
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051

EXPRESSIVE VALUE LEARNING FOR
SCALABLE OFFLINE REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning (RL) is a powerful paradigm for learning to make sequences of decisions.
However, RL has yet to be fully leveraged in robotics, principally due to its lack of scalability.
Offline RL offers a promising avenue by training agents on large, diverse datasets, avoiding the
costly real-world interactions of online RL. Scaling offline RL to increasingly complex datasets
requires expressive generative models such as diffusion and flow matching. However, existing
methods typically depend on either backpropagation through time (BPTT), which is computationally
prohibitive, or policy distillation, which introduces compounding errors and limits scalability to larger
base policies. In this paper, we consider the question of how to develop a scalable offline RL approach
without relying on distillation or backpropagation through time. We introduce Expressive Value
Learning for Offline Reinforcement Learning (EVOR): a scalable offline RL approach that integrates
both expressive policies and expressive value functions. EVOR learns an optimal, regularized Q-
function via flow matching during training. At inference-time, EVOR performs inference-time policy
extraction via rejection sampling against the expressive value function, enabling efficient optimization,
regularization, and compute-scalable search without retraining. Empirically, we show that EVOR
outperforms baselines on a diverse set of offline RL tasks, demonstrating the benefit of integrating
expressive value learning into offline RL.

1 INTRODUCTION

Reinforcement learning (RL) is a powerful paradigm for learning to make sequences of decisions, having been widely
applied to applications such as the fine-tuning of pretrained large language models (LLMs). However, the success of RL
in the language domain has yet to be matched in robotics. In contrast to the language setting, robot interactions occur
in the real world, which can be costly, time-consuming, and may pose safety concerns. These constraints naturally
motivate the offline RL setting, where agents attempt to learn from a diverse, often sub-optimal dataset without further
interaction with the environment.

In considering how to make offline RL more scalable, there are three primary axes: (1) scaling data, (2) scaling models,
and (3) scaling compute. In order to scale data, offline RL algorithms must be capable of learning from larger, more
diverse datasets that are often sub-optimal and often multi-modal (e.g. the datasets may be generated by multiple
data-generating policies of varying quality). Naturally, the need to model complex data distributions necessitates the use
of more powerful models. One promising avenue for scaling offline RL is leveraging powerful, expressive generative
models like diffusion (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021) and flow matching (Lipman et al.,
2024; Esser et al., 2024).

Existing approaches to offline RL with generative models predominantly use the generative model as the policy,
improving the policy’s ability to model complex distributions over the standard, Gaussian-based policies used in
continuous action spaces (Hansen-Estruch et al., 2023; Chen et al., 2023; Ding & Jin, 2023; Wang et al., 2022; Espinosa-
Dice et al., 2025; Park et al., 2025b; Zhang et al., 2025). At a high-level, diffusion and flow-based RL policies sample
actions via an iterative noise sampling procedure, which requires backpropagating through time in the iterative noise
sampling procedure. Backpropagation through time is computationally expensive, memory-intensive, and can degrade
the general knowledge of the underlying base policy (e.g. a vison-lanuage model (VLM) in the vision-language-action
(VLA) setting) (Ding & Jin, 2023; Zhou et al., 2025b;c).

As an alternative to backpropagation through time, distillation-based methods compress the multi-step policy (e.g. a
standard diffusion or flow model) into a one-step model, which can be more efficiently optimized through standard

1

052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103

policy gradient techniques (Ding & Jin, 2023; Chen et al., 2023; Park et al., 2025b). However, distillation-based
methods have a fundamental limitation: while expressive models can be used for the base policy (e.g. to model the
offline data distribution), the policy that is actually being optimized and rolled out is a less expressive, one-step model.
While a one-step model may be sufficient for easier simulation-based tasks, they are difficult to scale to larger base
policies (e.g. VLAs) or more complex and real-world tasks, partially due to the compounding errors between the teacher
network (i.e. the base policy) and the student network (i.e. the distilled policy).

Ultimately, we seek an offline RL approach that is scalable (e.g. to large base policies), and we tackle this question in
our paper:

Can we develop a scalable offline RL approach
without relying on policy distillation or backpropagation through time?

A natural alternative to policy gradients is rejection sampling: sample multiple action candidates from the base policy
and choose the one with the highest value according to a learned value function (e.g. Q-function). However, existing
rejection sampling methods suffer from two key limitations: (1) the learned value function is not regularized, and (2)
the learned value function is limited to Gaussian-based models. Standard approaches learn the value function from the
offline dataset, resulting in Qπref , the Q-function under the data-generating policy πref, which is not the optimal solution
to the standard KL-regularized offline RL objective. Additionally, the Q-functions used in continuous state-action
spaces are standard, Gaussian-based value functions. Like Gaussian-based policies, these models are less expressive in
modeling complex distributions than diffusion and flow-based methods.

Finally, we consider the third axis of scale—compute—and, in particular, how to take advantage of additional inference-
time compute. Existing approaches to inference-time scaling generally leverage dynamics or world models for additional
planning at inference-time, such as model predictive path integral control (Williams et al., 2017), model-based offline
planning (Hafner et al., 2019; Argenson & Dulac-Arnold, 2020), planning with world models (Hafner et al., 2023),
and Monte Carlo tree search (Chen et al., 2024). While effective, these methods either do not leverage expressive
models, instead relying on Gaussian-based approaches, or they require learning and maintaining an auxiliary model of
the environment, which can introduce additional sources of approximation error and scaling challenges.

These limitations point to a key gap in the scalability of existing offline RL approaches: although expressive generative
models have been integrated into policies, the same level of expressivity has yet to be brought to value functions, which
remain restricted to Gaussian-based models. In this paper, we bridge this gap through Expressive Value Learning for
Offline Reinforcement Learning (EVOR): an approach for learning an optimal solution to the KL-regularized offline RL
objective with both expressive policies and expressive value functions. EVOR achieves the following desiderata for
scalable offline RL:

1. EVOR avoids policy distillation and backpropagation through time during policy optimization. EVOR
does not learn require learning a new policy and instead optimizes the base policy through inference-time policy
extraction. Unlike standard rejection sampling approaches, EVOR uses an optimal, regularized Q-function.

2. EVOR learns an expressive, optimal Q-function via flow matching. In contrast to standard value learning
methods that employ Gaussian-based models, EVOR uses expressive flow models for value learning. Moreover,
the Q-function learned is an optimal, regularized solution to the regularized offline RL objective.

3. EVOR enables inference-time scaling and regularization. EVOR provides a natural mechanism for inference-
time scaling: performing additional search, guided by the expressive value function, without retraining.

2 BACKGROUND

Markov Decision Process. We consider a finite-horizon Markov decision process (MDP) (X , A, P, r, H), where X
is the state space, A is the action space, P is the transition function, r : X ×A → [0, 1] is the reward function, and H
is the MDP’s horizon (Puterman, 2014). An offline dataset D = {(xh, ah, rh, xh+1)} is collected under some unknown
reference policy πref, which could be multi-modal and sub-optimal. In the offline RL setting, we do not assume access
to environment interactions.

2

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

Offline Reinforcement Learning. The offline RL objective is generally expressed as combination of a policy
optimization term and a regularization term, such that

argmax
π∈Π

JD(π)︸ ︷︷ ︸
Policy Optimization

− ηReg(π, πref)︸ ︷︷ ︸
Regularization

(1)

where JD(π) is the expected return over offline dataset D, πref is the unknown data generating policy, and Reg(π, πref)
is a regularization term (Espinosa-Dice et al., 2025). The regularization term generally takes the form of a divergence
measure between π and πref, with KL divergence commonly used. The offline RL objective can be expressed as the soft
value of a policy subject to KL regularization:

V π,η = Eπ

[
H∑

h=1

r(xh, ah)− ηKL (π(xh)∥πref(xh))

]
, (2)

where the expectation is over a random trajectory (x1, a1, . . . , xH , yH) sampled according to π and the KL divergence
is KL(p∥q) = Ez∼p [log (p(z)/q(z))] (Zhou et al., 2025a). The objective is to learn the optimal, regularized policy
π⋆ = argmaxπ∈Π V π,η . Ziebart et al. (2008) showed that

V ⋆,η
H+1(x) = 0, (3)

Q⋆,η
h (x, a) = r(x, a) + Ex′∼Ph(x,a)

[
V ⋆
h+1(x

′)
]
, (4)

π⋆,η(a|x) ∝ πref(a|x) exp
(
η−1Q⋆,η

h (x, a)
)
, (5)

V ⋆,η
h (x) = η lnEa∼πref(x)

[
exp

(
η−1Q⋆,η

h (x, a)
)]

. (6)

For convenience, we drop the η superscript when clear from context.

