We introduce Expressive Value

Learning for Offline Reinforcement Learning (): a scalable offline RL approach that integrates
both expressive policies and expressive value functions. learns an optimal, regularized Q-
function via flow matching during training. At inference-time, performs inference-time policy

extraction via rejection sampling against the expressive value function, enabling efficient optimization,
regularization, and compute-scalable search without retraining. Empirically, we show that
outperforms baselines on a diverse set of offline RL tasks, demonstrating the benefit of integrating
expressive value learning into offline RL.

1 INTRODUCTION

Reinforcement learning (RL) is a powerful paradigm for learning to make sequences of decisions, having been widely
applied to applications such as the fine-tuning of pretrained large language models (LLMs). However, the success of RL
in the language domain has yet to be matched in robotics. In contrast to the language setting, robot interactions occur
in the real world, which can be costly, time-consuming, and may pose safety concerns. These constraints naturally
motivate the offline RL setting, where agents attempt to learn from a diverse, often sub-optimal dataset without further
interaction with the environment.

In considering how to make offline RL more scalable, there are three primary axes: (1) scaling data, (2) scaling models,
and (3) scaling compute. In order to scale data, offline RL algorithms must be capable of learning from larger, more
diverse datasets that are often sub-optimal and often multi-modal (e.g. the datasets may be generated by multiple
data-generating policies of varying quality). Naturally, the need to model complex data distributions necessitates the use
of more powerful models. One promising avenue for scaling offline RL is leveraging powerful, expressive generative
models like diffusion (Sohl-Dickstein et al.,[2015; Ho et al., [2020; Song et al.| 2021 and flow matching (Lipman et al.}
2024 [Esser et al., [2024).

Existing approaches to offline RL with generative models predominantly use the generative model as the policy,
improving the policy’s ability to model complex distributions over the standard, Gaussian-based policies used in
continuous action spaces (Hansen-Estruch et al.; 2023} |Chen et al., 2023} Ding & Jin, 2023;|Wang et al., 2022; |[Espinosa+
Dice et al.| [2025; [Park et al.l 2025b; [Zhang et al.,[2025)). At a high-level, diffusion and flow-based RL policies sample
actions via an iterative noise sampling procedure, which requires backpropagating through time in the iterative noise
sampling procedure. Backpropagation through time is computationally expensive, memory-intensive, and can degrade
the general knowledge of the underlying base policy (e.g. a vison-lanuage model (VLM) in the vision-language-action
(VLA) setting) (Ding & Jin, 2023} Zhou et al., [2025bic).

As an alternative to backpropagation through time, distillation-based methods compress the multi-step policy (e.g. a
standard diffusion or flow model) into a one-step model, which can be more efficiently optimized through standard

policy gradient techniques (Ding & Jin, 2023} |Chen et al., 2023} [Park et al., |2025b). However, distillation-based
methods have a fundamental limitation: while expressive models can be used for the base policy (e.g. to model the
offline data distribution), the policy that is actually being optimized and rolled out is a less expressive, one-step model.
While a one-step model may be sufficient for easier simulation-based tasks, they are difficult to scale to larger base
policies (e.g. VLAs) or more complex and real-world tasks, partially due to the compounding errors between the teacher
network (i.e. the base policy) and the student network (i.e. the distilled policy).

Ultimately, we seek an offline RL approach that is scalable (e.g. to large base policies), and we tackle this question in
our paper:

Can we develop a scalable offline RL approach
without relying on policy distillation or backpropagation through time?

A natural alternative to policy gradients is rejection sampling: sample multiple action candidates from the base policy
and choose the one with the highest value according to a learned value function (e.g. Q-function). However, existing
rejection sampling methods suffer from two key limitations: (1) the learned value function is not regularized, and (2)
the learned value function is limited to Gaussian-based models. Standard approaches learn the value function from the
offline dataset, resulting in)™, the Q-function under the data-generating policy ¢, which is not the optimal solution
to the standard KL-regularized offline RL objective. Additionally, the (Q-functions used in continuous state-action
spaces are standard, Gaussian-based value functions. Like Gaussian-based policies, these models are less expressive in
modeling complex distributions than diffusion and flow-based methods.

Finally, we consider the third axis of scale—compute—and, in particular, how to take advantage of additional inference-
time compute. Existing approaches to inference-time scaling generally leverage dynamics or world models for additional
planning at inference-time, such as model predictive path integral control (Williams et al.,|2017), model-based offline
planning (Hafner et al., 2019} |Argenson & Dulac-Arnold, [2020), planning with world models (Hafner et al., [2023)),
and Monte Carlo tree search (Chen et al.| [2024). While effective, these methods either do not leverage expressive
models, instead relying on Gaussian-based approaches, or they require learning and maintaining an auxiliary model of
the environment, which can introduce additional sources of approximation error and scaling challenges.

These limitations point to a key gap in the scalability of existing offline RL approaches: although expressive generative
models have been integrated into policies, the same level of expressivity has yet to be brought to value functions, which
remain restricted to Gaussian-based models. In this paper, we bridge this gap through Expressive Value Learning for
Offline Reinforcement Learning (): an approach for learning an optimal solution to the KL-regularized offline RL
objective with both expressive policies and expressive value functions. achieves the following desiderata for
scalable offline RL:

1. avoids policy distillation and backpropagation through time during policy optimization.
does not learn require learning a new policy and instead optimizes the base policy through inference-time policy
extraction. Unlike standard rejection sampling approaches, uses an optimal, regularized ()-function.

2. learns an expressive, optimal ()-function via flow matching. In contrast to standard value learning
methods that employ Gaussian-based models, uses expressive flow models for value learning. Moreover,
the @-function learned is an optimal, regularized solution to the regularized offline RL objective.

3. enables inference-time scaling and regularization. provides a natural mechanism for inference-
time scaling: performing additional search, guided by the expressive value function, without retraining.

2 BACKGROUND

Markov Decision Process. We consider a finite-horizon Markov decision process (MDP) (X, A, P, r, H), where X
is the state space, A is the action space, P is the transition function, r : X x A — [0, 1] is the reward function, and H
is the MDP’s horizon (Putermanl [2014). An offline dataset D = {(xp, an, rn, Trh+1)} is collected under some unknown
reference policy 7, which could be multi-modal and sub-optimal. In the offline RL setting, we do not assume access
to environment interactions.

Offline Reinforcement Learning. The offline RL objective is generally expressed as combination of a policy
optimization term and a regularization term, such that

argmax Jp(m) — nReg(m, ref))

Policy Optimization Regularization

where Jp () is the expected return over offline dataset D, s is the unknown data generating policy, and Reg(m, 7rrer)
is a regularization term (Espinosa-Dice et al.,[2025)). The regularization term generally takes the form of a divergence
measure between 7 and 7., with KL divergence commonly used. The offline RL objective can be expressed as the soft
value of a policy subject to KL regularization:

H
VOl =B | Y r(@n, an) — nKL ((zn) [mer(zn)) | | 2)

h=1
where the expectation is over a random trajectory (x1, a1, ..., Z g, ym) sampled according to 7 and the KL divergence

is KL(p|lq) = E,~p [log (p(2)/q(2))] (Zhou et al., [2025a). The objective is to learn the optimal, regularized policy
7 = argmax, .y V" Ziebart et al.[(2008) showed that

Virti () =0, 3)
Qy"(z,a) =r(z,a) + Ey/ Py (2,0) [Vh*ﬂ(x’)] ,)
T (alx) o< mer(alz) exp (171 Q" (x,a)) Q)
Vi (@) = nInEgny (2) [exp (n7' Q1" (2, a))] . (6)

For convenience, we drop the n superscript when clear from context.

Reward-To-Go. We define the reward-to-go under the unknown data-generating policy 7., starting at state x and
taking action a, as

H
Z(x,a) ==Y r(xn,an), w0 =1, ag=a, Tpy1 ~ Pu(- | @h,an), antr ~ M- | 2nt1),)
h=0

We define R(- | z,a) as the law of the random variable Z(x, a), so R(- | z, a) 2 Z(x,a). In other words, R(- | x,a) is
the distribution of rewards-to-go under 7.y, starting at state « and taking action sequence a. We can thus define

7TZ’77(CL|$) X Tref(a|2)E; o 2(2,0) [exp (2/7)] -)

We can also define R™(- | =, a) as the distribution of rewards-to-go under a policy 7.

