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ABSTRACT

Reinforcement learning (RL) is a powerful paradigm for learning to make sequences of decisions.
However, RL has yet to be fully leveraged in robotics, principally due to its lack of scalability.
Offline RL offers a promising avenue by training agents on large, diverse datasets, avoiding the
costly real-world interactions of online RL. Scaling offline RL to increasingly complex datasets
requires expressive generative models such as diffusion and flow matching. However, existing
methods typically depend on either backpropagation through time (BPTT), which is computationally
prohibitive, or policy distillation, which introduces compounding errors and limits scalability to larger
base policies. In this paper, we consider the question of how to develop a scalable offline RL approach
without relying on distillation or backpropagation through time. We introduce Expressive Value
Learning for Offline Reinforcement Learning (EVOR): a scalable offline RL approach that integrates
both expressive policies and expressive value functions. EVOR learns an optimal, regularized Q-
function via flow matching during training. At inference-time, EVOR performs inference-time policy
extraction via rejection sampling against the expressive value function, enabling efficient optimization,
regularization, and compute-scalable search without retraining. Empirically, we show that EVOR
outperforms baselines on a diverse set of offline RL tasks, demonstrating the benefit of integrating
expressive value learning into offline RL.

1 INTRODUCTION

Reinforcement learning (RL) is a powerful paradigm for learning to make sequences of decisions, having been widely
applied to applications such as the fine-tuning of pretrained large language models (LLMs). However, the success of RL
in the language domain has yet to be matched in robotics. In contrast to the language setting, robot interactions occur
in the real world, which can be costly, time-consuming, and may pose safety concerns. These constraints naturally
motivate the offline RL setting, where agents attempt to learn from a diverse, often sub-optimal dataset without further
interaction with the environment.

In considering how to make offline RL more scalable, there are three primary axes: (1) scaling data, (2) scaling models,
and (3) scaling compute. In order to scale data, offline RL algorithms must be capable of learning from larger, more
diverse datasets that are often sub-optimal and often multi-modal (e.g. the datasets may be generated by multiple
data-generating policies of varying quality). Naturally, the need to model complex data distributions necessitates the use
of more powerful models. One promising avenue for scaling offline RL is leveraging powerful, expressive generative
models like diffusion (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021) and flow matching (Lipman et al.,
2024; Esser et al., 2024).

Existing approaches to offline RL with generative models predominantly use the generative model as the policy,
improving the policy’s ability to model complex distributions over the standard, Gaussian-based policies used in
continuous action spaces (Hansen-Estruch et al., 2023; Chen et al., 2023; Ding & Jin, 2023; Wang et al., 2022; Espinosa-
Dice et al., 2025; Park et al., 2025b; Zhang et al., 2025). At a high-level, diffusion and flow-based RL policies sample
actions via an iterative noise sampling procedure, which requires backpropagating through time in the iterative noise
sampling procedure. Backpropagation through time is computationally expensive, memory-intensive, and can degrade
the general knowledge of the underlying base policy (e.g. a vison-lanuage model (VLM) in the vision-language-action
(VLA) setting) (Ding & Jin, 2023; Zhou et al., 2025b;c).

As an alternative to backpropagation through time, distillation-based methods compress the multi-step policy (e.g. a
standard diffusion or flow model) into a one-step model, which can be more efficiently optimized through standard
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policy gradient techniques (Ding & Jin, 2023; Chen et al., 2023; Park et al., 2025b). However, distillation-based
methods have a fundamental limitation: while expressive models can be used for the base policy (e.g. to model the
offline data distribution), the policy that is actually being optimized and rolled out is a less expressive, one-step model.
While a one-step model may be sufficient for easier simulation-based tasks, they are difficult to scale to larger base
policies (e.g. VLAs) or more complex and real-world tasks, partially due to the compounding errors between the teacher
network (i.e. the base policy) and the student network (i.e. the distilled policy).

Ultimately, we seek an offline RL approach that is scalable (e.g. to large base policies), and we tackle this question in
our paper:

Can we develop a scalable offline RL approach
without relying on policy distillation or backpropagation through time?

A natural alternative to policy gradients is rejection sampling: sample multiple action candidates from the base policy
and choose the one with the highest value according to a learned value function (e.g. Q-function). However, existing
rejection sampling methods suffer from two key limitations: (1) the learned value function is not regularized, and (2)
the learned value function is limited to Gaussian-based models. Standard approaches learn the value function from the
offline dataset, resulting in Qπref , the Q-function under the data-generating policy πref, which is not the optimal solution
to the standard KL-regularized offline RL objective. Additionally, the Q-functions used in continuous state-action
spaces are standard, Gaussian-based value functions. Like Gaussian-based policies, these models are less expressive in
modeling complex distributions than diffusion and flow-based methods.

Finally, we consider the third axis of scale—compute—and, in particular, how to take advantage of additional inference-
time compute. Existing approaches to inference-time scaling generally leverage dynamics or world models for additional
planning at inference-time, such as model predictive path integral control (Williams et al., 2017), model-based offline
planning (Hafner et al., 2019; Argenson & Dulac-Arnold, 2020), planning with world models (Hafner et al., 2023),
and Monte Carlo tree search (Chen et al., 2024). While effective, these methods either do not leverage expressive
models, instead relying on Gaussian-based approaches, or they require learning and maintaining an auxiliary model of
the environment, which can introduce additional sources of approximation error and scaling challenges.

These limitations point to a key gap in the scalability of existing offline RL approaches: although expressive generative
models have been integrated into policies, the same level of expressivity has yet to be brought to value functions, which
remain restricted to Gaussian-based models. In this paper, we bridge this gap through Expressive Value Learning for
Offline Reinforcement Learning (EVOR): an approach for learning an optimal solution to the KL-regularized offline RL
objective with both expressive policies and expressive value functions. EVOR achieves the following desiderata for
scalable offline RL:

1. EVOR avoids policy distillation and backpropagation through time during policy optimization. EVOR
does not learn require learning a new policy and instead optimizes the base policy through inference-time policy
extraction. Unlike standard rejection sampling approaches, EVOR uses an optimal, regularized Q-function.

2. EVOR learns an expressive, optimal Q-function via flow matching. In contrast to standard value learning
methods that employ Gaussian-based models, EVOR uses expressive flow models for value learning. Moreover,
the Q-function learned is an optimal, regularized solution to the regularized offline RL objective.

3. EVOR enables inference-time scaling and regularization. EVOR provides a natural mechanism for inference-
time scaling: performing additional search, guided by the expressive value function, without retraining.