Reward-To-Go. We define the reward-to-go under the unknown data-generating policy πref, starting at state x and
taking action a, as

Z(x, a) :=

H∑
h=0

r(xh, ah), x0 = x, a0 = a, xh+1 ∼ Ph(· | xh, ah), ah+1 ∼ πref(· | xh+1), (7)

We define R(· | x, a) as the law of the random variable Z(x, a), so R(· | x, a) D
= Z(x, a). In other words, R(· | x, a) is

the distribution of rewards-to-go under πref, starting at state x and taking action sequence a. We can thus define

πZ,η(a|x) ∝ πref(a|x)Ez∼Z(x,a) [exp (z/η)] . (8)

We can also define Rπ(· | x, a) as the distribution of rewards-to-go under a policy π.

Flow Matching. We define flow matching (Lipman et al., 2022; Liu et al., 2022; Lipman et al., 2024) as follows. Let
p(x) ∈ ∆(Rd) be a data distribution. Given a vector field vt, we construct its corresponding flow, ϕ : [0, 1]×Rd → Rd,
by the ordinary differential equation (ODE)

d

dt
ϕt(x) = vt(ϕt(x)) (9)

ϕ0(x) = x (10)

We employ Lipman et al. (2024)’s flow matching, which is based on linear paths and uniform time sampling, such that
the objective is

min
θ

Ex0∼N (0,Id)

x1∼p(x)
t∼U [0,1]

[
∥vθ(t, xt)− (x1 − x0)∥22

]
(11)

where xt = (1− t)x0 + tx1 is the linear interpolation between x0 and x1.

3 EXPRESSIVE VALUE LEARNING FOR OFFLINE REINFORCEMENT LEARNING

In this section, we present Expressive Value Learning for Offline Reinforcement Learning (EVOR).

3

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

Algorithm 1: EVOR Training via Flow-Based TD Learning
Data: Offline dataset D;
while not converged do

Sample (x, a1, x′, r) ∼ D # Parallelize batch

▷ Base Policy Update via Flow Matching
a0 ∼ N (0, Id), t ∼ Unif(0, 1) # Sample noise and time
at ← (1− t)a0 + ta1 # Noise action
ϕ← ∇ϕ∥vϕ(at, t | x) − (a1 − a0)∥2 # Update actor

▷ Reward Model Update via Flow-Based TD Learning
z0 ∼ N (0, Id), z

1 ∼ R(· | x, a), t ∼ Unif(0, 1) # Sample noise, reward-to-go, time
zt ← (1− t)z0 + tz1 # Noise reward-to-go
a′ ∼ πbase(· | x′) # Sample action from base policy
target(x, a, zt, t)← r(x, a) + sθ(z

t, t | x′, a′) # Flow-matching target
θ ← ∇θ∥sθ(zt, t | x, a) − target(x, a, zt, t)∥2 # Update critic

3.1 OPTIMAL, EXPRESSIVE VALUE LEARNING VIA REGRESSION

First, we tackle the question:

How do we learn an optimal, expressive value function for the KL-regularized offline RL objective?

In offline reinforcement learning, we aim to learn or fine-tune a policy from a dataset collected under some unknown
data-generating policy πref. Depending on the setting, we either have access to a base policy πbase (e.g. a pre-trained
generalist model) or we must learn the policy from scratch. Both settings are compatible with our approach, and we
first show how a base policy can be learned in the setting where a starting base policy is not given.

Base Policy Learning. In the setting where a starting base policy is not known, we train a policy πbase that predicts
actions via behavioral cloning (Pomerleau, 1988) on the offline dataset’s state-action pairs. By formulating the objective
as supervised learning, rather than a more complicated RL procedure, we can employ any generative model to learn the
base policy, and we choose flow matching (Lipman et al., 2022; Liu et al., 2022) here. By leveraging an expressive
model like flow matching, we can model multi-modal offline data.

We present the flow matching objective below, where a0 represents a fully noised action (i.e. noise sampled from a
Gaussian) and a1 represents a real action (i.e. action sampled from the offline data D). Through Equation 12 below, we
will learn a base policy πbase ≈ πref, subject to finite sample and optimization errors. The flow matching loss is given
by:

LBC(ϕ) = E(x,a1)∼D, a0∼N
t∼Unif(0,1)

[∥∥∥ vϕ(at, t | x)︸ ︷︷ ︸
Velocity Prediction

− (a1 − a0)︸ ︷︷ ︸
Velocity Target

∥∥∥2] (12)

Value Learning. Next, we consider how to learn an expressive value function. Our key insight is, rather than use
standard methods for value function learning, we instead train a reward model on the distribution of rewards-to-go of πref,
a distribution we have samples from in the offline dataset. Intuitively, we can think of flow matching as a method of
transporting samples from a starting distribution (e.g. samples from Gaussian noise) to a target distribution (i.e. the data
distribution). In this case, we simply set the target distribution to πref’s distribution of rewards-to-go, R(· | x, a). We
can then cast the problem as flow matching:

LRM(θ) = E(x,a)∼D, r1∼R(·|x,a),
r0∼N , t∼Unif(0,1)

[∥∥∥ vθ(rt, t | x, a)︸ ︷︷ ︸
Velocity Prediction

− (r1 − r0)︸ ︷︷ ︸
Velocity Target

∥∥∥2] (13)

where r1 denotes a sample from the data distribution (i.e. the dataset’s rewards-to-go), r0 denotes a sample from the
base noise distribution, and rt is a linear interpolation between the two.

4

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

Algorithm 2: EVOR Inference via Q⋆
θ Reweighting

Input: State x; number of action candidates Nπ; number of reward-to-go samples N ; temperatures τR, τQ
Output: Action a

{a(i)}Nπ
i=1 ∼ πbase(· | x) Sample Nπ candidate actions

{r(i,j)}Nj=1 ∼ Rθ(· | x, a(i)) Sample N reward-to-go samples

Q⋆
θ(x, a

(i))← τR LogSumExpr∈{r(i,j)}N
j=1

(
r/τR

)
Sample average Q⋆

θ

a⋆ ∼ softmaxa∈{a(i)}Nπ
i=1

(
Q⋆

θ(x, a)/τQ
)

Softmax over action candidates

return a⋆

Next, we consider how to learn a value function using the reward model. Leveraging results from Ziebart et al. (2008)
and Zhou et al. (2025a), we show that the optimal, regularized Q-function can be learned using the learned reward
model.

Theorem 1 (Optimal Regularized Value Functions (Zhou et al., 2025a)). Under deterministic transitions, the optimal
value and Q-functions are given by

V ⋆,π
h (xh) = η lnEπref

exp
η−1

H∑
t≥h

r(xt, at)

∣∣∣∣∣∣xh

 , (14)

Q⋆,π
h (xh, ah) = η lnEπref

exp
η−1

H∑
t≥h

r(xt, at)

∣∣∣∣∣∣xh, ah

 . (15)

Using Theorem 1, we can express the optimal, regularized Q-function as a function of πref’s reward-to-go distribution,
such that

Q⋆
h(xh, ah) = η lnEz∼Rh(·|xh,ah) exp(η

−1z) (16)

In practice, we can approximate the expectation via sample averaging. The assumption of deterministic dynamics is
strong, and often does not hold in real-world robotics, but it is frequently imposed in offline RL algorithms (Edwards
et al., 2020; Ma et al., 2022; Schweighofer et al., 2022; Park et al., 2023; Ghosh et al., 2023; Wang et al., 2023; Karabag
& Topcu, 2023; Park et al., 2024a;c). However, in the next section, we tackle how to learn an expressive value function
under stochastic dynamics.

3.2 SCALABLE VALUE LEARNING VIA FLOW-BASED TD LEARNING

Next, we tackle the question:

How do we learn an expressive value function under stochastic dynamics?

We present flow-based temporal difference (TD) learning, a flow matching-based approach to TD learning. Using TD
learning will enable us to handle the non-deterministic dynamics setting, while still leveraging the expressive modeling
power of flow matching. In this section, we present the flow-based TD objective and high-level intuition behind it, and
we more formally explain its derivation in Appendix B. The full training procedure is shown in Algorithm 1.

Distributional Bellman. TD learning uses the Bellman equation to learn a value function by constructing a bootstrap
target (i.e. the right-hand side (RHS) of the Bellman equation) (Bellman, 1966; Sutton & Barto, 1998), such that

Q(x, a) = r(x, a) + EP,πQ(X ′, A′). (17)

5

260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

The Bellman equation also holds under distributions (Jaquette, 1973; Sobel, 1982; White, 1988; Bellemare et al., 2017),
such that

Z(x, a)︸ ︷︷ ︸
LHS of Distributional Bellman

D
=

RHS of Distributional Bellman︷ ︸︸ ︷
r(x, a) + Z(X ′, A′) (18)

where Z(X ′, A′) denotes the random return.