Flow Matching. We define flow matching (Lipman et al.,[2022; [Liu et al., 2022; |Lipman et al., 2024) as follows. Let
p(r) € A(R?) be a data distribution. Given a vector field vy, we construct its corresponding flow, ¢ : [0, 1] x R? — R<,
by the ordinary differential equation (ODE)

d
%Cf’t(x) = Ut(¢t(x)) 9
do(z) = (10)

We employ Lipman et al.|(2024)’s flow matching, which is based on linear paths and uniform time sampling, such that
the objective is
minE,o_ o, [va(t,a’) - (@ = 2°)[3] (11)

x' ~p(x)
t~U[0,1]

where z° = (1 — t)z° + tz! is the linear interpolation between z° and z!.

3 EXPRESSIVE VALUE LEARNING FOR OFFLINE REINFORCEMENT LEARNING

In this section, we present Expressive Value Learning for Offline Reinforcement Learning ().

Algorithm 1: Training via Flow-Based TD Learning

Data: Offline dataset D,
while not converged do

Sample (z,al,2',7) ~ D # Parallelize batch
>

a® ~ N(0,1,), t ~ Unif(0, 1) # Sample noise and time
at < (1 —t)a® + tal # Noise action
¢+ Vllvglat,t | z) — (a* —a)|? # Update actor
>

20~ N(0,1;), 2t ~ R(- | z,a), t ~ Unif(0,1) # Sample noise, reward-to-go, time
2t (1 —1)2° + t2t # Noise reward-to-go
a' ~ Tase (- |) # Sample action from base policy
target(x, a, 2, t) < r(x,a) +3¢(2%, ¢t | 2/, a’) # Flow-matching target
0 < Vollse(2',t | x,a) — target(z,a, 2*,t)|> # Update critic

3.1 OPTIMAL, EXPRESSIVE VALUE LEARNING VIA REGRESSION
First, we tackle the question:
How do we learn an optimal, expressive value function for the KL-regularized offline RL objective?

In offline reinforcement learning, we aim to learn or fine-tune a policy from a dataset collected under some unknown
data-generating policy 7. Depending on the setting, we either have access to a base policy mpase (€.g. a pre-trained
generalist model) or we must learn the policy from scratch. Both settings are compatible with our approach, and we
first show how a base policy can be learned in the setting where a starting base policy is not given.

Base Policy Learning. In the setting where a starting base policy is not known, we train a policy 7y, that predicts
actions via behavioral cloning (Pomerleaul [1988)) on the offline dataset’s state-action pairs. By formulating the objective
as supervised learning, rather than a more complicated RL procedure, we can employ any generative model to learn the
base policy, and we choose flow matching (Lipman et al.| 2022} [Liu et al.,|[2022) here. By leveraging an expressive
model like flow matching, we can model multi-modal offline data.

We present the flow matching objective below, where a° represents a fully noised action (i.e. noise sampled from a
Gaussian) and a' represents a real action (i.e. action sampled from the offline data D). Through below, we

will learn a base policy Tpase R Tref, SUbject to finite sample and optimization errors. The flow matching loss is given
by:

2

] (12)

Velocity Prediction Velocity Target

‘CBC(¢) = E(z,al)ND,aONN{
t~Unif(0,1)

vpla'st]z) — (al—a")|
N———— ——

Value Learning. Next, we consider how to learn an expressive value function. Our key insight is, rather than use
standard methods for value function learning, we instead train a reward model on the distribution of rewards-to-go of mf,
a distribution we have samples from in the offline dataset. Intuitively, we can think of flow matching as a method of
transporting samples from a starting distribution (e.g. samples from Gaussian noise) to a target distribution (i.e. the data
distribution). In this case, we simply set the target distribution to m’s distribution of rewards-to-go, R(- | x, a). We
can then cast the problem as flow matching:

2] (13)

Velocity Prediction Velocity Target

t 1_.0
‘CRM(H) = E(z,a)ND, rt~R(-|z,a), |: UQ('I" it | T, Cl) - (T -r)
. —_——— N
9~ N, t~Unif(0,1)
where ! denotes a sample from the data distribution (i.e. the dataset’s rewards-to-go), r” denotes a sample from the
base noise distribution, and r? is a linear interpolation between the two.

Algorithm 2: Inference via Q5 Reweighting

Input: State x; number of action candidates N ; number of reward-to-go samples N; temperatures Tg, 7g
Output: Action a

{a(i)}fvz”l ~ Tpase (- | &) Sample N, candidate actions

{r@ N~ Ry(- | z,a) Sample N reward-to-go samples

Qg(x,a(i)) “— TR LogSumEXpTe{Tu,j)};\rzl (T/TR) Sample average @

a* ~ softmax, (), N= (Qp(z,a)/7q) Softmax over action candidates
i=1

return a*

Next, we consider how to learn a value function using the reward model. Leveraging results from Ziebart et al.|(2008)
and Zhou et al.| (2025al), we show that the optimal, regularized @-function can be learned using the learned reward
model.

Theorem 1 (Optimal Regularized Value Functions (Zhou et al.,|2025a)). Under deterministic transitions, the optimal
value and Q)-functions are given by

i H

Vo™ (z) =nInEy, |exp [771 Zr(a?t, ag) | |zn |, (14)
i t>h

Q" (wn,an) = nInEry |exp | 7" v ar) | | wn,an| - (15)
t>h

Using we can express the optimal, regularized Q-function as a function of 7.¢’s reward-to-go distribution,
such that

Q;L(Iha ah,) = nlnEszh(-\xh,ah) exp(nilz) (16)

In practice, we can approximate the expectation via sample averaging. The assumption of deterministic dynamics is
strong, and often does not hold in real-world robotics, but it is frequently imposed in offline RL algorithms (Edwards
et al.| [2020; Ma et al.| [2022; |Schweighofer et al., 2022} |Park et al.,2023};|Ghosh et al.l 2023} /Wang et al., 2023} |Karabag
& Topcul, 2023} |Park et al., 2024aic). However, in the next section, we tackle how to learn an expressive value function
under stochastic dynamics.

3.2 SCALABLE VALUE LEARNING VIA FLOW-BASED TD LEARNING
Next, we tackle the question:
How do we learn an expressive value function under stochastic dynamics?
We present flow-based temporal difference (TD) learning, a flow matching-based approach to TD learning. Using TD

learning will enable us to handle the non-deterministic dynamics setting, while still leveraging the expressive modeling
power of flow matching. In this section, we present the flow-based TD objective and high-level intuition behind it, and

we more formally explain its derivation in The full training procedure is shown in

Distributional Bellman. TD learning uses the Bellman equation to learn a value function by constructing a bootstrap
target (i.e. the right-hand side (RHS) of the Bellman equation) (Bellman) [1966; Sutton & Barto, |1998)), such that

Q(z,a) =r(z,a) + Ep QX' A"). (17)

The Bellman equation also holds under distributions (Jaquette, |1973} Sobel, [1982; [White} [1988; Bellemare et al., 2017),

such that
RHS of Distributional Bellman

Z(z,a) 27(z,0) + Z(X', A (18)
——

LHS of Distributional Bellman
where Z (X', A") denotes the random return.

Flow-Based TD Objective. At a high-level, flow matching learns how to transport a known prior distribution into a
target data distribution. To construct a flow-based TD objective, we set the RHS of the distributional Bellman equation
as the target distribution, and match the velocities between the LHS and RHS distributions.
We will learn a conditional flow model s¢(- | , a, t) that transports base noise z) , ~ N(0, I4) to a terminal variable
Zy o ~ Ro(- | 2, a), such that the distribution Ry (- | z,a) ~ R(- | x, a). The bootstrap target is given by

target(z, a, 2*, t) := r(x,a) + EalNﬂbase(.‘wl)Sg(zt | 2',d,t), (19)
and the loss is given by

Sample Reward-To-Go Velocity Prediction of LHS

(20)

P ey 2
‘CFIOWTD(G) = E(m,a,r,z’)N'D Ezle{;Hr,a) IEthnif(O,l) S0 (Zt | z,a, t) - target($7 a, Zt7 t)
SN——— SN———— ~—— 12

Dataset’s State-Action-Reward Sample Time Velocity Target of RHS

We sample a state-action-reward-next-state tuple (z, a,r, ') ~ D from the offline data, a time ¢ ~ Unif(0, 1), and the
next action from the base policy a’ ~ Ty (- | 7). We construct an interpolant 2* = (1 —#)z° + ¢z!, which serves to
noise the ground-truth sample, by sampling a reward-to-go z! ~ R(- | z,a) and a noise sample 2° ~ N(0, I;). The
reward-to-go sample 2! can be sampled from the dataset or a target version of the learned reward model Ry (- | =, a).
To sample a reward-to-go from the distribution Ry(- | x, a), we employ the standard forward Euler method with the
learned flow model sy (- | z, a, t).