2 BACKGROUND

Markov Decision Process. We consider a finite-horizon Markov decision process (MDP) (X , A, P, r, H), where X
is the state space, A is the action space, P is the transition function, r : X ×A → [0, 1] is the reward function, and H
is the MDP’s horizon (Puterman, 2014). An offline dataset D = {(xh, ah, rh, xh+1)} is collected under some unknown
reference policy πref, which could be multi-modal and sub-optimal. In the offline RL setting, we do not assume access
to environment interactions.
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Offline Reinforcement Learning. The offline RL objective is generally expressed as combination of a policy
optimization term and a regularization term, such that

argmax
π∈Π

JD(π)︸ ︷︷ ︸
Policy Optimization

− ηReg(π, πref)︸ ︷︷ ︸
Regularization

(1)

where JD(π) is the expected return over offline dataset D, πref is the unknown data generating policy, and Reg(π, πref)
is a regularization term (Espinosa-Dice et al., 2025). The regularization term generally takes the form of a divergence
measure between π and πref, with KL divergence commonly used. The offline RL objective can be expressed as the soft
value of a policy subject to KL regularization:

V π,η = Eπ

[
H∑

h=1

r(xh, ah)− ηKL (π(xh)∥πref(xh))

]
, (2)

where the expectation is over a random trajectory (x1, a1, . . . , xH , yH) sampled according to π and the KL divergence
is KL(p∥q) = Ez∼p [log (p(z)/q(z))] (Zhou et al., 2025a). The objective is to learn the optimal, regularized policy
π⋆ = argmaxπ∈Π V π,η . Ziebart et al. (2008) showed that

V ⋆,η
H+1(x) = 0, (3)

Q⋆,η
h (x, a) = r(x, a) + Ex′∼Ph(x,a)

[
V ⋆
h+1(x

′)
]
, (4)

π⋆,η(a|x) ∝ πref(a|x) exp
(
η−1Q⋆,η

h (x, a)
)
, (5)

V ⋆,η
h (x) = η lnEa∼πref(x)

[
exp

(
η−1Q⋆,η

h (x, a)
)]

. (6)

For convenience, we drop the η superscript when clear from context.

Reward-To-Go. We define the reward-to-go under the unknown data-generating policy πref, starting at state x and
taking action a, as

Z(x, a) :=

H∑
h=0

r(xh, ah), x0 = x, a0 = a, xh+1 ∼ Ph(· | xh, ah), ah+1 ∼ πref(· | xh+1), (7)

We define R(· | x, a) as the law of the random variable Z(x, a), so R(· | x, a) D
= Z(x, a). In other words, R(· | x, a) is

the distribution of rewards-to-go under πref, starting at state x and taking action sequence a. We can thus define

πZ,η(a|x) ∝ πref(a|x)Ez∼Z(x,a) [exp (z/η)] . (8)

We can also define Rπ(· | x, a) as the distribution of rewards-to-go under a policy π.

Flow Matching. We define flow matching (Lipman et al., 2022; Liu et al., 2022; Lipman et al., 2024) as follows. Let
p(x) ∈ ∆(Rd) be a data distribution. Given a vector field vt, we construct its corresponding flow, ϕ : [0, 1]×Rd → Rd,
by the ordinary differential equation (ODE)

d

dt
ϕt(x) = vt(ϕt(x)) (9)

ϕ0(x) = x (10)

We employ Lipman et al. (2024)’s flow matching, which is based on linear paths and uniform time sampling, such that
the objective is

min
θ

Ex0∼N (0,Id)

x1∼p(x)
t∼U [0,1]

[
∥vθ(t, xt)− (x1 − x0)∥22

]
(11)

where xt = (1− t)x0 + tx1 is the linear interpolation between x0 and x1.

3 EXPRESSIVE VALUE LEARNING FOR OFFLINE REINFORCEMENT LEARNING

In this section, we present Expressive Value Learning for Offline Reinforcement Learning (EVOR).

3
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Algorithm 1: EVOR Training via Flow-Based TD Learning
Data: Offline dataset D;
while not converged do

Sample (x, a1, x′, r) ∼ D # Parallelize batch

▷ Base Policy Update via Flow Matching
a0 ∼ N (0, Id), t ∼ Unif(0, 1) # Sample noise and time
at ← (1− t)a0 + ta1 # Noise action
ϕ← ∇ϕ∥vϕ(at, t | x) − (a1 − a0)∥2 # Update actor

▷ Reward Model Update via Flow-Based TD Learning
z0 ∼ N (0, Id), z

1 ∼ R(· | x, a), t ∼ Unif(0, 1) # Sample noise, reward-to-go, time
zt ← (1− t)z0 + tz1 # Noise reward-to-go
a′ ∼ πbase(· | x′) # Sample action from base policy
target(x, a, zt, t)← r(x, a) + sθ(z

t, t | x′, a′) # Flow-matching target
θ ← ∇θ∥sθ(zt, t | x, a) − target(x, a, zt, t)∥2 # Update critic

3.1 OPTIMAL, EXPRESSIVE VALUE LEARNING VIA REGRESSION

First, we tackle the question:

How do we learn an optimal, expressive value function for the KL-regularized offline RL objective?

In offline reinforcement learning, we aim to learn or fine-tune a policy from a dataset collected under some unknown
data-generating policy πref. Depending on the setting, we either have access to a base policy πbase (e.g. a pre-trained
generalist model) or we must learn the policy from scratch. Both settings are compatible with our approach, and we
first show how a base policy can be learned in the setting where a starting base policy is not given.

Base Policy Learning. In the setting where a starting base policy is not known, we train a policy πbase that predicts
actions via behavioral cloning (Pomerleau, 1988) on the offline dataset’s state-action pairs. By formulating the objective
as supervised learning, rather than a more complicated RL procedure, we can employ any generative model to learn the
base policy, and we choose flow matching (Lipman et al., 2022; Liu et al., 2022) here. By leveraging an expressive
model like flow matching, we can model multi-modal offline data.