Flow-Based TD Objective. At a high-level, flow matching learns how to transport a known prior distribution into a
target data distribution. To construct a flow-based TD objective, we set the RHS of the distributional Bellman equation
as the target distribution, and match the velocities between the LHS and RHS distributions.

We will learn a conditional flow model sθ(· | x, a, t) that transports base noise z0x,a ∼ N (0, Id) to a terminal variable
z1x,a ∼ Rθ(· | x, a), such that the distribution Rθ(· | x, a) ≈ R(· | x, a). The bootstrap target is given by

target(x, a, zt, t) := r(x, a) + Ea′∼πbase(·|x′)sθ̄(z
t | x′, a′, t), (19)

and the loss is given by

LFlowTD(θ) = E(x,a,r,x′)∼D︸ ︷︷ ︸
Dataset’s State-Action-Reward

Sample Reward-To-Go︷ ︸︸ ︷
Ez1∼Rθ̄(·|x,a) Et∼Unif(0,1)︸ ︷︷ ︸

Sample Time

∥∥∥Velocity Prediction of LHS︷ ︸︸ ︷
sθ(z

t | x, a, t)− target(x, a, zt, t)︸ ︷︷ ︸
Velocity Target of RHS

∥∥∥2
2
. (20)

We sample a state-action-reward-next-state tuple (x, a, r, x′) ∼ D from the offline data, a time t ∼ Unif(0, 1), and the
next action from the base policy a′ ∼ πbase(· | x′). We construct an interpolant zt = (1− t)z0 + tz1, which serves to
noise the ground-truth sample, by sampling a reward-to-go z1 ∼ R(· | x, a) and a noise sample z0 ∼ N (0, Id). The
reward-to-go sample z1 can be sampled from the dataset or a target version of the learned reward model Rθ̄(· | x, a).
To sample a reward-to-go from the distribution Rθ(· | x, a), we employ the standard forward Euler method with the
learned flow model sθ(· | x, a, t).

3.3 INFERENCE-TIME POLICY EXTRACTION, REGULARIZATION, AND SCALING

EVOR’s training procedure focuses on learning an expressive value function, and it trains the base policy via flow
matching on the offline dataset, leading to the natural question:

How does EVOR optimize the base policy beyond the offline dataset
without distillation or backpropagation through time?

Inference-Time Policy Extraction. Instead of learning a new policy during training, EVOR performs inference-
time policy extraction using the learned distributional reward model. A common approach to inference-time policy
extraction is to perform rejection sampling with the learned Q-function as a “verifier”: given a state x, sample actions
independently from the base policy a1, a2, . . . , aN ∼ πbase(· | x), and select the action with the largest Q value, such
that

argmax
a∈{a1,a2,...,aN}

Q(x, a) (21)

However, using the Q-function trained on the offline dataset D will result in an unregularized Q-function, specifi-
cally Qπbase . In the offline RL setting, πbase is often sub-optimal, so optimizing Qπbase may lead to distribution shift at
test-time and poor performance (Zhou et al., 2025a). Instead, we utilize our expression for the optimal Q-function
from Subsection 3.1,

Q⋆(x, a) = η lnEr∼R(·|x,a) exp(r/η), (22)
where R is the conditional distribution of rewards-to-go under πref. In practice, we approximate the expectation via
sample averaging, and we can construct a softmax over the Q⋆ values, as shown in Algorithm 2.

Inference-Time Regularization and Scaling. EVOR’s formulation provides a natural mechanism for inference-time
regularization and scaling. Since actions are sampled from the base policy, running EVOR with varying temperatures
τR and τQ controls the strength of regularization and policy optimization. Increasing Nπ corresponds to performing
additional test-time search, while decreasing Nπ will allow for faster inference under lower compute budgets. Cru-
cially, these parameters can be varied at test-time without retraining, allowing for both inference-time scaling and
regularization.

6

312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363

Table 1: EVOR’s Overall Performance. EVOR outperforms the baselines on all 5 environments, for a total of 25 unique
tasks in the OGBench task suite (Park et al., 2024a). Results are averaged over 3 seeds per task, with standard deviations
reported. The full results are reported in Appendix C.

Task Category QC-1 QC-5 EVOR

OGBench antmaze-large-navigate-singletask (5 tasks) 11 ±4 7 ±2 49 ±4

OGBench antmaze-large-stitch-singletask (5 tasks) 5 ±3 4 ±4 18 ±1

OGBench cube-double-play-100M-singletask (5 tasks) 54 ±6 50 ±12 82 ±2

OGBench pointmaze-medium-naviate-singletask (5 tasks) 96 ±0 99 ±1 99 ±0

OGBench scene-play-singletask (5 tasks) 45 ±2 85 ±4 86 ±7

4 EXPERIMENTAL RESULTS

In this section, we investigate the performance of EVOR, and in particular, we focus on the following question:

What is the benefit of expressive value learning?

4.1 EXPERIMENTAL SETUP

Environments and Tasks. We follow the experimental setup of prior works that leverage the OGBench task suite
(Park et al., 2024a; 2025b; Espinosa-Dice et al., 2025; Li et al., 2025), specifically evaluating EVOR on locomotion and
manipulation robotics tasks. We describe the full implementation details in Appendix E.

Baselines. Rather than compare to all of the existing offline RL algorithms benchmarked on OGBench, we instead
aim to isolate the effect of expressive value learning in order to demonstrate its benefit specifically. Thus, we compare
to Q-chunking (QC, Li et al. (2025)), a recent offline RL algorithm that is closest to EVOR. Like EVOR, QC learns a
base policy via flow matching and extracts an optimized policy via rejection sampling. The key difference between QC
and EVOR is in how the value function is learned, which is the exact difference we aim to isolate. QC can employ action
chunking in both its policy and value function, and we compare EVOR to both QC with (QC-5) action chunking and
without it (QC-1). We select the action chunk length (5) based on Li et al. (2025)’s recommendation.

Evaluation. To construct a fair comparison, we use the same network size, number of gradients, and discount
factor for all algorithms, similar to Park et al. (2025b); Espinosa-Dice et al. (2025). Moreover, we use the official QC
implementation and its parameters. We bold values at 95% of the best performance in tables.

4.2 EXPERIMENTAL RESULTS

Q: What is EVOR’s overall performance?

Across 5 environments and 25 unique tasks, EVOR achieves the best performance compared to the baselines.

We present the environment aggregation results in Table 1, and we present the full results in Appendix C

Q: Does using expressive models for value learning improve performance?

Yes, EVOR’s expressive value learning method outperforms standard value learning methods.

From the results in Table 1, we observe that EVOR outperforms or matches standard value function learning methods
(QC), even compared to a method that employs action chunking (QC-5), suggesting that expressive value learning can
improve performance over standard value function learning.

Q: How can EVOR take advantage of greater inference-time compute?

As shown in Figure 1, when given access to greater inference-time compute, EVOR can increase the number of action
candidates Nπ , resulting in better performance (up to a saturation point).

We present the full results for inference-time scaling in Appendix D.

7

364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415

1 2 4 8 16 32 64

Number of Action Candidates (Nπ)
S
u
c
c
e
s
s

R
a
t
e

1

36

74
79 77

79 77

cube-double-play (5 tasks)

Figure 1: EVOR’s Inference-Time Scaling. EVOR can perform inference-time scaling by increasing the number of
action candidates Nπ, performing greater search at inference time with the expressive value function. Leveraging
greater inference-time compute results in better performance, up to a saturation point. Results are averaged over 3 seeds
per task, with standard deviations reported.

Q: How can EVOR perform inference-time regularization?

As shown in Figure 2, by increasing varying the temperature parameters τR and τQ, EVOR can vary the level of
regularization to the base policy compared to the level of policy optimization.

As τQ decreases, the action selection becomes more greedy, while as τQ increases, the action selection becomes more
regularized to the base policy πbase (i.e. the performance of EVOR with Nπ = 1).

Q: What training parameters must EVOR tune per environment?

EVOR uses the same training and evaluation parameters for all environments.

A key benefit of EVOR is that it reduces the number of training parameters that must be tuned per environment. In
particular, EVOR uses the same training parameters for all environments in Table 1, despite the environments spanning
distinct locomotion and manipulation tasks. In contrast, policy gradient-based offline RL algorithms generally tune
parameters per environment (Park et al., 2025b; Espinosa-Dice et al., 2025). We present an ablation study of evaluation
parameters in Appendix D.

Q: Does rejection sampling-based policy extraction outperform reparameterized policy gradients?

We do not consider that claim in this paper.

The purpose of this paper is to investigate scalable methods for expressive value learning in offline RL. In our empirical
results, we aim to isolate the effect of expressive value learning over standard value function learning by utilizing the
same policy extraction method (rejection sampling).

5 RELATED WORK

We present an extended related work in Appendix A.