3.3 INFERENCE-TIME POLICY EXTRACTION, REGULARIZATION, AND SCALING

’s training procedure focuses on learning an expressive value function, and it trains the base policy via flow
matching on the offline dataset, leading to the natural question:

How does optimize the base policy beyond the offline dataset
without distillation or backpropagation through time?

Inference-Time Policy Extraction. Instead of learning a new policy during training, performs inference-
time policy extraction using the learned distributional reward model. A common approach to inference-time policy
extraction is to perform rejection sampling with the learned @)-function as a “verifier”: given a state z, sample actions
independently from the base policy a1, as,...,an ~ Thase (- |), and select the action with the largest) value, such
that
argmax Q(z,a) 21
a€{ai,az,...,an }

However, using the (Q-function trained on the offline dataset D will result in an unregularized @)-function, specifi-
cally Q™=<, In the offline RL setting, Ty, is often sub-optimal, so optimizing ()™= may lead to distribution shift at
test-time and poor performance (Zhou et al., [2025a). Instead, we utilize our expression for the optimal (Q-function
from

Q*(x.0) = NI E, . p(jo.a) exp(r/n), (22)
where R is the conditional distribution of rewards-to-go under 7. In practice, we approximate the expectation via
sample averaging, and we can construct a softmax over the Q* values, as shown in[Algorithm 2]

Inference-Time Regularization and Scaling. ’s formulation provides a natural mechanism for inference-time
regularization and scaling. Since actions are sampled from the base policy, running with varying temperatures
Tr and 7¢ controls the strength of regularization and policy optimization. Increasing IV, corresponds to performing
additional test-time search, while decreasing N,. will allow for faster inference under lower compute budgets. Cru-
cially, these parameters can be varied at test-time without retraining, allowing for both inference-time scaling and
regularization.

Table 1: ’s Overall Performance. outperforms the baselines on all 5 environments, for a total of 25 unique
tasks in the OGBench task suite (Park et al.,[2024a). Results are averaged over 3 seeds per task, with standard deviations

reported. The full results are reported in[Appendix C]

Task Category QC-1 QC-5

OGBench antmaze-large-navigate-singletask (5 tasks) 11 +4 7 +2 49 14
OGBench antmaze-large-stitch-singletask (5 tasks) 5 +3 4 44 18 +1
OGBench cube-double-play-100M-singletask (b tasks) 54 +6 50 +12 82 12
OGBench pointmaze-medium-naviate-singletask (5 tasks) 9610 9911 99 10
OGBench scene-play-singletask (5 tasks) 45 +2 85 +4 86 i1

4 EXPERIMENTAL RESULTS

In this section, we investigate the performance of , and in particular, we focus on the following question:

What is the benefit of expressive value learning?

4.1 EXPERIMENTAL SETUP

Environments and Tasks. We follow the experimental setup of prior works that leverage the OGBench task suite
(Park et al.l 2024a}; [2025b; [Espinosa-Dice et al., 2025} [Li et al.,|2025)), specifically evaluating on locomotion and
manipulation robotics tasks. We describe the full implementation details in

Baselines. Rather than compare to all of the existing offline RL algorithms benchmarked on OGBench, we instead
aim to isolate the effect of expressive value learning in order to demonstrate its benefit specifically. Thus, we compare
to @-chunking (QC, |Li et al.| (2025))), a recent offline RL algorithm that is closest to . Like , OC learns a
base policy via flow matching and extracts an optimized policy via rejection sampling. The key difference between QC
and is in how the value function is learned, which is the exact difference we aim to isolate. QC can employ action
chunking in both its policy and value function, and we compare to both OC with (QC-5) action chunking and
without it (QC—-1). We select the action chunk length (5) based on Li et al.| (2025)’s recommendation.

Evaluation. To construct a fair comparison, we use the same network size, number of gradients, and discount
factor for all algorithms, similar to [Park et al.|(2025b)); Espinosa-Dice et al.|(2025). Moreover, we use the official QC
implementation and its parameters. We bold values at 95% of the best performance in tables.

4.2 EXPERIMENTAL RESULTS

Q: What is ’s overall performance?

Across 5 environments and 25 unique tasks, achieves the best performance compared to the baselines.

We present the environment aggregation results in and we present the full results in[Appendix C]

Q: Does using expressive models for value learning improve performance?

Yes, ’s expressive value learning method outperforms standard value learning methods.
From the results in[Table T| we observe that outperforms or matches standard value function learning methods

(QC), even compared to a method that employs action chunking (QC-5), suggesting that expressive value learning can
improve performance over standard value function learning.

Q: How can take advantage of greater inference-time compute?

As shown in when given access to greater inference-time compute, can increase the number of action
candidates N, resulting in better performance (up to a saturation point).

We present the full results for inference-time scaling in

cube-double-play (5 tasks)

Success Rate

1 2 4 8 16 32 64
Number of Action Candidates (N')

Figure 1: EVOR’s Inference-Time Scaling. = VOR can perform inference-time scaling by increasing the number of
action candidates N, performing greater search at inference time with the expressive value function. Leveraging
greater inference-time compute results in better performance, up to a saturation point. Results are averaged over 3 seeds
per task, with standard deviations reported.

Q: How can EVOR perform inference-time regularization?

As shown in by increasing varying the temperature parameters Tr and T¢, EVOR can vary the level of
regularization to the base policy compared to the level of policy optimization.

As 7 decreases, the action selection becomes more greedy, while as 7 increases, the action selection becomes more
regularized to the base policy Ty, (i.€. the performance of EVOR with N, = 1).

Q: What training parameters must EVOR tune per environment?
EVOR uses the same training and evaluation parameters for all environments.

A key benefit of ©VOR is that it reduces the number of training parameters that must be tuned per environment. In
particular, ©VOR uses the same training parameters for all environments in[Table T} despite the environments spanning
distinct locomotion and manipulation tasks. In contrast, policy gradient-based offline RL algorithms generally tune
parameters per environment (Park et al., [2025b} [Espinosa-Dice et al., [2025)). We present an ablation study of evaluation

parameters in|Appendix D]

Q: Does rejection sampling-based policy extraction outperform reparameterized policy gradients?

We do not consider that claim in this paper.

The purpose of this paper is to investigate scalable methods for expressive value learning in offline RL. In our empirical
results, we aim to isolate the effect of expressive value learning over standard value function learning by utilizing the
same policy extraction method (rejection sampling).

5 RELATED WORK

We present an extended related work in[Appendix A]

Offline Reinforcement Learning with Generative Models. Standard offline RL approaches rely on Gaussian-based
models in continuous state-action spaces. However, recent work has focused on representing policies via powerful

sequence or generative models Chen et al| (2021); Janner et al| (2021} [2022); [Wang et al| (2022); Ren et al| (2024a);
Wu et al.| (2024); Black et al (2024); [Park et al| (2025b)); [Espinosa-Dice et al. (2025)), taking advantage of more
powerful generative models like diffusion (Sohl-Dickstein et al.,[2015; [Ho et al., [2020; [Song et al.}, 202T)) and flow
matching (Lipman et al.| 2022} [Liu et al.} 2022; [Lipman et al.,[2024). These generative models are known to be more
expressive than Gaussian-based models, enabling them to capture more complex, multi-modal distributions. Modeling
complex distributions is particularly relevant to the offline RL setting, where the offline dataset may be composed of
multiple data-generating policies of varying qualities. However, diffusion and flow models rely on an iterative sampling

cube-double-play (5 tasks) cube-double-play (5 tasks)

79 79 80

79 70

77 81 66
2 2
2 &
I 0 38
n 12}
Q Q
8 8
a a
1
le-3 le-1 1e0 le2 le-3 le-1 1e0 le2 1eb 1e8
Q* Temperature (Tp) Reward-To-Go Temperature (Tg)

Figure 2: Ablation Over EVOR’s Evaluation Parameters. = VOR uses the same training parameters for all environments
in this paper. However, we investigate the effect of varying the temperature parameters 7 and 7¢ at inference-time
on the performance of EVOR. As 7¢ decreases, the action selection becomes more greedy, while as 7¢ increases, the
action selection becomes more regularized. Set to a high value, £VOR becomes equivalent to the base policy (i.e. the
performance with N, = 1). Results are averaged over 3 seeds per task, with standard deviations reported.

process that can be computationally expensive (Ding & Jin, 2023). To address this problem, some methods utilize a
two-stage procedure to first train an expressive generative model on the offline dataset, and then distill it into a one-step
model that is then used for policy optimization (Ding & Jinl 2023} [Chen et al.,[2023; Meng et al., 2023}, [Park et al.,
2025b)). [Espinosa-Dice et al.| (2025) propose an approach for avoiding both distillation and extensive backpropagation
through time by leveraging shortcut models for flexible inference, but rely on a standard, Gaussian-based value function.
Additionally, generative models have been used for plan generation in offline RL (Zheng et al.,[2023) and energy-guided
flow and diffusion models, incorporating reward feedback in the flow and diffusion training (Zhang et al, [2025)).
Farebrother et al.| (2025)) propose integrating flow matching with Bellman-style updates for successor representation
learning.