We present the flow matching objective below, where a0 represents a fully noised action (i.e. noise sampled from a
Gaussian) and a1 represents a real action (i.e. action sampled from the offline data D). Through Equation 12 below, we
will learn a base policy πbase ≈ πref, subject to finite sample and optimization errors. The flow matching loss is given
by:

LBC(ϕ) = E(x,a1)∼D, a0∼N
t∼Unif(0,1)

[∥∥∥ vϕ(at, t | x)︸ ︷︷ ︸
Velocity Prediction

− (a1 − a0)︸ ︷︷ ︸
Velocity Target

∥∥∥2] (12)

Value Learning. Next, we consider how to learn an expressive value function. Our key insight is, rather than use
standard methods for value function learning, we instead train a reward model on the distribution of rewards-to-go of πref,
a distribution we have samples from in the offline dataset. Intuitively, we can think of flow matching as a method of
transporting samples from a starting distribution (e.g. samples from Gaussian noise) to a target distribution (i.e. the data
distribution). In this case, we simply set the target distribution to πref’s distribution of rewards-to-go, R(· | x, a). We
can then cast the problem as flow matching:

LRM(θ) = E(x,a)∼D, r1∼R(·|x,a),
r0∼N , t∼Unif(0,1)

[∥∥∥ vθ(rt, t | x, a)︸ ︷︷ ︸
Velocity Prediction

− (r1 − r0)︸ ︷︷ ︸
Velocity Target

∥∥∥2] (13)

where r1 denotes a sample from the data distribution (i.e. the dataset’s rewards-to-go), r0 denotes a sample from the
base noise distribution, and rt is a linear interpolation between the two.

4



208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

Algorithm 2: EVOR Inference via Q⋆
θ Reweighting

Input: State x; number of action candidates Nπ; number of reward-to-go samples N ; temperatures τR, τQ
Output: Action a

{a(i)}Nπ
i=1 ∼ πbase(· | x) Sample Nπ candidate actions

{r(i,j)}Nj=1 ∼ Rθ(· | x, a(i)) Sample N reward-to-go samples

Q⋆
θ(x, a

(i))← τR LogSumExpr∈{r(i,j)}N
j=1

(
r/τR

)
Sample average Q⋆

θ

a⋆ ∼ softmaxa∈{a(i)}Nπ
i=1

(
Q⋆

θ(x, a)/τQ
)

Softmax over action candidates

return a⋆

Next, we consider how to learn a value function using the reward model. Leveraging results from Ziebart et al. (2008)
and Zhou et al. (2025a), we show that the optimal, regularized Q-function can be learned using the learned reward
model.

Theorem 1 (Optimal Regularized Value Functions (Zhou et al., 2025a)). Under deterministic transitions, the optimal
value and Q-functions are given by

V ⋆,π
h (xh) = η lnEπref

exp
η−1

H∑
t≥h

r(xt, at)

∣∣∣∣∣∣xh

 , (14)

Q⋆,π
h (xh, ah) = η lnEπref

exp
η−1

H∑
t≥h

r(xt, at)

∣∣∣∣∣∣xh, ah

 . (15)

Using Theorem 1, we can express the optimal, regularized Q-function as a function of πref’s reward-to-go distribution,
such that

Q⋆
h(xh, ah) = η lnEz∼Rh(·|xh,ah) exp(η

−1z) (16)

In practice, we can approximate the expectation via sample averaging. The assumption of deterministic dynamics is
strong, and often does not hold in real-world robotics, but it is frequently imposed in offline RL algorithms (Edwards
et al., 2020; Ma et al., 2022; Schweighofer et al., 2022; Park et al., 2023; Ghosh et al., 2023; Wang et al., 2023; Karabag
& Topcu, 2023; Park et al., 2024a;c). However, in the next section, we tackle how to learn an expressive value function
under stochastic dynamics.

3.2 SCALABLE VALUE LEARNING VIA FLOW-BASED TD LEARNING

Next, we tackle the question:

How do we learn an expressive value function under stochastic dynamics?

We present flow-based temporal difference (TD) learning, a flow matching-based approach to TD learning. Using TD
learning will enable us to handle the non-deterministic dynamics setting, while still leveraging the expressive modeling
power of flow matching. In this section, we present the flow-based TD objective and high-level intuition behind it, and
we more formally explain its derivation in Appendix B. The full training procedure is shown in Algorithm 1.

Distributional Bellman. TD learning uses the Bellman equation to learn a value function by constructing a bootstrap
target (i.e. the right-hand side (RHS) of the Bellman equation) (Bellman, 1966; Sutton & Barto, 1998), such that

Q(x, a) = r(x, a) + EP,πQ(X ′, A′). (17)
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The Bellman equation also holds under distributions (Jaquette, 1973; Sobel, 1982; White, 1988; Bellemare et al., 2017),
such that

Z(x, a)︸ ︷︷ ︸
LHS of Distributional Bellman

D
=

RHS of Distributional Bellman︷ ︸︸ ︷
r(x, a) + Z(X ′, A′) (18)

where Z(X ′, A′) denotes the random return.

Flow-Based TD Objective. At a high-level, flow matching learns how to transport a known prior distribution into a
target data distribution. To construct a flow-based TD objective, we set the RHS of the distributional Bellman equation
as the target distribution, and match the velocities between the LHS and RHS distributions.

We will learn a conditional flow model sθ(· | x, a, t) that transports base noise z0x,a ∼ N (0, Id) to a terminal variable
z1x,a ∼ Rθ(· | x, a), such that the distribution Rθ(· | x, a) ≈ R(· | x, a). The bootstrap target is given by

target(x, a, zt, t) := r(x, a) + Ea′∼πbase(·|x′)sθ̄(z
t | x′, a′, t), (19)

and the loss is given by

LFlowTD(θ) = E(x,a,r,x′)∼D︸ ︷︷ ︸
Dataset’s State-Action-Reward

Sample Reward-To-Go︷ ︸︸ ︷
Ez1∼Rθ̄(·|x,a) Et∼Unif(0,1)︸ ︷︷ ︸

Sample Time

∥∥∥Velocity Prediction of LHS︷ ︸︸ ︷
sθ(z

t | x, a, t)− target(x, a, zt, t)︸ ︷︷ ︸
Velocity Target of RHS

∥∥∥2
2
. (20)

We sample a state-action-reward-next-state tuple (x, a, r, x′) ∼ D from the offline data, a time t ∼ Unif(0, 1), and the
next action from the base policy a′ ∼ πbase(· | x′). We construct an interpolant zt = (1− t)z0 + tz1, which serves to
noise the ground-truth sample, by sampling a reward-to-go z1 ∼ R(· | x, a) and a noise sample z0 ∼ N (0, Id). The
reward-to-go sample z1 can be sampled from the dataset or a target version of the learned reward model Rθ̄(· | x, a).
To sample a reward-to-go from the distribution Rθ(· | x, a), we employ the standard forward Euler method with the
learned flow model sθ(· | x, a, t).

3.3 INFERENCE-TIME POLICY EXTRACTION, REGULARIZATION, AND SCALING

EVOR’s training procedure focuses on learning an expressive value function, and it trains the base policy via flow
matching on the offline dataset, leading to the natural question:

How does EVOR optimize the base policy beyond the offline dataset
without distillation or backpropagation through time?