Offline Reinforcement Learning with Generative Models. Standard offline RL approaches rely on Gaussian-based
models in continuous state-action spaces. However, recent work has focused on representing policies via powerful
sequence or generative models Chen et al. (2021); Janner et al. (2021; 2022); Wang et al. (2022); Ren et al. (2024a);
Wu et al. (2024); Black et al. (2024); Park et al. (2025b); Espinosa-Dice et al. (2025), taking advantage of more
powerful generative models like diffusion (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021) and flow
matching (Lipman et al., 2022; Liu et al., 2022; Lipman et al., 2024). These generative models are known to be more
expressive than Gaussian-based models, enabling them to capture more complex, multi-modal distributions. Modeling
complex distributions is particularly relevant to the offline RL setting, where the offline dataset may be composed of
multiple data-generating policies of varying qualities. However, diffusion and flow models rely on an iterative sampling

8

416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467

1e-3 1e-1 1e0 1e2

Q? Temperature (τQ)

S
u
c
c
e
s
s

R
a
t
e

79 79 80

1

cube-double-play (5 tasks)

1e-3 1e-1 1e0 1e2 1e5 1e8

Reward-To-Go Temperature (τR)

S
u
c
c
e
s
s

R
a
t
e

77 81 79 70
66

38

cube-double-play (5 tasks)

Figure 2: Ablation Over EVOR’s Evaluation Parameters. EVOR uses the same training parameters for all environments
in this paper. However, we investigate the effect of varying the temperature parameters τR and τQ at inference-time
on the performance of EVOR. As τQ decreases, the action selection becomes more greedy, while as τQ increases, the
action selection becomes more regularized. Set to a high value, EVOR becomes equivalent to the base policy (i.e. the
performance with Nπ = 1). Results are averaged over 3 seeds per task, with standard deviations reported.

process that can be computationally expensive (Ding & Jin, 2023). To address this problem, some methods utilize a
two-stage procedure to first train an expressive generative model on the offline dataset, and then distill it into a one-step
model that is then used for policy optimization (Ding & Jin, 2023; Chen et al., 2023; Meng et al., 2023; Park et al.,
2025b). Espinosa-Dice et al. (2025) propose an approach for avoiding both distillation and extensive backpropagation
through time by leveraging shortcut models for flexible inference, but rely on a standard, Gaussian-based value function.
Additionally, generative models have been used for plan generation in offline RL (Zheng et al., 2023) and energy-guided
flow and diffusion models, incorporating reward feedback in the flow and diffusion training (Zhang et al., 2025).
Farebrother et al. (2025) propose integrating flow matching with Bellman-style updates for successor representation
learning.

Inference-Time Scaling in Offline Reinforcement Learning. Inference-time scaling in reinforcement learning often
takes the form of leveraging dynamics or world models for additional planning at inference-time. Approaches include
model predictive control (Richalet et al., 1978; Hansen et al., 2022), model predictive path integral control (Williams
et al., 2015; 2017; Gandhi et al., 2021), model-based offline planning (Hafner et al., 2019; Argenson & Dulac-Arnold,
2020), sequence modeling (Janner et al., 2021; 2022; Kong et al., 2024), planning with world models (Hafner et al.,
2023), and Monte Carlo tree search (Chen et al., 2024). Additional approaches include applying rejection sampling
to the learned value function at inference-time (Chen et al., 2022; Fujimoto et al., 2019; Ghasemipour et al., 2021;
Hansen-Estruch et al., 2023; Park et al., 2024b) or using the gradient of the learned value function to adjust actions at
inference-time (Park et al., 2024b). Generative models like flow matching and diffusion models naturally support a
form of sequential scaling by increasing the number of steps in the iterative sampling process (Ho et al., 2020; Song
et al., 2020; Liu et al., 2022; Lipman et al., 2022). Espinosa-Dice et al. (2025) takes advantage of flexibility in the
number of denoising steps used when sampling actions from the policy. However, existing approaches do not leverage
generative models for value learning like EVOR. By leveraging more expressive models for value learning, EVOR can
better take advantage of larger, more complex offline datasets.

6 DISCUSSION

In summary, EVOR is an approach to scalable offline reinforcement learning that integrates both expressive policies
and expressive value learning. EVOR learns an optimal solution to the KL-regularized offline RL objective, which is
used for inference-time policy extraction without model distillation or backpropagation through time, making EVOR
scalable (e.g. to larger base policies). Furthermore, EVOR can perform inference-time scaling by performing greater
search, using the expressive value function for guidance. Additionally, EVOR can adjust the level of regularization to
the base policy without retraining. Future work may investigate how EVOR can be combined with policy gradient-based
policy extraction schemes. In this paper, we aim to avoid distillation and backpropagation through time, leading us to
rejection sampling against an expressive value function. However, as noted by Park et al. (2024b), reparameterized
policy gradients are an effective policy extraction technique. It is possible that EVOR’s expressive value learning can
further improve policy gradient-based techniques.

9

468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519

REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our work. All code necessary to reproduce our experiments,
along with instructions for installation and execution, is included in the supplementary materials as an anonymized
repository. Detailed descriptions of the experimental setup and parameters are provided in Appendix E. The envi-
ronments and datasets used in our experiments are publicly available. Together, these resources enable independent
verification of our findings. We employ LLMs to aid and polish writing based on drafts that we wrote.

REFERENCES

Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline reinforcement learning
with diversified q-ensemble. Advances in neural information processing systems, 34:7436–7447, 2021.

Arthur Argenson and Gabriel Dulac-Arnold. Model-based offline planning. arXiv preprint arXiv:2008.05556, 2020.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016.

Philip J Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learning with offline data.
In International Conference on Machine Learning, pp. 1577–1594. PMLR, 2023.

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement learning. In
International conference on machine learning, pp. 449–458. PMLR, 2017.

Richard Bellman. Dynamic programming. science, 153(3731):34–37, 1966.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai, Lachy Groom,
Karol Hausman, Brian Ichter, et al. π0: A vision-language-action flow model for general robot control. arXiv preprint
arXiv:2410.24164, 2024.

Huayu Chen, Cheng Lu, Chengyang Ying, Hang Su, and Jun Zhu. Offline reinforcement learning via high-fidelity
generative behavior modeling. arXiv preprint arXiv:2209.14548, 2022.

Huayu Chen, Cheng Lu, Zhengyi Wang, Hang Su, and Jun Zhu. Score regularized policy optimization through diffusion
behavior. arXiv preprint arXiv:2310.07297, 2023.

Jiayu Chen, Wentse Chen, and Jeff Schneider. Bayes adaptive monte carlo tree search for offline model-based
reinforcement learning. arXiv preprint arXiv:2410.11234, 2024.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel, Aravind Srinivas,
and Igor Mordatch. Decision transformer: Reinforcement learning via sequence modeling. Advances in neural
information processing systems, 34:15084–15097, 2021.

Zihan Ding and Chi Jin. Consistency models as a rich and efficient policy class for reinforcement learning. arXiv
preprint arXiv:2309.16984, 2023.

Ashley Edwards, Himanshu Sahni, Rosanne Liu, Jane Hung, Ankit Jain, Rui Wang, Adrien Ecoffet, Thomas Miconi,
Charles Isbell, and Jason Yosinski. Estimating q (s, s’) with deep deterministic dynamics gradients. In International
Conference on Machine Learning, pp. 2825–2835. PMLR, 2020.

Nicolas Espinosa-Dice, Yiyi Zhang, Yiding Chen, Bradley Guo, Owen Oertell, Gokul Swamy, Kiante Brantley, and
Wen Sun. Scaling offline rl via efficient and expressive shortcut models. arXiv preprint arXiv:2505.22866, 2025.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam Levi, Dominik
Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for high-resolution image synthesis.
In Forty-first international conference on machine learning, 2024.

Jesse Farebrother, Jordi Orbay, Quan Vuong, Adrien Ali Taïga, Yevgen Chebotar, Ted Xiao, Alex Irpan, Sergey Levine,
Pablo Samuel Castro, Aleksandra Faust, et al. Stop regressing: Training value functions via classification for scalable
deep rl. arXiv preprint arXiv:2403.03950, 2024.

10

520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571

Jesse Farebrother, Matteo Pirotta, Andrea Tirinzoni, Rémi Munos, Alessandro Lazaric, and Ahmed Touati. Temporal
difference flows. arXiv preprint arXiv:2503.09817, 2025.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning. Advances in neural
information processing systems, 34:20132–20145, 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without exploration. In
International conference on machine learning, pp. 2052–2062. PMLR, 2019.

Manan S Gandhi, Bogdan Vlahov, Jason Gibson, Grady Williams, and Evangelos A Theodorou. Robust model
predictive path integral control: Analysis and performance guarantees. IEEE Robotics and Automation Letters, 6(2):
1423–1430, 2021.

Divyansh Garg, Joey Hejna, Matthieu Geist, and Stefano Ermon. Extreme q-learning: Maxent rl without entropy. arXiv
preprint arXiv:2301.02328, 2023.