Inference-Time Scaling in Offline Reinforcement Learning. Inference-time scaling in reinforcement learning often
takes the form of leveraging dynamics or world models for additional planning at inference-time. Approaches include
model predictive control (Richalet et al.} [1978; [Hansen et al 2022), model predictive path integral control (Williams
et al 2015} 2017} [Gandhi et al., 2021), model-based offline planning (Hafner et al., 2019} [Argenson & Dulac-Arnold
2020), sequence modeling (Janner et al., 2021}; 2022; [Kong et al.,[2024), planning with world models (Hafner et al.
2023)), and Monte Carlo tree search (Chen et al., 2024). Additional approaches include applying rejection sampling
to the learned value function at inference-time (Chen et all, 2022} [Fujimoto et all,[2019; [Ghasemipour et al} 2021},
[Hansen-Estruch et all 2023} [Park et al., [2024b) or using the gradient of the learned value function to adjust actions at
inference-time (Park et al.,|2024b). Generative models like flow matching and diffusion models naturally support a
form of sequential scaling by increasing the number of steps in the iterative sampling process (Ho et al.},[2020; [Song]
et al, 2020} [Liu et al.| 2022} [Lipman et al.,[2022)). [Espinosa-Dice et al|(2025)) takes advantage of flexibility in the
number of denoising steps used when sampling actions from the policy. However, existing approaches do not leverage
generative models for value learning like EVOR. By leveraging more expressive models for value learning, =VOR can
better take advantage of larger, more complex offline datasets.

6 DISCUSSION

In summary, £VOR is an approach to scalable offline reinforcement learning that integrates both expressive policies
and expressive value learning. £VOR learns an optimal solution to the KL-regularized offline RL objective, which is
used for inference-time policy extraction without model distillation or backpropagation through time, making =VOR
scalable (e.g. to larger base policies). Furthermore, = VOR can perform inference-time scaling by performing greater
search, using the expressive value function for guidance. Additionally, £VOR can adjust the level of regularization to
the base policy without retraining. Future work may investigate how =VOR can be combined with policy gradient-based
policy extraction schemes. In this paper, we aim to avoid distillation and backpropagation through time, leading us to
rejection sampling against an expressive value function. However, as noted by |Park et al.|(2024b), reparameterized
policy gradients are an effective policy extraction technique. It is possible that £VOR’s expressive value learning can
further improve policy gradient-based techniques.

REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our work. All code necessary to reproduce our experiments,
along with instructions for installation and execution, is included in the supplementary materials as an anonymized
repository. Detailed descriptions of the experimental setup and parameters are provided in The envi-
ronments and datasets used in our experiments are publicly available. Together, these resources enable independent
verification of our findings. We employ LLMs to aid and polish writing based on drafts that we wrote.

REFERENCES

Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline reinforcement learning
with diversified g-ensemble. Advances in neural information processing systems, 34:7436-7447, 2021.

Arthur Argenson and Gabriel Dulac-Arnold. Model-based offline planning. arXiv preprint arXiv:2008.05556, 2020.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016.

Philip J Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learning with offline data.
In International Conference on Machine Learning, pp. 1577-1594. PMLR, 2023.

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement learning. In
International conference on machine learning, pp. 449-458. PMLR, 2017.

Richard Bellman. Dynamic programming. science, 153(3731):34-37, 1966.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai, Lachy Groom,
Karol Hausman, Brian Ichter, et al. m: A vision-language-action flow model for general robot control. arXiv preprint
arXiv:2410.24164, 2024.

Huayu Chen, Cheng Lu, Chengyang Ying, Hang Su, and Jun Zhu. Offline reinforcement learning via high-fidelity
generative behavior modeling. arXiv preprint arXiv:2209.14548, 2022.

Huayu Chen, Cheng Lu, Zhengyi Wang, Hang Su, and Jun Zhu. Score regularized policy optimization through diffusion
behavior. arXiv preprint arXiv:2310.07297, 2023.

Jiayu Chen, Wentse Chen, and Jeff Schneider. Bayes adaptive monte carlo tree search for offline model-based
reinforcement learning. arXiv preprint arXiv:2410.11234, 2024.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel, Aravind Srinivas,
and Igor Mordatch. Decision transformer: Reinforcement learning via sequence modeling. Advances in neural
information processing systems, 34:15084—-15097, 2021.

Zihan Ding and Chi Jin. Consistency models as a rich and efficient policy class for reinforcement learning. arXiv
preprint arXiv:2309.16984, 2023.

Ashley Edwards, Himanshu Sahni, Rosanne Liu, Jane Hung, Ankit Jain, Rui Wang, Adrien Ecoffet, Thomas Miconi,
Charles Isbell, and Jason Yosinski. Estimating q (s, s’) with deep deterministic dynamics gradients. In International
Conference on Machine Learning, pp. 2825-2835. PMLR, 2020.

Nicolas Espinosa-Dice, Yiyi Zhang, Yiding Chen, Bradley Guo, Owen Oertell, Gokul Swamy, Kiante Brantley, and
Wen Sun. Scaling offline 1l via efficient and expressive shortcut models. arXiv preprint arXiv:2505.22866, 2025.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Miiller, Harry Saini, Yam Levi, Dominik
Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for high-resolution image synthesis.
In Forty-first international conference on machine learning, 2024.

Jesse Farebrother, Jordi Orbay, Quan Vuong, Adrien Ali Taiga, Yevgen Chebotar, Ted Xiao, Alex Irpan, Sergey Levine,
Pablo Samuel Castro, Aleksandra Faust, et al. Stop regressing: Training value functions via classification for scalable
deep rl. arXiv preprint arXiv:2403.03950, 2024.

10

Jesse Farebrother, Matteo Pirotta, Andrea Tirinzoni, Rémi Munos, Alessandro Lazaric, and Ahmed Touati. Temporal
difference flows. arXiv preprint arXiv:2503.09817, 2025.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning. Advances in neural
information processing systems, 34:20132-20145, 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without exploration. In
International conference on machine learning, pp. 2052-2062. PMLR, 2019.

Manan S Gandhi, Bogdan Vlahov, Jason Gibson, Grady Williams, and Evangelos A Theodorou. Robust model
predictive path integral control: Analysis and performance guarantees. IEEE Robotics and Automation Letters, 6(2):
1423-1430, 2021.

Divyansh Garg, Joey Hejna, Matthieu Geist, and Stefano Ermon. Extreme g-learning: Maxent 1l without entropy. arXiv
preprint arXiv:2301.02328, 2023.

Seyed Kamyar Seyed Ghasemipour, Dale Schuurmans, and Shixiang Shane Gu. Emaq: Expected-max g-learning
operator for simple yet effective offline and online rl. In International Conference on Machine Learning, pp.
3682-3691. PMLR, 2021.

Dibya Ghosh, Chethan Anand Bhateja, and Sergey Levine. Reinforcement learning from passive data via latent
intentions. In International Conference on Machine Learning, pp. 11321-11339. PMLR, 2023.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James Davidson. Learning
latent dynamics for planning from pixels. In International conference on machine learning, pp. 2555-2565. PMLR,
2019.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains through world models.
arXiv preprint arXiv:2301.04104, 2023.

Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal difference learning for model predictive control. arXiv preprint
arXiv:2203.04955, 2022.

Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine. Idql: Implicit
g-learning as an actor-critic method with diffusion policies. arXiv preprint arXiv:2304.10573, 2023.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in neural information
processing systems, 33:6840-6851, 2020.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence modeling problem.
Advances in neural information processing systems, 34:1273—-1286, 2021.

Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine. Planning with diffusion for flexible behavior
synthesis. arXiv preprint arXiv:2205.09991, 2022.

Stratton C Jaquette. Markov decision processes with a new optimality criterion: Discrete time. The Annals of Statistics,
1(3):496-505, 1973.

Mustafa O Karabag and Ufuk Topcu. On the sample complexity of vanilla model-based offline reinforcement learning
with dependent samples. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 8195-8202,
2023.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-based offline
reinforcement learning. Advances in neural information processing systems, 33:21810-21823, 2020.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

Deqian Kong, Dehong Xu, Minglu Zhao, Bo Pang, Jianwen Xie, Andrew Lizarraga, Yuhao Huang, Sirui Xie, and
Ying Nian Wu. Latent plan transformer for trajectory abstraction: Planning as latent space inference. Advances in
Neural Information Processing Systems, 37:123379-123401, 2024.

11

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-learning. arXiv preprint
arXiv:2110.06169, 2021.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative g-learning for offline reinforcement
learning. Advances in neural information processing systems, 33:1179-1191, 2020.

Jongmin Lee, Wonseok Jeon, Byungjun Lee, Joelle Pineau, and Kee-Eung Kim. Optidice: Offline policy optimization
via stationary distribution correction estimation. In International Conference on Machine Learning, pp. 6120-6130.
PMLR, 2021.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial, review, and
perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Qiyang Li, Zhiyuan Zhou, and Sergey Levine. Reinforcement learning with action chunking. arXiv preprint
arXiv:2507.07969, 2025.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching for generative
modeling. arXiv preprint arXiv:2210.02747, 2022.

Yaron Lipman, Marton Havasi, Peter Holderrieth, Neta Shaul, Matt Le, Brian Karrer, Ricky TQ Chen, David Lopez-Paz,
Heli Ben-Hamu, and Itai Gat. Flow matching guide and code. arXiv preprint arXiv:2412.06264, 2024.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and transfer data with
rectified flow. arXiv preprint arXiv:2209.03003, 2022.

Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash Kumar, and Amy Zhang. Vip: Towards
universal visual reward and representation via value-implicit pre-training. arXiv preprint arXiv:2210.00030, 2022.

Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik Kingma, Stefano Ermon, Jonathan Ho, and Tim Salimans. On
distillation of guided diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 14297-14306, 2023.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online reinforcement learning
with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Mitsuhiko Nakamoto, Simon Zhai, Anikait Singh, Max Sobol Mark, Yi Ma, Chelsea Finn, Aviral Kumar, and Sergey
Levine. Cal-ql: Calibrated offline rl pre-training for efficient online fine-tuning. Advances in Neural Information
Processing Systems, 36:62244-62269, 2023.

Michal Nauman, Marek Cygan, Carmelo Sferrazza, Aviral Kumar, and Pieter Abbeel. Bigger, regularized, categorical:
High-capacity value functions are efficient multi-task learners. arXiv preprint arXiv:2505.23150, 2025.

Alexander Nikulin, Vladislav Kurenkov, Denis Tarasov, and Sergey Kolesnikov. Anti-exploration by random network
distillation. In International Conference on Machine Learning, pp. 26228-26244. PMLR, 2023.

Seohong Park, Dibya Ghosh, Benjamin Eysenbach, and Sergey Levine. Hiql: Offline goal-conditioned rl with latent
states as actions. Advances in Neural Information Processing Systems, 36:34866-34891, 2023.

Seohong Park, Kevin Frans, Benjamin Eysenbach, and Sergey Levine. Ogbench: Benchmarking offline goal-conditioned
rl. arXiv preprint arXiv:2410.20092, 2024a.

Seohong Park, Kevin Frans, Sergey Levine, and Aviral Kumar. Is value learning really the main bottleneck in offline r1?
arXiv preprint arXiv:2406.09329, 2024b.

Seohong Park, Tobias Kreiman, and Sergey Levine. Foundation policies with hilbert representations. arXiv preprint
arXiv:2402.15567, 2024c.

Seohong Park, Kevin Frans, Deepinder Mann, Benjamin Eysenbach, Aviral Kumar, and Sergey Levine. Horizon
reduction makes rl scalable. arXiv preprint arXiv:2506.04168, 2025a.

Seohong Park, Qiyang Li, and Sergey Levine. Flow g-learning. arXiv preprint arXiv:2502.02538, 2025b.

12

Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances in neural information
processing systems, 1, 1988.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John Wiley & Sons, 2014.

Allen Z Ren, Justin Lidard, Lars L Ankile, Anthony Simeonov, Pulkit Agrawal, Anirudha Majumdar, Benjamin
Burchfiel, Hongkai Dai, and Max Simchowitz. Diffusion policy policy optimization. arXiv preprint arXiv:2409.00588,
2024a.

Juntao Ren, Gokul Swamy, Zhiwei Steven Wu, J Andrew Bagnell, and Sanjiban Choudhury. Hybrid inverse reinforce-
ment learning. arXiv preprint arXiv:2402.08848, 2024b.

Jacques Richalet, André Rault, JL Testud, and J Papon. Model predictive heuristic control. Automatica (journal of
IFAC), 14(5):413-428, 1978.

Oleh Rybkin, Michal Nauman, Preston Fu, Charlie Snell, Pieter Abbeel, Sergey Levine, and Aviral Kumar. Value-based
deep 1l scales predictably. arXiv preprint arXiv:2502.04327, 2025.

Kajetan Schweighofer, Marius-constantin Dinu, Andreas Radler, Markus Hofmarcher, Vihang Prakash Patil, Angela
Bitto-Nemling, Hamid Eghbal-Zadeh, and Sepp Hochreiter. A dataset perspective on offline reinforcement learning.
In Conference on Lifelong Learning Agents, pp. 470-517. PMLR, 2022.

Harshit Sikchi, Qinging Zheng, Amy Zhang, and Scott Niekum. Dual rl: Unification and new methods for reinforcement
and imitation learning. arXiv preprint arXiv:2302.08560, 2023.

Matthew J Sobel. The variance of discounted markov decision processes. Journal of Applied Probability, 19(4):
794-802, 1982.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learning using
nonequilibrium thermodynamics. In International conference on machine learning, pp. 2256-2265. pmlr, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502, 2020.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-
based generative modeling through stochastic differential equations. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=PxTIG12RRHS!

Yuda Song, Yifei Zhou, Ayush Sekhari,] Andrew Bagnell, Akshay Krishnamurthy, and Wen Sun. Hybrid rl: Using
both offline and online data can make rl efficient. arXiv preprint arXiv:2210.06718, 2022.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press, Cambridge, MA,
1998.

Denis Tarasov, Vladislav Kurenkov, Alexander Nikulin, and Sergey Kolesnikov. Revisiting the minimalist approach to
offline reinforcement learning. Advances in Neural Information Processing Systems, 36:11592-11620, 2023.

Tongzhou Wang, Antonio Torralba, Phillip Isola, and Amy Zhang. Optimal goal-reaching reinforcement learning via
quasimetric learning. In International Conference on Machine Learning, pp. 36411-36430. PMLR, 2023.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy class for offline
reinforcement learning. arXiv preprint arXiv:2208.06193, 2022.

Douglas J White. Mean, variance, and probabilistic criteria in finite markov decision processes: A review. Journal of
Optimization Theory and Applications, 56(1):1-29, 1988.

Grady Williams, Andrew Aldrich, and Evangelos Theodorou. Model predictive path integral control using covariance
variable importance sampling. arXiv preprint arXiv:1509.01149, 2015.

Grady Williams, Andrew Aldrich, and Evangelos A Theodorou. Model predictive path integral control: From theory to
parallel computation. Journal of Guidance, Control, and Dynamics, 40(2):344-357, 2017.

13

https://openreview.net/forum?id=PxTIG12RRHS

Runzhe Wu, Yiding Chen, Gokul Swamy, Kianté Brantley, and Wen Sun. Diffusing states and matching scores: A new
framework for imitation learning. arXiv preprint arXiv:2410.13855, 2024.

Haoran Xu, Li Jiang, Jianxiong Li, Zhuoran Yang, Zhaoran Wang, Victor Wai Kin Chan, and Xianyuan Zhan. Offline rl
with no ood actions: In-sample learning via implicit value regularization. arXiv preprint arXiv:2303.15810, 2023.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn, and Tengyu
Ma. Mopo: Model-based offline policy optimization. Advances in Neural Information Processing Systems, 33:
14129-14142, 2020.