Inference-Time Policy Extraction. Instead of learning a new policy during training, EVOR performs inference-
time policy extraction using the learned distributional reward model. A common approach to inference-time policy
extraction is to perform rejection sampling with the learned Q-function as a “verifier”: given a state x, sample actions
independently from the base policy a1, a2, . . . , aN ∼ πbase(· | x), and select the action with the largest Q value, such
that

argmax
a∈{a1,a2,...,aN}

Q(x, a) (21)

However, using the Q-function trained on the offline dataset D will result in an unregularized Q-function, specifi-
cally Qπbase . In the offline RL setting, πbase is often sub-optimal, so optimizing Qπbase may lead to distribution shift at
test-time and poor performance (Zhou et al., 2025a). Instead, we utilize our expression for the optimal Q-function
from Subsection 3.1,

Q⋆(x, a) = η lnEr∼R(·|x,a) exp(r/η), (22)
where R is the conditional distribution of rewards-to-go under πref. In practice, we approximate the expectation via
sample averaging, and we can construct a softmax over the Q⋆ values, as shown in Algorithm 2.

Inference-Time Regularization and Scaling. EVOR’s formulation provides a natural mechanism for inference-time
regularization and scaling. Since actions are sampled from the base policy, running EVOR with varying temperatures
τR and τQ controls the strength of regularization and policy optimization. Increasing Nπ corresponds to performing
additional test-time search, while decreasing Nπ will allow for faster inference under lower compute budgets. Cru-
cially, these parameters can be varied at test-time without retraining, allowing for both inference-time scaling and
regularization.
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Table 1: EVOR’s Overall Performance. EVOR outperforms the baselines on all 5 environments, for a total of 25 unique
tasks in the OGBench task suite (Park et al., 2024a). Results are averaged over 3 seeds per task, with standard deviations
reported. The full results are reported in Appendix C.

Task Category QC-1 QC-5 EVOR

OGBench antmaze-large-navigate-singletask (5 tasks) 11 ±4 7 ±2 49 ±4

OGBench antmaze-large-stitch-singletask (5 tasks) 5 ±3 4 ±4 18 ±1

OGBench cube-double-play-100M-singletask (5 tasks) 54 ±6 50 ±12 82 ±2

OGBench pointmaze-medium-naviate-singletask (5 tasks) 96 ±0 99 ±1 99 ±0

OGBench scene-play-singletask (5 tasks) 45 ±2 85 ±4 86 ±7

4 EXPERIMENTAL RESULTS

In this section, we investigate the performance of EVOR, and in particular, we focus on the following question:

What is the benefit of expressive value learning?

4.1 EXPERIMENTAL SETUP

Environments and Tasks. We follow the experimental setup of prior works that leverage the OGBench task suite
(Park et al., 2024a; 2025b; Espinosa-Dice et al., 2025; Li et al., 2025), specifically evaluating EVOR on locomotion and
manipulation robotics tasks. We describe the full implementation details in Appendix E.

Baselines. Rather than compare to all of the existing offline RL algorithms benchmarked on OGBench, we instead
aim to isolate the effect of expressive value learning in order to demonstrate its benefit specifically. Thus, we compare
to Q-chunking (QC, Li et al. (2025)), a recent offline RL algorithm that is closest to EVOR. Like EVOR, QC learns a
base policy via flow matching and extracts an optimized policy via rejection sampling. The key difference between QC
and EVOR is in how the value function is learned, which is the exact difference we aim to isolate. QC can employ action
chunking in both its policy and value function, and we compare EVOR to both QC with (QC-5) action chunking and
without it (QC-1). We select the action chunk length (5) based on Li et al. (2025)’s recommendation.

Evaluation. To construct a fair comparison, we use the same network size, number of gradients, and discount
factor for all algorithms, similar to Park et al. (2025b); Espinosa-Dice et al. (2025). Moreover, we use the official QC
implementation and its parameters. We bold values at 95% of the best performance in tables.

4.2 EXPERIMENTAL RESULTS

Q: What is EVOR’s overall performance?

Across 5 environments and 25 unique tasks, EVOR achieves the best performance compared to the baselines.

We present the environment aggregation results in Table 1, and we present the full results in Appendix C

Q: Does using expressive models for value learning improve performance?

Yes, EVOR’s expressive value learning method outperforms standard value learning methods.

From the results in Table 1, we observe that EVOR outperforms or matches standard value function learning methods
(QC), even compared to a method that employs action chunking (QC-5), suggesting that expressive value learning can
improve performance over standard value function learning.

Q: How can EVOR take advantage of greater inference-time compute?

As shown in Figure 1, when given access to greater inference-time compute, EVOR can increase the number of action
candidates Nπ , resulting in better performance (up to a saturation point).

We present the full results for inference-time scaling in Appendix D.
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Figure 1: EVOR’s Inference-Time Scaling. EVOR can perform inference-time scaling by increasing the number of
action candidates Nπ, performing greater search at inference time with the expressive value function. Leveraging
greater inference-time compute results in better performance, up to a saturation point. Results are averaged over 3 seeds
per task, with standard deviations reported.

Q: How can EVOR perform inference-time regularization?

As shown in Figure 2, by increasing varying the temperature parameters τR and τQ, EVOR can vary the level of
regularization to the base policy compared to the level of policy optimization.

As τQ decreases, the action selection becomes more greedy, while as τQ increases, the action selection becomes more
regularized to the base policy πbase (i.e. the performance of EVOR with Nπ = 1).

Q: What training parameters must EVOR tune per environment?

EVOR uses the same training and evaluation parameters for all environments.

A key benefit of EVOR is that it reduces the number of training parameters that must be tuned per environment. In
particular, EVOR uses the same training parameters for all environments in Table 1, despite the environments spanning
distinct locomotion and manipulation tasks. In contrast, policy gradient-based offline RL algorithms generally tune
parameters per environment (Park et al., 2025b; Espinosa-Dice et al., 2025). We present an ablation study of evaluation
parameters in Appendix D.

Q: Does rejection sampling-based policy extraction outperform reparameterized policy gradients?

We do not consider that claim in this paper.

The purpose of this paper is to investigate scalable methods for expressive value learning in offline RL. In our empirical
results, we aim to isolate the effect of expressive value learning over standard value function learning by utilizing the
same policy extraction method (rejection sampling).

5 RELATED WORK

We present an extended related work in Appendix A.