Seyed Kamyar Seyed Ghasemipour, Dale Schuurmans, and Shixiang Shane Gu. Emaq: Expected-max q-learning
operator for simple yet effective offline and online rl. In International Conference on Machine Learning, pp.
3682–3691. PMLR, 2021.

Dibya Ghosh, Chethan Anand Bhateja, and Sergey Levine. Reinforcement learning from passive data via latent
intentions. In International Conference on Machine Learning, pp. 11321–11339. PMLR, 2023.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James Davidson. Learning
latent dynamics for planning from pixels. In International conference on machine learning, pp. 2555–2565. PMLR,
2019.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains through world models.
arXiv preprint arXiv:2301.04104, 2023.

Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal difference learning for model predictive control. arXiv preprint
arXiv:2203.04955, 2022.

Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine. Idql: Implicit
q-learning as an actor-critic method with diffusion policies. arXiv preprint arXiv:2304.10573, 2023.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in neural information
processing systems, 33:6840–6851, 2020.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence modeling problem.
Advances in neural information processing systems, 34:1273–1286, 2021.

Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine. Planning with diffusion for flexible behavior
synthesis. arXiv preprint arXiv:2205.09991, 2022.

Stratton C Jaquette. Markov decision processes with a new optimality criterion: Discrete time. The Annals of Statistics,
1(3):496–505, 1973.

Mustafa O Karabag and Ufuk Topcu. On the sample complexity of vanilla model-based offline reinforcement learning
with dependent samples. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 8195–8202,
2023.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-based offline
reinforcement learning. Advances in neural information processing systems, 33:21810–21823, 2020.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

Deqian Kong, Dehong Xu, Minglu Zhao, Bo Pang, Jianwen Xie, Andrew Lizarraga, Yuhao Huang, Sirui Xie, and
Ying Nian Wu. Latent plan transformer for trajectory abstraction: Planning as latent space inference. Advances in
Neural Information Processing Systems, 37:123379–123401, 2024.

11

572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-learning. arXiv preprint
arXiv:2110.06169, 2021.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline reinforcement
learning. Advances in neural information processing systems, 33:1179–1191, 2020.

Jongmin Lee, Wonseok Jeon, Byungjun Lee, Joelle Pineau, and Kee-Eung Kim. Optidice: Offline policy optimization
via stationary distribution correction estimation. In International Conference on Machine Learning, pp. 6120–6130.
PMLR, 2021.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial, review, and
perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Qiyang Li, Zhiyuan Zhou, and Sergey Levine. Reinforcement learning with action chunking. arXiv preprint
arXiv:2507.07969, 2025.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching for generative
modeling. arXiv preprint arXiv:2210.02747, 2022.

Yaron Lipman, Marton Havasi, Peter Holderrieth, Neta Shaul, Matt Le, Brian Karrer, Ricky TQ Chen, David Lopez-Paz,
Heli Ben-Hamu, and Itai Gat. Flow matching guide and code. arXiv preprint arXiv:2412.06264, 2024.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and transfer data with
rectified flow. arXiv preprint arXiv:2209.03003, 2022.

Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash Kumar, and Amy Zhang. Vip: Towards
universal visual reward and representation via value-implicit pre-training. arXiv preprint arXiv:2210.00030, 2022.

Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik Kingma, Stefano Ermon, Jonathan Ho, and Tim Salimans. On
distillation of guided diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 14297–14306, 2023.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online reinforcement learning
with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Mitsuhiko Nakamoto, Simon Zhai, Anikait Singh, Max Sobol Mark, Yi Ma, Chelsea Finn, Aviral Kumar, and Sergey
Levine. Cal-ql: Calibrated offline rl pre-training for efficient online fine-tuning. Advances in Neural Information
Processing Systems, 36:62244–62269, 2023.

Michal Nauman, Marek Cygan, Carmelo Sferrazza, Aviral Kumar, and Pieter Abbeel. Bigger, regularized, categorical:
High-capacity value functions are efficient multi-task learners. arXiv preprint arXiv:2505.23150, 2025.

Alexander Nikulin, Vladislav Kurenkov, Denis Tarasov, and Sergey Kolesnikov. Anti-exploration by random network
distillation. In International Conference on Machine Learning, pp. 26228–26244. PMLR, 2023.

Seohong Park, Dibya Ghosh, Benjamin Eysenbach, and Sergey Levine. Hiql: Offline goal-conditioned rl with latent
states as actions. Advances in Neural Information Processing Systems, 36:34866–34891, 2023.

Seohong Park, Kevin Frans, Benjamin Eysenbach, and Sergey Levine. Ogbench: Benchmarking offline goal-conditioned
rl. arXiv preprint arXiv:2410.20092, 2024a.

Seohong Park, Kevin Frans, Sergey Levine, and Aviral Kumar. Is value learning really the main bottleneck in offline rl?
arXiv preprint arXiv:2406.09329, 2024b.

Seohong Park, Tobias Kreiman, and Sergey Levine. Foundation policies with hilbert representations. arXiv preprint
arXiv:2402.15567, 2024c.

Seohong Park, Kevin Frans, Deepinder Mann, Benjamin Eysenbach, Aviral Kumar, and Sergey Levine. Horizon
reduction makes rl scalable. arXiv preprint arXiv:2506.04168, 2025a.

Seohong Park, Qiyang Li, and Sergey Levine. Flow q-learning. arXiv preprint arXiv:2502.02538, 2025b.

12

624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675

Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances in neural information
processing systems, 1, 1988.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John Wiley & Sons, 2014.

Allen Z Ren, Justin Lidard, Lars L Ankile, Anthony Simeonov, Pulkit Agrawal, Anirudha Majumdar, Benjamin
Burchfiel, Hongkai Dai, and Max Simchowitz. Diffusion policy policy optimization. arXiv preprint arXiv:2409.00588,
2024a.

Juntao Ren, Gokul Swamy, Zhiwei Steven Wu, J Andrew Bagnell, and Sanjiban Choudhury. Hybrid inverse reinforce-
ment learning. arXiv preprint arXiv:2402.08848, 2024b.

Jacques Richalet, André Rault, JL Testud, and J Papon. Model predictive heuristic control. Automatica (journal of
IFAC), 14(5):413–428, 1978.

Oleh Rybkin, Michal Nauman, Preston Fu, Charlie Snell, Pieter Abbeel, Sergey Levine, and Aviral Kumar. Value-based
deep rl scales predictably. arXiv preprint arXiv:2502.04327, 2025.

Kajetan Schweighofer, Marius-constantin Dinu, Andreas Radler, Markus Hofmarcher, Vihang Prakash Patil, Angela
Bitto-Nemling, Hamid Eghbal-Zadeh, and Sepp Hochreiter. A dataset perspective on offline reinforcement learning.
In Conference on Lifelong Learning Agents, pp. 470–517. PMLR, 2022.

Harshit Sikchi, Qinqing Zheng, Amy Zhang, and Scott Niekum. Dual rl: Unification and new methods for reinforcement
and imitation learning. arXiv preprint arXiv:2302.08560, 2023.

Matthew J Sobel. The variance of discounted markov decision processes. Journal of Applied Probability, 19(4):
794–802, 1982.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learning using
nonequilibrium thermodynamics. In International conference on machine learning, pp. 2256–2265. pmlr, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502, 2020.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-
based generative modeling through stochastic differential equations. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=PxTIG12RRHS.

Yuda Song, Yifei Zhou, Ayush Sekhari, J Andrew Bagnell, Akshay Krishnamurthy, and Wen Sun. Hybrid rl: Using
both offline and online data can make rl efficient. arXiv preprint arXiv:2210.06718, 2022.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press, Cambridge, MA,
1998.

Denis Tarasov, Vladislav Kurenkov, Alexander Nikulin, and Sergey Kolesnikov. Revisiting the minimalist approach to
offline reinforcement learning. Advances in Neural Information Processing Systems, 36:11592–11620, 2023.

Tongzhou Wang, Antonio Torralba, Phillip Isola, and Amy Zhang. Optimal goal-reaching reinforcement learning via
quasimetric learning. In International Conference on Machine Learning, pp. 36411–36430. PMLR, 2023.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy class for offline
reinforcement learning. arXiv preprint arXiv:2208.06193, 2022.

Douglas J White. Mean, variance, and probabilistic criteria in finite markov decision processes: A review. Journal of
Optimization Theory and Applications, 56(1):1–29, 1988.

Grady Williams, Andrew Aldrich, and Evangelos Theodorou. Model predictive path integral control using covariance
variable importance sampling. arXiv preprint arXiv:1509.01149, 2015.

Grady Williams, Andrew Aldrich, and Evangelos A Theodorou. Model predictive path integral control: From theory to
parallel computation. Journal of Guidance, Control, and Dynamics, 40(2):344–357, 2017.