Zishun Yu and Xinhua Zhang. Actor-critic alignment for offline-to-online reinforcement learning. In International
Conference on Machine Learning, pp. 40452-40474. PMLR, 2023.

Shiyuan Zhang, Weitong Zhang, and Quanquan Gu. Energy-weighted flow matching for offline reinforcement learning.
arXiv preprint arXiv:2503.04975, 2025.

Qinging Zheng, Matt Le, Neta Shaul, Yaron Lipman, Aditya Grover, and Ricky TQ Chen. Guided flows for generative
modeling and decision making. arXiv preprint arXiv:2311.13443, 2023.

Jin Peng Zhou, Kaiwen Wang, Jonathan D Chang, Zhaolin Gao, Nathan Kallus, Kilian Q Weinberger, Kianté Brantley,
and Wen Sun. q: Provably optimal distributional rl for llm post-training. CoRR, 2025a.

Zhongyi Zhou, Yichen Zhu, Junjie Wen, Chaomin Shen, and Yi Xu. Vision-language-action model with open-world
embodied reasoning from pretrained knowledge. arXiv preprint arXiv:2505.21906, 2025b.

Zhongyi Zhou, Yichen Zhu, Minjie Zhu, Junjie Wen, Ning Liu, Zhiyuan Xu, Weibin Meng, Ran Cheng, Yaxin Peng,
Chaomin Shen, et al. Chatvla: Unified multimodal understanding and robot control with vision-language-action
model. arXiv preprint arXiv:2502.14420, 2025c.

Brian D Ziebart, Andrew L. Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse reinforcement
learning. In Aaai, volume 8, pp. 1433—1438. Chicago, IL, USA, 2008.

14

A EXTENDED RELATED WORK

Offline Reinforcement Learning. Offline RL tackles the problem of learning a policy from a fixed dataset without
additional environment interactions (Levine et al., 2020). In addition to the standard reward maximization goal of online
RL, the key problem of offline RL is avoiding distribution shift between train-time (i.e. the offline dataset) and test-time
(i.e. the learned policy’s rollout). Numerous strategies have been proposed for the offline RL setting. A common
approach is to employ behavior regularization, which forces the learned policy to stay close to the dataset via behavioral
cloning or divergence penalties (Nair et al.| | 2020; [Fujimoto & Gu, [2021};|Tarasov et al.||2023). Other approaches include
in-distribution maximization (Kostrikov et al., 2021; Xu et al.,|2023}; |Garg et al., [2023)), dual formulations of RL (Lee
et al., 2021} [Sikchi et al., 2023)), out-of-distribution detection (Yu et al., [2020; Kidambi et al., 2020; |An et al., 2021},
Nikulin et al.| 2023)), and conservative value estimation (Kumar et al., [2020). |[Farebrother et al.| (2024); Nauman et al.
(2025)) propose training value functions via classification-based objectives, instead of the standard regression-based
objectives. Rybkin et al.|(2025)) propose scaling laws for value-based reinforcement learning. Policies trained via offline
RL can subsequently be used for sample efficient online RL in a procedure known as offline-to-online RL (Lee et al.,
2021 Song et al., [2022; Nakamoto et al., [2023; |Ball et al., [2023; |Yu & Zhang| [2023; Ren et al., [2024b; Park et al.,
2025b; [Li et al.l 2025).

Offline Reinforcement Learning with Generative Models. Standard offline RL approaches rely on Gaussian-based
models in continuous state-action spaces. However, recent work has focused on representing policies via powerful
sequence or generative models |Chen et al.|(2021)); Janner et al.| (2021} [2022); Wang et al.| (2022)); Ren et al.| (2024a);
Wu et al.| (2024); Black et al.| (2024)); [Park et al.| (2025b); |[Espinosa-Dice et al.| (2025)), taking advantage of more
powerful generative models like diffusion (Sohl-Dickstein et al., [2015; Ho et al., 2020; Song et al., |2021) and flow
matching (Lipman et al., 2022 |Liu et al.; 2022} |[Lipman et al.,|2024)). These generative models are known to be more
expressive than Gaussian-based models, enabling them to capture more complex, multi-modal distributions. Modeling
complex distributions is particularly relevant to the offline RL setting, where the offline dataset may be composed of
multiple data-generating policies of varying qualities. However, diffusion and flow models rely on an iterative sampling
process that can be computationally expensive (Ding & Jinl 2023)). To address this problem, some methods utilize a
two-stage procedure to first train an expressive generative model on the offline dataset, and then distill it into a one-step
model that is then used for policy optimization (Ding & Jin, [2023; |Chen et al.| 2023; Meng et al.| 2023}; [Park et al.,
2025b). [Espinosa-Dice et al.| (2025) propose an approach for avoiding both distillation and extensive backpropagation
through time by leveraging shortcut models for flexible inference, but rely on a standard, Gaussian-based value function.
Additionally, generative models have been used for plan generation in offline RL (Zheng et al.||2023)) and energy-guided
flow and diffusion models, incorporating reward feedback in the flow and diffusion training (Zhang et al., [2025]).
Farebrother et al.|(2025) propose integrating flow matching with Bellman-style updates for successor representation
learning.

Inference-Time Scaling in Offline Reinforcement Learning. Inference-time scaling in reinforcement learning often
takes the form of leveraging dynamics or world models for additional planning at inference-time. Approaches include
model predictive control (Richalet et al.l [1978];[Hansen et al.,|2022), model predictive path integral control (Williams
et al.,|2015;/2017;|Gandhi et al., [2021)), model-based offline planning (Hafner et al.,|2019; |Argenson & Dulac-Arnold,
2020), sequence modeling (Janner et al., [2021} [2022; |[Kong et al.,2024), planning with world models (Hafner et al.,
2023)), and Monte Carlo tree search (Chen et al.| 2024). Additional approaches include applying rejection sampling
to the learned value function at inference-time (Chen et al., 2022; [Fujimoto et al., |2019; |Ghasemipour et al.| 2021}
Hansen-Estruch et al.| 2023} [Park et al., 2024b) or using the gradient of the learned value function to adjust actions at
inference-time (Park et al.,[2024b)). Generative models like flow matching and diffusion models naturally support a
form of sequential scaling by increasing the number of steps in the iterative sampling process (Ho et al.| 2020; Song
et al., 2020; Liu et al., 2022; Lipman et al., [2022). Espinosa-Dice et al.| (2025) takes advantage of flexibility in the
number of denoising steps used when sampling actions from the policy. However, existing approaches do not leverage
generative models for value learning like . By leveraging more expressive models for value learning, can
better take advantage of larger, more complex offline datasets.

15

B FLOW-BASED TEMPORAL DIFFERENCE LEARNING
We restate the flow-based TD objective and describe its derivation.

Distributional Bellman. TD learning uses the Bellman equation to learn a value function by constructing a bootstrap
target (i.e. the right-hand side (RHS) of the Bellman equation) (Bellman 1966} [Sutton & Bartol, [1998)), such that

Q(z,a) =r(z,a) + Ep,Q(X', A"). (23)

The Bellman equation also -holds under distributions (Jaquette, |1973};|Sobel, |1982; Whitel |1988; Bellemare et al., [2017),

such that
RHS of Distributional Bellman

Z(z,a) 27 (z,a0) + Z(X', A 24)
N——

LHS of Distributional Bellman

where Z (X', A") denotes the random return.

Goal. At a high-level, flow matching learns how to transport a known prior distribution into a target data distribution.
To construct a flow-based TD objective, we set the RHS of the distributional Bellman equation as the target distribution,
and match the velocities between the LHS and RHS distributions. We will learn a conditional flow model sy (- | z, a, t)
that transports base noise Yy ,(0) ~ N(0, I) to a terminal variable Y, ,(1) ~ Rg(- | z, a), such that the distribution
Ro(- | z,a) = R(- | z,a).

Conditional Flow Model. We learn a conditional velocity field sy (y | x, a, t) that defines the ODE

4
dt

Solving (i.e. “running”) this ODE from ¢ = 0 to ¢ = 1 is done by integration, giving the terminal random variable

Yia(t) =s0(Yea(t) | z,a,t), Yz.a(0) ~ po. (25)

1
Yoa(l) = Y, 0(0) + / 50 (Y al(r) | , 0, 7)dr. (26)
0
Let Ry (- | ,a) denote the induced terminal distribution. Our goal is to learn Ry (- | ,a) = R(- | z, a).