Offline Reinforcement Learning with Generative Models. Standard offline RL approaches rely on Gaussian-based
models in continuous state-action spaces. However, recent work has focused on representing policies via powerful
sequence or generative models Chen et al. (2021); Janner et al. (2021; 2022); Wang et al. (2022); Ren et al. (2024a);
Wu et al. (2024); Black et al. (2024); Park et al. (2025b); Espinosa-Dice et al. (2025), taking advantage of more
powerful generative models like diffusion (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021) and flow
matching (Lipman et al., 2022; Liu et al., 2022; Lipman et al., 2024). These generative models are known to be more
expressive than Gaussian-based models, enabling them to capture more complex, multi-modal distributions. Modeling
complex distributions is particularly relevant to the offline RL setting, where the offline dataset may be composed of
multiple data-generating policies of varying qualities. However, diffusion and flow models rely on an iterative sampling
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Figure 2: Ablation Over EVOR’s Evaluation Parameters. EVOR uses the same training parameters for all environments
in this paper. However, we investigate the effect of varying the temperature parameters τR and τQ at inference-time
on the performance of EVOR. As τQ decreases, the action selection becomes more greedy, while as τQ increases, the
action selection becomes more regularized. Set to a high value, EVOR becomes equivalent to the base policy (i.e. the
performance with Nπ = 1). Results are averaged over 3 seeds per task, with standard deviations reported.

process that can be computationally expensive (Ding & Jin, 2023). To address this problem, some methods utilize a
two-stage procedure to first train an expressive generative model on the offline dataset, and then distill it into a one-step
model that is then used for policy optimization (Ding & Jin, 2023; Chen et al., 2023; Meng et al., 2023; Park et al.,
2025b). Espinosa-Dice et al. (2025) propose an approach for avoiding both distillation and extensive backpropagation
through time by leveraging shortcut models for flexible inference, but rely on a standard, Gaussian-based value function.
Additionally, generative models have been used for plan generation in offline RL (Zheng et al., 2023) and energy-guided
flow and diffusion models, incorporating reward feedback in the flow and diffusion training (Zhang et al., 2025).
Farebrother et al. (2025) propose integrating flow matching with Bellman-style updates for successor representation
learning.

Inference-Time Scaling in Offline Reinforcement Learning. Inference-time scaling in reinforcement learning often
takes the form of leveraging dynamics or world models for additional planning at inference-time. Approaches include
model predictive control (Richalet et al., 1978; Hansen et al., 2022), model predictive path integral control (Williams
et al., 2015; 2017; Gandhi et al., 2021), model-based offline planning (Hafner et al., 2019; Argenson & Dulac-Arnold,
2020), sequence modeling (Janner et al., 2021; 2022; Kong et al., 2024), planning with world models (Hafner et al.,
2023), and Monte Carlo tree search (Chen et al., 2024). Additional approaches include applying rejection sampling
to the learned value function at inference-time (Chen et al., 2022; Fujimoto et al., 2019; Ghasemipour et al., 2021;
Hansen-Estruch et al., 2023; Park et al., 2024b) or using the gradient of the learned value function to adjust actions at
inference-time (Park et al., 2024b). Generative models like flow matching and diffusion models naturally support a
form of sequential scaling by increasing the number of steps in the iterative sampling process (Ho et al., 2020; Song
et al., 2020; Liu et al., 2022; Lipman et al., 2022). Espinosa-Dice et al. (2025) takes advantage of flexibility in the
number of denoising steps used when sampling actions from the policy. However, existing approaches do not leverage
generative models for value learning like EVOR. By leveraging more expressive models for value learning, EVOR can
better take advantage of larger, more complex offline datasets.

6 DISCUSSION

In summary, EVOR is an approach to scalable offline reinforcement learning that integrates both expressive policies
and expressive value learning. EVOR learns an optimal solution to the KL-regularized offline RL objective, which is
used for inference-time policy extraction without model distillation or backpropagation through time, making EVOR
scalable (e.g. to larger base policies). Furthermore, EVOR can perform inference-time scaling by performing greater
search, using the expressive value function for guidance. Additionally, EVOR can adjust the level of regularization to
the base policy without retraining. Future work may investigate how EVOR can be combined with policy gradient-based
policy extraction schemes. In this paper, we aim to avoid distillation and backpropagation through time, leading us to
rejection sampling against an expressive value function. However, as noted by Park et al. (2024b), reparameterized
policy gradients are an effective policy extraction technique. It is possible that EVOR’s expressive value learning can
further improve policy gradient-based techniques.
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A EXTENDED RELATED WORK

Offline Reinforcement Learning. Offline RL tackles the problem of learning a policy from a fixed dataset without
additional environment interactions (Levine et al., 2020). In addition to the standard reward maximization goal of online
RL, the key problem of offline RL is avoiding distribution shift between train-time (i.e. the offline dataset) and test-time
(i.e. the learned policy’s rollout). Numerous strategies have been proposed for the offline RL setting. A common
approach is to employ behavior regularization, which forces the learned policy to stay close to the dataset via behavioral
cloning or divergence penalties (Nair et al., 2020; Fujimoto & Gu, 2021; Tarasov et al., 2023). Other approaches include
in-distribution maximization (Kostrikov et al., 2021; Xu et al., 2023; Garg et al., 2023), dual formulations of RL (Lee
et al., 2021; Sikchi et al., 2023), out-of-distribution detection (Yu et al., 2020; Kidambi et al., 2020; An et al., 2021;
Nikulin et al., 2023), and conservative value estimation (Kumar et al., 2020). Farebrother et al. (2024); Nauman et al.
(2025) propose training value functions via classification-based objectives, instead of the standard regression-based
objectives. Rybkin et al. (2025) propose scaling laws for value-based reinforcement learning. Policies trained via offline
RL can subsequently be used for sample efficient online RL in a procedure known as offline-to-online RL (Lee et al.,
2021; Song et al., 2022; Nakamoto et al., 2023; Ball et al., 2023; Yu & Zhang, 2023; Ren et al., 2024b; Park et al.,
2025b; Li et al., 2025).