13

https://openreview.net/forum?id=PxTIG12RRHS

676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727

Runzhe Wu, Yiding Chen, Gokul Swamy, Kianté Brantley, and Wen Sun. Diffusing states and matching scores: A new
framework for imitation learning. arXiv preprint arXiv:2410.13855, 2024.

Haoran Xu, Li Jiang, Jianxiong Li, Zhuoran Yang, Zhaoran Wang, Victor Wai Kin Chan, and Xianyuan Zhan. Offline rl
with no ood actions: In-sample learning via implicit value regularization. arXiv preprint arXiv:2303.15810, 2023.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn, and Tengyu
Ma. Mopo: Model-based offline policy optimization. Advances in Neural Information Processing Systems, 33:
14129–14142, 2020.

Zishun Yu and Xinhua Zhang. Actor-critic alignment for offline-to-online reinforcement learning. In International
Conference on Machine Learning, pp. 40452–40474. PMLR, 2023.

Shiyuan Zhang, Weitong Zhang, and Quanquan Gu. Energy-weighted flow matching for offline reinforcement learning.
arXiv preprint arXiv:2503.04975, 2025.

Qinqing Zheng, Matt Le, Neta Shaul, Yaron Lipman, Aditya Grover, and Ricky TQ Chen. Guided flows for generative
modeling and decision making. arXiv preprint arXiv:2311.13443, 2023.

Jin Peng Zhou, Kaiwen Wang, Jonathan D Chang, Zhaolin Gao, Nathan Kallus, Kilian Q Weinberger, Kianté Brantley,
and Wen Sun. q: Provably optimal distributional rl for llm post-training. CoRR, 2025a.

Zhongyi Zhou, Yichen Zhu, Junjie Wen, Chaomin Shen, and Yi Xu. Vision-language-action model with open-world
embodied reasoning from pretrained knowledge. arXiv preprint arXiv:2505.21906, 2025b.

Zhongyi Zhou, Yichen Zhu, Minjie Zhu, Junjie Wen, Ning Liu, Zhiyuan Xu, Weibin Meng, Ran Cheng, Yaxin Peng,
Chaomin Shen, et al. Chatvla: Unified multimodal understanding and robot control with vision-language-action
model. arXiv preprint arXiv:2502.14420, 2025c.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse reinforcement
learning. In Aaai, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.

14

728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779

A EXTENDED RELATED WORK

Offline Reinforcement Learning. Offline RL tackles the problem of learning a policy from a fixed dataset without
additional environment interactions (Levine et al., 2020). In addition to the standard reward maximization goal of online
RL, the key problem of offline RL is avoiding distribution shift between train-time (i.e. the offline dataset) and test-time
(i.e. the learned policy’s rollout). Numerous strategies have been proposed for the offline RL setting. A common
approach is to employ behavior regularization, which forces the learned policy to stay close to the dataset via behavioral
cloning or divergence penalties (Nair et al., 2020; Fujimoto & Gu, 2021; Tarasov et al., 2023). Other approaches include
in-distribution maximization (Kostrikov et al., 2021; Xu et al., 2023; Garg et al., 2023), dual formulations of RL (Lee
et al., 2021; Sikchi et al., 2023), out-of-distribution detection (Yu et al., 2020; Kidambi et al., 2020; An et al., 2021;
Nikulin et al., 2023), and conservative value estimation (Kumar et al., 2020). Farebrother et al. (2024); Nauman et al.
(2025) propose training value functions via classification-based objectives, instead of the standard regression-based
objectives. Rybkin et al. (2025) propose scaling laws for value-based reinforcement learning. Policies trained via offline
RL can subsequently be used for sample efficient online RL in a procedure known as offline-to-online RL (Lee et al.,
2021; Song et al., 2022; Nakamoto et al., 2023; Ball et al., 2023; Yu & Zhang, 2023; Ren et al., 2024b; Park et al.,
2025b; Li et al., 2025).

Offline Reinforcement Learning with Generative Models. Standard offline RL approaches rely on Gaussian-based
models in continuous state-action spaces. However, recent work has focused on representing policies via powerful
sequence or generative models Chen et al. (2021); Janner et al. (2021; 2022); Wang et al. (2022); Ren et al. (2024a);
Wu et al. (2024); Black et al. (2024); Park et al. (2025b); Espinosa-Dice et al. (2025), taking advantage of more
powerful generative models like diffusion (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021) and flow
matching (Lipman et al., 2022; Liu et al., 2022; Lipman et al., 2024). These generative models are known to be more
expressive than Gaussian-based models, enabling them to capture more complex, multi-modal distributions. Modeling
complex distributions is particularly relevant to the offline RL setting, where the offline dataset may be composed of
multiple data-generating policies of varying qualities. However, diffusion and flow models rely on an iterative sampling
process that can be computationally expensive (Ding & Jin, 2023). To address this problem, some methods utilize a
two-stage procedure to first train an expressive generative model on the offline dataset, and then distill it into a one-step
model that is then used for policy optimization (Ding & Jin, 2023; Chen et al., 2023; Meng et al., 2023; Park et al.,
2025b). Espinosa-Dice et al. (2025) propose an approach for avoiding both distillation and extensive backpropagation
through time by leveraging shortcut models for flexible inference, but rely on a standard, Gaussian-based value function.
Additionally, generative models have been used for plan generation in offline RL (Zheng et al., 2023) and energy-guided
flow and diffusion models, incorporating reward feedback in the flow and diffusion training (Zhang et al., 2025).
Farebrother et al. (2025) propose integrating flow matching with Bellman-style updates for successor representation
learning.

Inference-Time Scaling in Offline Reinforcement Learning. Inference-time scaling in reinforcement learning often
takes the form of leveraging dynamics or world models for additional planning at inference-time. Approaches include
model predictive control (Richalet et al., 1978; Hansen et al., 2022), model predictive path integral control (Williams
et al., 2015; 2017; Gandhi et al., 2021), model-based offline planning (Hafner et al., 2019; Argenson & Dulac-Arnold,
2020), sequence modeling (Janner et al., 2021; 2022; Kong et al., 2024), planning with world models (Hafner et al.,
2023), and Monte Carlo tree search (Chen et al., 2024). Additional approaches include applying rejection sampling
to the learned value function at inference-time (Chen et al., 2022; Fujimoto et al., 2019; Ghasemipour et al., 2021;
Hansen-Estruch et al., 2023; Park et al., 2024b) or using the gradient of the learned value function to adjust actions at
inference-time (Park et al., 2024b). Generative models like flow matching and diffusion models naturally support a
form of sequential scaling by increasing the number of steps in the iterative sampling process (Ho et al., 2020; Song
et al., 2020; Liu et al., 2022; Lipman et al., 2022). Espinosa-Dice et al. (2025) takes advantage of flexibility in the
number of denoising steps used when sampling actions from the policy. However, existing approaches do not leverage
generative models for value learning like EVOR. By leveraging more expressive models for value learning, EVOR can
better take advantage of larger, more complex offline datasets.

15

780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831

B FLOW-BASED TEMPORAL DIFFERENCE LEARNING

We restate the flow-based TD objective and describe its derivation.

Distributional Bellman. TD learning uses the Bellman equation to learn a value function by constructing a bootstrap
target (i.e. the right-hand side (RHS) of the Bellman equation) (Bellman, 1966; Sutton & Barto, 1998), such that

Q(x, a) = r(x, a) + EP,πQ(X ′, A′). (23)

The Bellman equation also -holds under distributions (Jaquette, 1973; Sobel, 1982; White, 1988; Bellemare et al., 2017),
such that

Z(x, a)︸ ︷︷ ︸
LHS of Distributional Bellman

D
=

RHS of Distributional Bellman︷ ︸︸ ︷
r(x, a) + Z(X ′, A′) (24)

where Z(X ′, A′) denotes the random return.

Goal. At a high-level, flow matching learns how to transport a known prior distribution into a target data distribution.
To construct a flow-based TD objective, we set the RHS of the distributional Bellman equation as the target distribution,
and match the velocities between the LHS and RHS distributions. We will learn a conditional flow model sθ(· | x, a, t)
that transports base noise Yx,a(0) ∼ N (0, Id) to a terminal variable Yx,a(1) ∼ Rθ(· | x, a), such that the distribution
Rθ(· | x, a) ≈ R(· | x, a).

Conditional Flow Model. We learn a conditional velocity field sθ(y | x, a, t) that defines the ODE

d

dt
Yx,a(t) = sθ(Yx,a(t) | x, a, t), Yx,a(0) ∼ p0. (25)

Solving (i.e. “running”) this ODE from t = 0 to t = 1 is done by integration, giving the terminal random variable

Yx,a(1) = Yx,a(0) +

∫ 1

0

sθ(Yx,a(τ) | x, a, τ)dτ. (26)

Let Rθ(· | x, a) denote the induced terminal distribution. Our goal is to learn Rθ(· | x, a) ≈ R(· | x, a).