Distributional Bellman. By the definition of discounted reward-to-go,

Z(z,a) 2 r(z,a) + Z(X', A), 7
where X' ~ P(- | z,a), A" ~ mpse(- | X'), and Z(X', A") ~ R(- | X', A’). Equivalently, we can say
R(|:177a):£(r(gj,a)+zl), Z/NR(' |X,7A/)ﬂ (28)

where L is the law of the random variable. Taking expectation of Equation [27]yields
Ezwr(|za)Z] = 7(2,0) + Exinp(fo,a)Bamm(1x) Bz ~r(1 x7,49 [Z]]. (29)

Flow Integral and Expectation. Going back to the ODE solution, we have

V(1) = Y, 0(0) + /01 $0(Ye,a(7) | 2, a,7)dr. (30)

Taking expectation first and then applying Fubini’s theorem, we have
E[Yya(1) | z,a] =E[Y2(0)]+E [/01 [s0(Ya,o(T) | Zya,7)]dT | 2,0 31
=E[Y,..(0)] + /01 Eso(Yoo(7) | 2,0,7) | 2, a]dr. (32)

16

By definition of py being zero mean, E[Y; ,(0)] = 0, leaving us with:
1
E[Y:.(1) | 2, d :/ Elso(Yo,o(7) | x,a,7) | x,a] dr. (33)
0

If we perform flow matching well, such that Ry(- | z,a) ~ R(- | z, a) (subject to finite sample and optimization errors),
then

1 1
/ Elsg(Yso(T) | 2,0,7) |z, aldr =7r(z,a) + Ex/ ar [/ E[so(Yxra(7) | X A7) | X', A'ldr| . (34)
0 0

The equation above is a necessary, integral-level condition. We additionally consider a stronger condition that is
pointwise in ¢, such that for all ¢ € [0, 1],

E [Sg(Yx7a(t) | x,a,t) | .Z‘,CL] = T’(.Z‘,CL) —|—EX/,A/]E [S@(YX/7A/(25) | X’,A/,t) ‘ X’,Al], Vit S [0, 1] (35)

Flow-Based TD Objective. Putting this all together, we have the flow-based TD loss

Sample Reward-To-Go Velocity Prediction of LHS

t t 2

[-:FIOWTD(H) = E(aj,a,r,aj’)N'D]Ezlr\/R(;(-\La)]EtNUnif(O,l) 39(2 ‘ €, a, t) - target(x, a,z 7t) 2]’ (36)
—_——— —_———— —_———
Dataset’s State-Action—-Reward Sample Time Velocity Target of RHS
where
t - (St o

target(z, a, 2", t) := r(z,a) + B o (o) 552" | 2 d',1). (37)

We sample a state-action-reward-next-state tuple (x, a,r, x') ~ D from the offline data, a time ¢ ~ Unif(0, 1), and the
next action from the base policy a’ ~ Ty (- | 2'). We construct an interpolant z* = (1 — t)z° + ¢z!, which serves to
noise the ground-truth sample, by sampling a reward-to-go z! ~ R(- | z,a) and a noise sample 2° ~ N(0, I;). The
reward-to-go sample z! can be sampled from the dataset or a target version of the learned reward model Ry (- | =, a).
To sample a reward-to-go from the distribution Ry(- | x, a), we employ the standard forward Euler method with the
learned flow model sg(- | z, a,t).

17

C FULL RESULTS

Table 2: EVOR’s Overall Performance By Task. We present the full results on each OGBench task. (*) indicates the
default task in each environment. The results are averaged over 3 seeds with standard deviations reported.

Task QCc-1 QC-5 EVOR
antmaze-large-navigate-singletask-taskl-v0 (x*) 4 43 2 +1 14 +3
antmaze-large-navigate-singletask-task2-v0 0 +o 0 +o 61 +4
antmaze-large-navigate-singletask-task3-v0 53 +19 27 +12 33 +5
antmaze-large-navigate-singletask-task4-v0 2 +1 0 +o 66 +11
antmaze-large-navigate-singletask-task5-v0 0 +o 4 43 69 +6
antmaze-large-stitch-singletask-taskl-v0 (%) 3 +o 2 +1 0 +o

antmaze-large-stitch-singletask-task2-v0 0 +o 0 +o 0+1

antmaze-large-stitch-singletask-task3-v0 4 +1 12414 67 45
antmaze-large-stitch-singletask-task4-v0 0 +o0 0 +o 4 42

antmaze-large-stitch-singletask-task5-v0 20+15 1245 5 +4

cube-double-play-singletask-taskl-v0 (%) 90 +5 73 +5 95 +2
cube-double-play-singletask-task2-v0 54 +a 46 +20 96 12
cube-double-play-singletask-task3-v0 48 12 49 121 96 +2
cube-double-play-singletask-task4-v0 22 +5 30 +5 36 +s
cube-double-play-singletask-task5-v0 59 +8 52 25 87 +6
pointmaze-medium—-navigate-singletask-taskl-v0 () 97 +3 99 +1 100 +1
pointmaze-medium-navigate-singletask-task2-v0 89+7 100+1 99 +2
pointmaze-medium-navigate-singletask-task3-v0 1000 9912 98 x2
pointmaze-medium-navigate-singletask-task4-v0 94+7 100 +0 100 +o
pointmaze-medium-navigate-singletask-task5-v0 100 0 100 x0 100 xo
scene-play-singletask-taskl-v0 94 +2 100 +0 100 +o
scene-play-singletask-task2-v0 (x) 87 +2 99 +1 98 +1
scene-play-singletask-task3-v0 44 +7 93 +3 94 +2
scene-play-singletask-task4-v0 1+ 90 +4 76 +28
scene-play-singletask-task5-v0 0 +o 41 14 60 +17

Q: What is EVOR’s task-level performance?

Across 5 environments and 25 unique tasks, =VOR achieves the best performance compared to the baselines. £VOR’s
expressive value learning method outperforms standard value learning methods. From the results in[Table 2] we observe
that EVOR outperforms or matches standard value function learning methods (QC), even compared to a method that
employs action chunking (QC-5), suggesting that expressive value learning can improve performance over standard
value function learning.

18

936
937
938
939
940
M
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987

D ABLATION STUDIES

cube-double-play-singletask-taskl cube-double-play-singletask-task2 cube-double-play-singletask-task3

100 100 100 100 100

82 84 70

Success Rate
Success Rate
Success Rate

8

0
1 2 4 8 16 32 64 2 4 8 16 32 64 1 2 4 8 16 32 64
Number of Action Candidates (N') Number of Action Candidates (N™) Number of Action Candidates (N')

cube-double-play-singletask-taskd cube-double-play-singletask-tasks

87 92 97 91 91

33

Success Rate
Success Rate

15 19

0 0

1 2 4 8 16 32 64 1 2 4 8 16 32 64
Number of Action Candidates (N') Number of Action Candidates (N')

Figure 3: Ablation Over Number of Action Candidates V.. Results are averaged over 3 seeds per task, with standard
deviations reported.

Q: [Task-Level] How can EVOR take advantage of greater inference-time compute?

As shown in[Figure 3] when given access to greater inference-time compute, £VOR can increase the number of action
candidates N, resulting in better performance (up to a saturation point).

19

988

989

990

991

992

993

994

995

996

997

998

999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039

cube-double-play-singletask-taskl cube-double-play-singletask-task2 cube-double-play-singletask-task3

95 99 93 85 79
9 @ o
i + ©
o
& = &
P 3 2
8 3 ° 21
o 1 o
& @ &
1e-3 Te-1 160 1e2 1e5 1e-3 le-1 160 1e2 1e5 1e-3 le-1 160 162 165 1e8
Reward-To-Go Temperature (Tg) Reward-To-Go Temperature (TR) Reward-To-Go Temperature (TX)
cube-double-play-singletask-taskd cube-double-play-singletask-tasks

<
2 @
& §
° 40 e
@ 35 40 37 @
o @
S 9
§ §
7 =
71

le-3 le-1 1e0 1le2 le-3 le-1 1e0 le2
Reward-To-Go Temperature (TN) Reward-To-Go Temperature (TX)

Figure 4: Ablation Over Reward-To-Go Temperature Parameter 7. Results are averaged over 3 seeds per task,
with standard deviations reported.

cube-double-play-singletask-taskl cube-double-play-singletask-task2 cube-double-play-singletask-task3

100 100 100 84 90 90 93 89

Success Rate
Success Rate
Success Rate

le-3 le-1 1e0 1e2 le-1 1e0 1e2 le-1 1e0 1e2
Q* Temperature (1q) Q* Temperature (79) Q* Temperature (79)

cube-double-play-singletask-task4 cube-double-play-singletask-task5

Success Rate
F w
&
w
&

Success Rate

1le-3 le-1 1e0

le-1 1e0
Q* Temperature (t2) Q* Temperature (72)

Figure 5: Ablation Over ()* Temperature Parameter 7. Results are averaged over 3 seeds per task, with standard
deviations reported.