Offline Reinforcement Learning with Generative Models. Standard offline RL approaches rely on Gaussian-based
models in continuous state-action spaces. However, recent work has focused on representing policies via powerful
sequence or generative models Chen et al. (2021); Janner et al. (2021; 2022); Wang et al. (2022); Ren et al. (2024a);
Wu et al. (2024); Black et al. (2024); Park et al. (2025b); Espinosa-Dice et al. (2025), taking advantage of more
powerful generative models like diffusion (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021) and flow
matching (Lipman et al., 2022; Liu et al., 2022; Lipman et al., 2024). These generative models are known to be more
expressive than Gaussian-based models, enabling them to capture more complex, multi-modal distributions. Modeling
complex distributions is particularly relevant to the offline RL setting, where the offline dataset may be composed of
multiple data-generating policies of varying qualities. However, diffusion and flow models rely on an iterative sampling
process that can be computationally expensive (Ding & Jin, 2023). To address this problem, some methods utilize a
two-stage procedure to first train an expressive generative model on the offline dataset, and then distill it into a one-step
model that is then used for policy optimization (Ding & Jin, 2023; Chen et al., 2023; Meng et al., 2023; Park et al.,
2025b). Espinosa-Dice et al. (2025) propose an approach for avoiding both distillation and extensive backpropagation
through time by leveraging shortcut models for flexible inference, but rely on a standard, Gaussian-based value function.
Additionally, generative models have been used for plan generation in offline RL (Zheng et al., 2023) and energy-guided
flow and diffusion models, incorporating reward feedback in the flow and diffusion training (Zhang et al., 2025).
Farebrother et al. (2025) propose integrating flow matching with Bellman-style updates for successor representation
learning.

Inference-Time Scaling in Offline Reinforcement Learning. Inference-time scaling in reinforcement learning often
takes the form of leveraging dynamics or world models for additional planning at inference-time. Approaches include
model predictive control (Richalet et al., 1978; Hansen et al., 2022), model predictive path integral control (Williams
et al., 2015; 2017; Gandhi et al., 2021), model-based offline planning (Hafner et al., 2019; Argenson & Dulac-Arnold,
2020), sequence modeling (Janner et al., 2021; 2022; Kong et al., 2024), planning with world models (Hafner et al.,
2023), and Monte Carlo tree search (Chen et al., 2024). Additional approaches include applying rejection sampling
to the learned value function at inference-time (Chen et al., 2022; Fujimoto et al., 2019; Ghasemipour et al., 2021;
Hansen-Estruch et al., 2023; Park et al., 2024b) or using the gradient of the learned value function to adjust actions at
inference-time (Park et al., 2024b). Generative models like flow matching and diffusion models naturally support a
form of sequential scaling by increasing the number of steps in the iterative sampling process (Ho et al., 2020; Song
et al., 2020; Liu et al., 2022; Lipman et al., 2022). Espinosa-Dice et al. (2025) takes advantage of flexibility in the
number of denoising steps used when sampling actions from the policy. However, existing approaches do not leverage
generative models for value learning like EVOR. By leveraging more expressive models for value learning, EVOR can
better take advantage of larger, more complex offline datasets.
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B FLOW-BASED TEMPORAL DIFFERENCE LEARNING

We restate the flow-based TD objective and describe its derivation.

Distributional Bellman. TD learning uses the Bellman equation to learn a value function by constructing a bootstrap
target (i.e. the right-hand side (RHS) of the Bellman equation) (Bellman, 1966; Sutton & Barto, 1998), such that

Q(x, a) = r(x, a) + EP,πQ(X ′, A′). (23)

The Bellman equation also -holds under distributions (Jaquette, 1973; Sobel, 1982; White, 1988; Bellemare et al., 2017),
such that

Z(x, a)︸ ︷︷ ︸
LHS of Distributional Bellman

D
=

RHS of Distributional Bellman︷ ︸︸ ︷
r(x, a) + Z(X ′, A′) (24)

where Z(X ′, A′) denotes the random return.

Goal. At a high-level, flow matching learns how to transport a known prior distribution into a target data distribution.
To construct a flow-based TD objective, we set the RHS of the distributional Bellman equation as the target distribution,
and match the velocities between the LHS and RHS distributions. We will learn a conditional flow model sθ(· | x, a, t)
that transports base noise Yx,a(0) ∼ N (0, Id) to a terminal variable Yx,a(1) ∼ Rθ(· | x, a), such that the distribution
Rθ(· | x, a) ≈ R(· | x, a).

Conditional Flow Model. We learn a conditional velocity field sθ(y | x, a, t) that defines the ODE

d

dt
Yx,a(t) = sθ(Yx,a(t) | x, a, t), Yx,a(0) ∼ p0. (25)

Solving (i.e. “running”) this ODE from t = 0 to t = 1 is done by integration, giving the terminal random variable

Yx,a(1) = Yx,a(0) +

∫ 1

0

sθ(Yx,a(τ) | x, a, τ)dτ. (26)

Let Rθ(· | x, a) denote the induced terminal distribution. Our goal is to learn Rθ(· | x, a) ≈ R(· | x, a).

Distributional Bellman. By the definition of discounted reward-to-go,

Z(x, a)
D
= r(x, a) + Z(X ′, A′), (27)

where X ′ ∼ P (· | x, a), A′ ∼ πbase(· | X ′), and Z(X ′, A′) ∼ R(· | X ′, A′). Equivalently, we can say

R(· | x, a) = L (r(x, a) + Z ′) , Z ′ ∼ R(· | X ′, A′), (28)

where L is the law of the random variable. Taking expectation of Equation 27 yields

EZ∼R(·|x,a)[Z] = r(x, a) + EX′∼P (·|x,a)EA′∼πbase(·|X′)EZ′∼R(·|X′,A′)[Z
′]. (29)

Flow Integral and Expectation. Going back to the ODE solution, we have

Yx,a(1) = Yx,a(0) +

∫ 1

0

sθ(Yx,a(τ) | x, a, τ)dτ. (30)

Taking expectation first and then applying Fubini’s theorem, we have

E [Yx,a(1) | x, a] = E [Yx,a(0)] + E
[∫ 1

0

[sθ(Yx,a(τ) | x, a, τ)] dτ | x, a
]

(31)

= E [Yx,a(0)] +

∫ 1

0

E [sθ(Yx,a(τ) | x, a, τ) | x, a] dτ. (32)
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By definition of p0 being zero mean, E[Yx,a(0)] = 0, leaving us with:

E [Yx,a(1) | x, a] =
∫ 1

0

E [sθ(Yx,a(τ) | x, a, τ) | x, a] dτ. (33)

If we perform flow matching well, such that Rθ(· | x, a) ≈ R(· | x, a) (subject to finite sample and optimization errors),
then∫ 1

0

E [sθ(Yx,a(τ) | x, a, τ) | x, a] dτ = r(x, a) + EX′,A′

[∫ 1

0

E [sθ(YX′,A′(τ) | X ′, A′, τ) | X ′, A′] dτ

]
. (34)

The equation above is a necessary, integral-level condition. We additionally consider a stronger condition that is
pointwise in t, such that for all t ∈ [0, 1],