Distributional Bellman. By the definition of discounted reward-to-go,

Z(x, a)
D
= r(x, a) + Z(X ′, A′), (27)

where X ′ ∼ P (· | x, a), A′ ∼ πbase(· | X ′), and Z(X ′, A′) ∼ R(· | X ′, A′). Equivalently, we can say

R(· | x, a) = L (r(x, a) + Z ′) , Z ′ ∼ R(· | X ′, A′), (28)

where L is the law of the random variable. Taking expectation of Equation 27 yields

EZ∼R(·|x,a)[Z] = r(x, a) + EX′∼P (·|x,a)EA′∼πbase(·|X′)EZ′∼R(·|X′,A′)[Z
′]. (29)

Flow Integral and Expectation. Going back to the ODE solution, we have

Yx,a(1) = Yx,a(0) +

∫ 1

0

sθ(Yx,a(τ) | x, a, τ)dτ. (30)

Taking expectation first and then applying Fubini’s theorem, we have

E [Yx,a(1) | x, a] = E [Yx,a(0)] + E
[∫ 1

0

[sθ(Yx,a(τ) | x, a, τ)] dτ | x, a
]

(31)

= E [Yx,a(0)] +

∫ 1

0

E [sθ(Yx,a(τ) | x, a, τ) | x, a] dτ. (32)

16

832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883

By definition of p0 being zero mean, E[Yx,a(0)] = 0, leaving us with:

E [Yx,a(1) | x, a] =
∫ 1

0

E [sθ(Yx,a(τ) | x, a, τ) | x, a] dτ. (33)

If we perform flow matching well, such that Rθ(· | x, a) ≈ R(· | x, a) (subject to finite sample and optimization errors),
then∫ 1

0

E [sθ(Yx,a(τ) | x, a, τ) | x, a] dτ = r(x, a) + EX′,A′

[∫ 1

0

E [sθ(YX′,A′(τ) | X ′, A′, τ) | X ′, A′] dτ

]
. (34)

The equation above is a necessary, integral-level condition. We additionally consider a stronger condition that is
pointwise in t, such that for all t ∈ [0, 1],

E [sθ(Yx,a(t) | x, a, t) | x, a] = r(x, a) + EX′,A′E [sθ(YX′,A′(t) | X ′, A′, t) | X ′, A′] , ∀t ∈ [0, 1]. (35)

Flow-Based TD Objective. Putting this all together, we have the flow-based TD loss

LFlowTD(θ) = E(x,a,r,x′)∼D︸ ︷︷ ︸
Dataset’s State-Action-Reward

Sample Reward-To-Go︷ ︸︸ ︷
Ez1∼Rθ̄(·|x,a) Et∼Unif(0,1)︸ ︷︷ ︸

Sample Time

∥∥∥Velocity Prediction of LHS︷ ︸︸ ︷
sθ(z

t | x, a, t)− target(x, a, zt, t)︸ ︷︷ ︸
Velocity Target of RHS

∥∥∥2
2
], (36)

where
target(x, a, zt, t) := r(x, a) + Ea′∼πbase(·|x′)sθ̄(z

t | x′, a′, t). (37)

We sample a state-action-reward-next-state tuple (x, a, r, x′) ∼ D from the offline data, a time t ∼ Unif(0, 1), and the
next action from the base policy a′ ∼ πbase(· | x′). We construct an interpolant zt = (1− t)z0 + tz1, which serves to
noise the ground-truth sample, by sampling a reward-to-go z1 ∼ R(· | x, a) and a noise sample z0 ∼ N (0, Id). The
reward-to-go sample z1 can be sampled from the dataset or a target version of the learned reward model Rθ̄(· | x, a).
To sample a reward-to-go from the distribution Rθ(· | x, a), we employ the standard forward Euler method with the
learned flow model sθ(· | x, a, t).

17

884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935

C FULL RESULTS

Table 2: EVOR’s Overall Performance By Task. We present the full results on each OGBench task. (*) indicates the
default task in each environment. The results are averaged over 3 seeds with standard deviations reported.

Task QC-1 QC-5 EVOR

antmaze-large-navigate-singletask-task1-v0 (*) 4 ±3 2 ±1 14 ±3

antmaze-large-navigate-singletask-task2-v0 0 ±0 0 ±0 61 ±4

antmaze-large-navigate-singletask-task3-v0 53 ±19 27 ±12 33 ±5

antmaze-large-navigate-singletask-task4-v0 2 ±1 0 ±0 66 ±11

antmaze-large-navigate-singletask-task5-v0 0 ±0 4 ±3 69 ±6

antmaze-large-stitch-singletask-task1-v0 (*) 3 ±0 2 ±1 0 ±0

antmaze-large-stitch-singletask-task2-v0 0 ±0 0 ±0 0 ±1

antmaze-large-stitch-singletask-task3-v0 4 ±1 12 ±14 67 ±5

antmaze-large-stitch-singletask-task4-v0 0 ±0 0 ±0 4 ±2

antmaze-large-stitch-singletask-task5-v0 20 ±15 12 ±5 5 ±4

cube-double-play-singletask-task1-v0 (*) 90 ±5 73 ±5 95 ±2

cube-double-play-singletask-task2-v0 54 ±4 46 ±20 96 ±2

cube-double-play-singletask-task3-v0 48 ±12 49 ±21 96 ±2

cube-double-play-singletask-task4-v0 22 ±5 30 ±5 36 ±8

cube-double-play-singletask-task5-v0 59 ±8 52 ±25 87 ±6

pointmaze-medium-navigate-singletask-task1-v0 (*) 97 ±3 99 ±1 100 ±1

pointmaze-medium-navigate-singletask-task2-v0 89 ±7 100 ±1 99 ±2

pointmaze-medium-navigate-singletask-task3-v0 100 ±0 99 ±2 98 ±2

pointmaze-medium-navigate-singletask-task4-v0 94 ±7 100 ±0 100 ±0

pointmaze-medium-navigate-singletask-task5-v0 100 ±0 100 ±0 100 ±0

scene-play-singletask-task1-v0 94 ±2 100 ±0 100 ±0

scene-play-singletask-task2-v0 (*) 87 ±2 99 ±1 98 ±1

scene-play-singletask-task3-v0 44 ±7 93 ±3 94 ±2

scene-play-singletask-task4-v0 1 ±1 90 ±4 76 ±28

scene-play-singletask-task5-v0 0 ±0 41 ±14 60 ±17

Q: What is EVOR’s task-level performance?

Across 5 environments and 25 unique tasks, EVOR achieves the best performance compared to the baselines. EVOR’s
expressive value learning method outperforms standard value learning methods. From the results in Table 2, we observe
that EVOR outperforms or matches standard value function learning methods (QC), even compared to a method that
employs action chunking (QC-5), suggesting that expressive value learning can improve performance over standard
value function learning.

18

936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987

D ABLATION STUDIES

1 2 4 8 16 32 64

Number of Action Candidates (Nπ)

S
u
c
c
e
s
s

R
a
t
e

8

68

100 100 100 100 100

cube-double-play-singletask-task1

1 2 4 8 16 32 64

Number of Action Candidates (Nπ)

S
u
c
c
e
s
s

R
a
t
e

0

22

80 78
82 84 70

cube-double-play-singletask-task2

1 2 4 8 16 32 64

Number of Action Candidates (Nπ)

S
u
c
c
e
s
s

R
a
t
e

0

31

85 99 99 93 91

cube-double-play-singletask-task3

1 2 4 8 16 32 64

Number of Action Candidates (Nπ)

S
u
c
c
e
s
s

R
a
t
e

0

15

33
36

19

40
44

cube-double-play-singletask-task4

1 2 4 8 16 32 64

Number of Action Candidates (Nπ)

S
u
c
c
e
s
s

R
a
t
e

0

53

87
92 97 91 91

cube-double-play-singletask-task5

Figure 3: Ablation Over Number of Action Candidates Nπ . Results are averaged over 3 seeds per task, with standard
deviations reported.

Q: [Task-Level] How can EVOR take advantage of greater inference-time compute?

As shown in Figure 3, when given access to greater inference-time compute, EVOR can increase the number of action
candidates Nπ , resulting in better performance (up to a saturation point).