Q: [Task-Level] How can EVOR perform inference-time regularization?

As shown in|Figure 4 and [Figure 5| by increasing varying the temperature parameters 7g and 7o, ©VOR can vary the
level of regularization to the base policy compared to the level of policy optimization. As 7¢g decreases, the action
selection becomes more greedy, while as 7 increases, the action selection becomes more regularized. Set to a high
value, 5VOR becomes equivalent to the base policy (i.e. the performance with N, = 1).

E EXPERIMENTAL AND IMPLEMENTATION DETAILS

In this section, we describe the setup, implementation details, and baselines used in the paper.

E.1 EXPERIMENTAL SETUP

We follow OGBench'’s official evaluation scheme (Park et al.l [2024a), with the reward-maximizing offline setup
of Park et al.| (2025b); |[Espinosa-Dice et al.|(2025)). We restate the experimental setup here. Following [Park et al.
(2025b); [Espinosa-Dice et al.| (2025)), we use OGBench’s singletask variants for all experiments, corresponding to
reward-based tasks that are suitable for our reward-maximizing offline RL setting.

Environments and Tasks. is evaluated on manipulation and locomotion robotics tasks in version 1.1 .0 of
OGBench (Park et al.l2024a), including

. antmaze-large—-navigate-singletask-vO0

. antmaze-large-stitch-singletask-v0

. cube-double-play-singletask-v0

. pointmaze-medium-navigate-singletask-v0

D A W N =

. scene-play-singletask-v0

We use the 5 unique tasks (e.g. antmaze-large-navigate-singletask-task{1l,2,3,4,5}-v0) for
each environment listed above, where each task provides a unique evaluation goal. Each environment’s dataset is
labeled with a semi-sparse reward (Park et al.| 2024a;|2025b). For the cube-double-play-singletask-v0
environment, we use the 100M size dataset provided by |Park et al.| (2025a).

The selected environments consist of locomotion and manipulation control problems. The antmaze tasks consist of
navigating a quadrupedal agent (8 degrees of freedom) through complex mazes. The cube and scene environments
manipulated objects with a robotic arm. The goal of scene tasks is to sequence multiple subtasks. The environments
are state-based. We test both navigate and stitch datasets for locomotion and play for manipulation. These
datasets are built from suboptimal, goal-agnostic trajectories, which poses a challenge for goal-directed policy learning
(Park et al.,|20244a)). Following Park et al. (2025b)); Espinosa-Dice et al.|(2025)), we evaluate agents using binary task
success rates (i.e., goal completion percentage), which is consistent with OGBench’s evaluation setup (Park et al.,
20244).

Evaluation. We follow OGBench’s official evaluation scheme (Park et al., [2024a). Algorithms are trained for
1,000,000 gradient steps and evaluated on 50 episodes every 100,000 gradient steps. The average success rates of the
final three evaluations (i.e. the evaluation results at 800,000, 900,000, and 1,000,000 gradient steps) are reported. Tables
average over 3 seeds per task and report standard deviations, bolding values within 95% of the best performance.

E.2 IMPLEMENTATION DETAILS

Flow Matching. is implemented on top of L1 et al.[(2025)’s open-source implementation of QC, which is
adapted from [Park et al.[(2024a)’s open-source codebase. We implement flow matching using the same, standard
velocity field as QC.

Network Architecture and Optimizer. Following Park et al.[(2025b); Espinosa-Dice et al.|(2025); |L1 et al.| (2025),
we use a multi-layer perceptron with 4 hidden layers of size 512 for both the value and policy networks. We apply layer
normalization (Ba et al.,|2016) to value networks and use the Adam optimizer (Kingmal |2014). All of these parameters
are shared between and the baselines.

Hyperparameters. We use the same hyperparameters for both and QC. Unlike many offline RL algorithms
(Park et al.l 2025b; [Espinosa-Dice et al.,[2025)), does not change training parameters between environments in
this paper. uses /N = 1 during training (instead of the N > 1 used during evaluation) for better efficiency.

21

Algorithm 3: 7, Action Sampling via Forward Euler Method

Input: State z, number of inference steps M
Qutput: Action a

a~N(0,I) Sample starting action noise
t<0
form € {0,...,M} do
a<+ a+ 1ve(at,| z) Follow ODE
tet+ 4
return a
Inference Procedure. ’s inference procedure is shown in|Algorithm 2| Actions are sampled from the base

policy Tpase Via the forward Euler method, shown in Algorithm
Recall that the optimal QQ-function is given by:
Q" (z,a) = nInE,Rr(|s,q) exp(r/n), (38)

where R is the conditional distribution of rewards-to-go under 7.s. We learn an estimate of R via the flow-based TD
objective, such that Ry (- | z,a) ~ R(- | ,a). We approximate the expectation via sample averaging, as shown in

such that

LogSumEXp(z(j)) =71"log % ZN;eXp (ZT(?) (39)
We then construct a weighted softmax via the Q* approximation, su]ch that
exp(Q* (z,a?) /7)
3057 exp(Q(x,ah) /)

softmax(Q* (z,a?))) = (40)

22

Table 3: Shared Hyperparameters Between QC Baselines and

PARAMETER VALUE

LEARNING RATE 3E-4

OPTIMIZER ADAM (KINGMA, 2014}
GRADIENT STEPS 1E6

MINIBATCH SIZE 256

MLP DIMENSIONS [512,512,512,512]
TARGET NETWORK SMOOTHING COEFFICIENT 5E-3

DI1SCOUNT FACTOR v 0.99
DISCRETIZATION STEPS 10

TIME SAMPLING DISTRIBUTION UNIF([0,1])
NUMBER OF ACTION CANDIDATES N, 32

Table 4: Hyperparameters for

HYPERPARAMETER VALUE
BETA 3 1E-3
Q* BETA §* 1

NUMBER OF RTG SAMPLES N®TC 1 (TRAIN), 50 (EVAL)

Table 5: Hyperparameters for QC.

HYPERPARAMETER VALUE

ACTION CHUNK LENGTH 1 (QC-1), 5 (QC-5)
CRITIC ENSEMBLE SIZE 2

23

E.3 BASELINES

Rather than compare to all of the existing offline RL algorithms benchmarked on OGBench, we instead aim to isolate
the effect of expressive value learning in order to demonstrate its benefit specifically. Thus, we compare to ()-chunking

(QC, |Li et al.| (2025)), a recent offline RL algorithm that is closest to . Like , QC learns a base policy via
flow matching and extracts an optimized policy via rejection sampling. The key difference between QC and is
in how the value function is learned, which is the exact difference we aim to isolate. QC can employ action chunking
in both its policy and value function, and we compare to both OC with (QC-5) action chunking and without it
(QC—1). We select the action chunk length (5) based on Li et al.|(2025)’s recommendation.
Given an action chunk length of k, represented as a;.t+x = (a¢, G441, - ., Gry), the Q-function is updated via
t+k—1
Q(we, aptk) < Z [rer] + QT ks Qrppetr2k) 41)
t'=1

and actions are sampled via

a<+ argmax Q(z,a), (42)
ac{ai,as,..., an}
where a1, as,...,an ~ Tpase(+ |). This yields the following loss function for learning the Q-function:
i 2
L(0)=E _ T4, ai~D (Qe(l"h a;) — Z Tt — Qa(Tevks at+k)>) (43)
{a;+k}$7:1"’7rha\5("$t+k) =1

where a1 = argmax,e(ai 3 Q(s,a).

24

	Introduction
	Background
	Expressive Value Learning for Offline Reinforcement Learning
	Optimal, Expressive Value Learning via Regression
	Scalable Value Learning via Flow-Based TD Learning
	Inference-Time Policy Extraction, Regularization, and Scaling

	Experimental Results
	Experimental Setup
	Experimental Results

	Related Work
	Discussion
	Extended Related Work
	Flow-Based Temporal Difference Learning
	Full Results
	Ablation Studies
	Experimental and Implementation Details
	Experimental Setup
	EVOR Implementation Details
	Baselines