E [sθ(Yx,a(t) | x, a, t) | x, a] = r(x, a) + EX′,A′E [sθ(YX′,A′(t) | X ′, A′, t) | X ′, A′] , ∀t ∈ [0, 1]. (35)

Flow-Based TD Objective. Putting this all together, we have the flow-based TD loss

LFlowTD(θ) = E(x,a,r,x′)∼D︸ ︷︷ ︸
Dataset’s State-Action-Reward

Sample Reward-To-Go︷ ︸︸ ︷
Ez1∼Rθ̄(·|x,a) Et∼Unif(0,1)︸ ︷︷ ︸

Sample Time

∥∥∥Velocity Prediction of LHS︷ ︸︸ ︷
sθ(z

t | x, a, t)− target(x, a, zt, t)︸ ︷︷ ︸
Velocity Target of RHS

∥∥∥2
2
], (36)

where
target(x, a, zt, t) := r(x, a) + Ea′∼πbase(·|x′)sθ̄(z

t | x′, a′, t). (37)

We sample a state-action-reward-next-state tuple (x, a, r, x′) ∼ D from the offline data, a time t ∼ Unif(0, 1), and the
next action from the base policy a′ ∼ πbase(· | x′). We construct an interpolant zt = (1− t)z0 + tz1, which serves to
noise the ground-truth sample, by sampling a reward-to-go z1 ∼ R(· | x, a) and a noise sample z0 ∼ N (0, Id). The
reward-to-go sample z1 can be sampled from the dataset or a target version of the learned reward model Rθ̄(· | x, a).
To sample a reward-to-go from the distribution Rθ(· | x, a), we employ the standard forward Euler method with the
learned flow model sθ(· | x, a, t).
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C FULL RESULTS

Table 2: EVOR’s Overall Performance By Task. We present the full results on each OGBench task. (*) indicates the
default task in each environment. The results are averaged over 3 seeds with standard deviations reported.

Task QC-1 QC-5 EVOR

antmaze-large-navigate-singletask-task1-v0 (*) 4 ±3 2 ±1 14 ±3

antmaze-large-navigate-singletask-task2-v0 0 ±0 0 ±0 61 ±4

antmaze-large-navigate-singletask-task3-v0 53 ±19 27 ±12 33 ±5

antmaze-large-navigate-singletask-task4-v0 2 ±1 0 ±0 66 ±11

antmaze-large-navigate-singletask-task5-v0 0 ±0 4 ±3 69 ±6

antmaze-large-stitch-singletask-task1-v0 (*) 3 ±0 2 ±1 0 ±0

antmaze-large-stitch-singletask-task2-v0 0 ±0 0 ±0 0 ±1

antmaze-large-stitch-singletask-task3-v0 4 ±1 12 ±14 67 ±5

antmaze-large-stitch-singletask-task4-v0 0 ±0 0 ±0 4 ±2

antmaze-large-stitch-singletask-task5-v0 20 ±15 12 ±5 5 ±4

cube-double-play-singletask-task1-v0 (*) 90 ±5 73 ±5 95 ±2

cube-double-play-singletask-task2-v0 54 ±4 46 ±20 96 ±2

cube-double-play-singletask-task3-v0 48 ±12 49 ±21 96 ±2

cube-double-play-singletask-task4-v0 22 ±5 30 ±5 36 ±8

cube-double-play-singletask-task5-v0 59 ±8 52 ±25 87 ±6

pointmaze-medium-navigate-singletask-task1-v0 (*) 97 ±3 99 ±1 100 ±1

pointmaze-medium-navigate-singletask-task2-v0 89 ±7 100 ±1 99 ±2

pointmaze-medium-navigate-singletask-task3-v0 100 ±0 99 ±2 98 ±2

pointmaze-medium-navigate-singletask-task4-v0 94 ±7 100 ±0 100 ±0

pointmaze-medium-navigate-singletask-task5-v0 100 ±0 100 ±0 100 ±0

scene-play-singletask-task1-v0 94 ±2 100 ±0 100 ±0

scene-play-singletask-task2-v0 (*) 87 ±2 99 ±1 98 ±1

scene-play-singletask-task3-v0 44 ±7 93 ±3 94 ±2

scene-play-singletask-task4-v0 1 ±1 90 ±4 76 ±28

scene-play-singletask-task5-v0 0 ±0 41 ±14 60 ±17

Q: What is EVOR’s task-level performance?

Across 5 environments and 25 unique tasks, EVOR achieves the best performance compared to the baselines. EVOR’s
expressive value learning method outperforms standard value learning methods. From the results in Table 2, we observe
that EVOR outperforms or matches standard value function learning methods (QC), even compared to a method that
employs action chunking (QC-5), suggesting that expressive value learning can improve performance over standard
value function learning.

18



936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987

D ABLATION STUDIES
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Figure 3: Ablation Over Number of Action Candidates Nπ . Results are averaged over 3 seeds per task, with standard
deviations reported.

Q: [Task-Level] How can EVOR take advantage of greater inference-time compute?

As shown in Figure 3, when given access to greater inference-time compute, EVOR can increase the number of action
candidates Nπ , resulting in better performance (up to a saturation point).
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Figure 4: Ablation Over Reward-To-Go Temperature Parameter τR. Results are averaged over 3 seeds per task,
with standard deviations reported.
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Figure 5: Ablation Over Q⋆ Temperature Parameter τQ. Results are averaged over 3 seeds per task, with standard
deviations reported.

Q: [Task-Level] How can EVOR perform inference-time regularization?

As shown in Figure 4 and Figure 5, by increasing varying the temperature parameters τR and τQ, EVOR can vary the
level of regularization to the base policy compared to the level of policy optimization. As τQ decreases, the action
selection becomes more greedy, while as τQ increases, the action selection becomes more regularized. Set to a high
value, EVOR becomes equivalent to the base policy (i.e. the performance with Nπ = 1).
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E EXPERIMENTAL AND IMPLEMENTATION DETAILS

In this section, we describe the setup, implementation details, and baselines used in the paper.

E.1 EXPERIMENTAL SETUP

We follow OGBench’s official evaluation scheme (Park et al., 2024a), with the reward-maximizing offline setup
of Park et al. (2025b); Espinosa-Dice et al. (2025). We restate the experimental setup here. Following Park et al.
(2025b); Espinosa-Dice et al. (2025), we use OGBench’s singletask variants for all experiments, corresponding to
reward-based tasks that are suitable for our reward-maximizing offline RL setting.

Environments and Tasks. EVOR is evaluated on manipulation and locomotion robotics tasks in version 1.1.0 of
OGBench (Park et al., 2024a), including

1. antmaze-large-navigate-singletask-v0

2. antmaze-large-stitch-singletask-v0

3. cube-double-play-singletask-v0

4. pointmaze-medium-navigate-singletask-v0

5. scene-play-singletask-v0

We use the 5 unique tasks (e.g. antmaze-large-navigate-singletask-task{1,2,3,4,5}-v0) for
each environment listed above, where each task provides a unique evaluation goal. Each environment’s dataset is
labeled with a semi-sparse reward (Park et al., 2024a; 2025b). For the cube-double-play-singletask-v0
environment, we use the 100M size dataset provided by Park et al. (2025a).

The selected environments consist of locomotion and manipulation control problems. The antmaze tasks consist of
navigating a quadrupedal agent (8 degrees of freedom) through complex mazes. The cube and scene environments
manipulated objects with a robotic arm. The goal of scene tasks is to sequence multiple subtasks. The environments
are state-based. We test both navigate and stitch datasets for locomotion and play for manipulation. These
datasets are built from suboptimal, goal-agnostic trajectories, which poses a challenge for goal-directed policy learning
(Park et al., 2024a). Following Park et al. (2025b); Espinosa-Dice et al. (2025), we evaluate agents using binary task
success rates (i.e., goal completion percentage), which is consistent with OGBench’s evaluation setup (Park et al.,
2024a).

Evaluation. We follow OGBench’s official evaluation scheme (Park et al., 2024a). Algorithms are trained for
1,000,000 gradient steps and evaluated on 50 episodes every 100,000 gradient steps. The average success rates of the
final three evaluations (i.e. the evaluation results at 800,000, 900,000, and 1,000,000 gradient steps) are reported. Tables
average over 3 seeds per task and report standard deviations, bolding values within 95% of the best performance.

E.2 EVOR IMPLEMENTATION DETAILS

Flow Matching. EVOR is implemented on top of Li et al. (2025)’s open-source implementation of QC, which is
adapted from Park et al. (2024a)’s open-source codebase. We implement flow matching using the same, standard
velocity field as QC.

Network Architecture and Optimizer. Following Park et al. (2025b); Espinosa-Dice et al. (2025); Li et al. (2025),
we use a multi-layer perceptron with 4 hidden layers of size 512 for both the value and policy networks. We apply layer
normalization (Ba et al., 2016) to value networks and use the Adam optimizer (Kingma, 2014). All of these parameters
are shared between EVOR and the baselines.

Hyperparameters. We use the same hyperparameters for both EVOR and QC. Unlike many offline RL algorithms
(Park et al., 2025b; Espinosa-Dice et al., 2025), EVOR does not change training parameters between environments in
this paper. EVOR uses N = 1 during training (instead of the N > 1 used during evaluation) for better efficiency.
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Algorithm 3: πbase Action Sampling via Forward Euler Method
Input: State x, number of inference steps M
Output: Action a
a ∼ N (0, I) Sample starting action noise
t← 0
for m ∈ {0, . . . ,M} do

a← a+ 1
M vϕ(a, t, | x) Follow ODE

t← t+ 1
M

return a

Inference Procedure. EVOR’s inference procedure is shown in Algorithm 2. Actions are sampled from the base
policy πbase via the forward Euler method, shown in Algorithm 3.

Recall that the optimal Q-function is given by:

Q⋆(x, a) = η lnEr∼R(·|x,a) exp(r/η), (38)

where R is the conditional distribution of rewards-to-go under πref. We learn an estimate of R via the flow-based TD
objective, such that Rθ(· | x, a) ≈ R(· | x, a). We approximate the expectation via sample averaging, as shown in
Algorithm 2, such that

LogSumExp(z(j)) = τ⋆ log
1

N

N∑
j=1

exp
(

z(j)

τ⋆

)
(39)

We then construct a weighted softmax via the Q⋆ approximation, such that

softmax(Q⋆(x, a(j))) =
exp(Q⋆(x, a(j))/τ)∑Nπ

j=1 exp(Q
⋆(x, a(j))/τ)

(40)
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Table 3: Shared Hyperparameters Between QC Baselines and EVOR.

PARAMETER VALUE

LEARNING RATE 3E-4
OPTIMIZER ADAM (KINGMA, 2014)
GRADIENT STEPS 1E6
MINIBATCH SIZE 256
MLP DIMENSIONS [512, 512, 512, 512]
TARGET NETWORK SMOOTHING COEFFICIENT 5E-3
DISCOUNT FACTOR γ 0.99
DISCRETIZATION STEPS 10
TIME SAMPLING DISTRIBUTION UNIF([0,1])
NUMBER OF ACTION CANDIDATES Nπ 32

Table 4: Hyperparameters for EVOR.

HYPERPARAMETER VALUE

BETA β 1E-3
Q⋆ BETA β⋆ 1
NUMBER OF RTG SAMPLES NRTG 1 (TRAIN), 50 (EVAL)

Table 5: Hyperparameters for QC.

HYPERPARAMETER VALUE

ACTION CHUNK LENGTH 1 (QC-1), 5 (QC-5)
CRITIC ENSEMBLE SIZE 2
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E.3 BASELINES

Rather than compare to all of the existing offline RL algorithms benchmarked on OGBench, we instead aim to isolate
the effect of expressive value learning in order to demonstrate its benefit specifically. Thus, we compare to Q-chunking
(QC, Li et al. (2025)), a recent offline RL algorithm that is closest to EVOR. Like EVOR, QC learns a base policy via
flow matching and extracts an optimized policy via rejection sampling. The key difference between QC and EVOR is
in how the value function is learned, which is the exact difference we aim to isolate. QC can employ action chunking
in both its policy and value function, and we compare EVOR to both QC with (QC-5) action chunking and without it
(QC-1). We select the action chunk length (5) based on Li et al. (2025)’s recommendation.

Given an action chunk length of k, represented as at:t+k = (at, at+1, . . . , at+k), the Q-function is updated via

Q(xt,at:t+k)←
t+k−1∑
t′=1

[rt′ ] +Q(xt+k,at+k:t+2k) (41)

and actions are sampled via
a← argmax

a∈{a1,a2,...,aN}
Q(x,a), (42)

where a1, a2, . . . , aN ∼ πbase(· | x). This yields the following loss function for learning the Q-function:

L(θ) = E xt,at∼D
{ai

t+k}
N
i=1∼πbase(·|xt+k)

(Qθ(xt,at)−
k∑

t′=1

rt+t′ −Qθ̄(xt+k,at+k)

)2
 , (43)

where at+k = argmaxa∈{ai
t+k}

Q(s,a).
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