19

988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039

1e-3 1e-1 1e0 1e2 1e5 1e8

Reward-To-Go Temperature (τR)

S
u
c
c
e
s
s

R
a
t
e

92
100 100

88 92

61

cube-double-play-singletask-task1

1e-3 1e-1 1e0 1e2 1e5 1e8

Reward-To-Go Temperature (τR)

S
u
c
c
e
s
s

R
a
t
e

82
86 84 62 66

31

cube-double-play-singletask-task2

1e-3 1e-1 1e0 1e2 1e5 1e8

Reward-To-Go Temperature (τR)

S
u
c
c
e
s
s

R
a
t
e

95 99 93 85 79

21

cube-double-play-singletask-task3

1e-3 1e-1 1e0 1e2 1e5

Reward-To-Go Temperature (τR)

S
u
c
c
e
s
s

R
a
t
e

35 40
40

37
29

cube-double-play-singletask-task4

1e-3 1e-1 1e0 1e2 1e5

Reward-To-Go Temperature (τR)

S
u
c
c
e
s
s

R
a
t
e

87 92 91 80 77

cube-double-play-singletask-task5

Figure 4: Ablation Over Reward-To-Go Temperature Parameter τR. Results are averaged over 3 seeds per task,
with standard deviations reported.

1e-3 1e-1 1e0 1e2

Q? Temperature (τQ)

S
u
c
c
e
s
s

R
a
t
e

100 100 100

4

cube-double-play-singletask-task1

1e-3 1e-1 1e0 1e2

Q? Temperature (τQ)

S
u
c
c
e
s
s

R
a
t
e

84 90 90

0

cube-double-play-singletask-task2

1e-3 1e-1 1e0 1e2

Q? Temperature (τQ)
S
u
c
c
e
s
s

R
a
t
e

93 89
96

0

cube-double-play-singletask-task3

1e-3 1e-1 1e0 1e2

Q? Temperature (τQ)

S
u
c
c
e
s
s

R
a
t
e

40
36 35

1

cube-double-play-singletask-task4

1e-3 1e-1 1e0 1e2

Q? Temperature (τQ)

S
u
c
c
e
s
s

R
a
t
e

91 93 92

0

cube-double-play-singletask-task5

Figure 5: Ablation Over Q⋆ Temperature Parameter τQ. Results are averaged over 3 seeds per task, with standard
deviations reported.

Q: [Task-Level] How can EVOR perform inference-time regularization?

As shown in Figure 4 and Figure 5, by increasing varying the temperature parameters τR and τQ, EVOR can vary the
level of regularization to the base policy compared to the level of policy optimization. As τQ decreases, the action
selection becomes more greedy, while as τQ increases, the action selection becomes more regularized. Set to a high
value, EVOR becomes equivalent to the base policy (i.e. the performance with Nπ = 1).

20

1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091

E EXPERIMENTAL AND IMPLEMENTATION DETAILS

In this section, we describe the setup, implementation details, and baselines used in the paper.

E.1 EXPERIMENTAL SETUP

We follow OGBench’s official evaluation scheme (Park et al., 2024a), with the reward-maximizing offline setup
of Park et al. (2025b); Espinosa-Dice et al. (2025). We restate the experimental setup here. Following Park et al.
(2025b); Espinosa-Dice et al. (2025), we use OGBench’s singletask variants for all experiments, corresponding to
reward-based tasks that are suitable for our reward-maximizing offline RL setting.

Environments and Tasks. EVOR is evaluated on manipulation and locomotion robotics tasks in version 1.1.0 of
OGBench (Park et al., 2024a), including

1. antmaze-large-navigate-singletask-v0

2. antmaze-large-stitch-singletask-v0

3. cube-double-play-singletask-v0

4. pointmaze-medium-navigate-singletask-v0

5. scene-play-singletask-v0

We use the 5 unique tasks (e.g. antmaze-large-navigate-singletask-task{1,2,3,4,5}-v0) for
each environment listed above, where each task provides a unique evaluation goal. Each environment’s dataset is
labeled with a semi-sparse reward (Park et al., 2024a; 2025b). For the cube-double-play-singletask-v0
environment, we use the 100M size dataset provided by Park et al. (2025a).

The selected environments consist of locomotion and manipulation control problems. The antmaze tasks consist of
navigating a quadrupedal agent (8 degrees of freedom) through complex mazes. The cube and scene environments
manipulated objects with a robotic arm. The goal of scene tasks is to sequence multiple subtasks. The environments
are state-based. We test both navigate and stitch datasets for locomotion and play for manipulation. These
datasets are built from suboptimal, goal-agnostic trajectories, which poses a challenge for goal-directed policy learning
(Park et al., 2024a). Following Park et al. (2025b); Espinosa-Dice et al. (2025), we evaluate agents using binary task
success rates (i.e., goal completion percentage), which is consistent with OGBench’s evaluation setup (Park et al.,
2024a).

Evaluation. We follow OGBench’s official evaluation scheme (Park et al., 2024a). Algorithms are trained for
1,000,000 gradient steps and evaluated on 50 episodes every 100,000 gradient steps. The average success rates of the
final three evaluations (i.e. the evaluation results at 800,000, 900,000, and 1,000,000 gradient steps) are reported. Tables
average over 3 seeds per task and report standard deviations, bolding values within 95% of the best performance.

E.2 EVOR IMPLEMENTATION DETAILS

Flow Matching. EVOR is implemented on top of Li et al. (2025)’s open-source implementation of QC, which is
adapted from Park et al. (2024a)’s open-source codebase. We implement flow matching using the same, standard
velocity field as QC.

Network Architecture and Optimizer. Following Park et al. (2025b); Espinosa-Dice et al. (2025); Li et al. (2025),
we use a multi-layer perceptron with 4 hidden layers of size 512 for both the value and policy networks. We apply layer
normalization (Ba et al., 2016) to value networks and use the Adam optimizer (Kingma, 2014). All of these parameters
are shared between EVOR and the baselines.

Hyperparameters. We use the same hyperparameters for both EVOR and QC. Unlike many offline RL algorithms
(Park et al., 2025b; Espinosa-Dice et al., 2025), EVOR does not change training parameters between environments in
this paper. EVOR uses N = 1 during training (instead of the N > 1 used during evaluation) for better efficiency.

21

1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143

Algorithm 3: πbase Action Sampling via Forward Euler Method
Input: State x, number of inference steps M
Output: Action a
a ∼ N (0, I) Sample starting action noise
t← 0
for m ∈ {0, . . . ,M} do

a← a+ 1
M vϕ(a, t, | x) Follow ODE

t← t+ 1
M

return a

Inference Procedure. EVOR’s inference procedure is shown in Algorithm 2. Actions are sampled from the base
policy πbase via the forward Euler method, shown in Algorithm 3.

Recall that the optimal Q-function is given by:

Q⋆(x, a) = η lnEr∼R(·|x,a) exp(r/η), (38)

where R is the conditional distribution of rewards-to-go under πref. We learn an estimate of R via the flow-based TD
objective, such that Rθ(· | x, a) ≈ R(· | x, a). We approximate the expectation via sample averaging, as shown in
Algorithm 2, such that

LogSumExp(z(j)) = τ⋆ log
1

N

N∑
j=1

exp
(

z(j)

τ⋆

)
(39)

We then construct a weighted softmax via the Q⋆ approximation, such that

softmax(Q⋆(x, a(j))) =
exp(Q⋆(x, a(j))/τ)∑Nπ

j=1 exp(Q
⋆(x, a(j))/τ)

(40)

22

1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195

Table 3: Shared Hyperparameters Between QC Baselines and EVOR.

PARAMETER VALUE

LEARNING RATE 3E-4
OPTIMIZER ADAM (KINGMA, 2014)
GRADIENT STEPS 1E6
MINIBATCH SIZE 256
MLP DIMENSIONS [512, 512, 512, 512]
TARGET NETWORK SMOOTHING COEFFICIENT 5E-3
DISCOUNT FACTOR γ 0.99
DISCRETIZATION STEPS 10
TIME SAMPLING DISTRIBUTION UNIF([0,1])
NUMBER OF ACTION CANDIDATES Nπ 32

Table 4: Hyperparameters for EVOR.

HYPERPARAMETER VALUE

BETA β 1E-3
Q⋆ BETA β⋆ 1
NUMBER OF RTG SAMPLES NRTG 1 (TRAIN), 50 (EVAL)

Table 5: Hyperparameters for QC.

HYPERPARAMETER VALUE

ACTION CHUNK LENGTH 1 (QC-1), 5 (QC-5)
CRITIC ENSEMBLE SIZE 2

23

1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247

E.3 BASELINES

Rather than compare to all of the existing offline RL algorithms benchmarked on OGBench, we instead aim to isolate
the effect of expressive value learning in order to demonstrate its benefit specifically. Thus, we compare to Q-chunking
(QC, Li et al. (2025)), a recent offline RL algorithm that is closest to EVOR. Like EVOR, QC learns a base policy via
flow matching and extracts an optimized policy via rejection sampling. The key difference between QC and EVOR is
in how the value function is learned, which is the exact difference we aim to isolate. QC can employ action chunking
in both its policy and value function, and we compare EVOR to both QC with (QC-5) action chunking and without it
(QC-1). We select the action chunk length (5) based on Li et al. (2025)’s recommendation.

Given an action chunk length of k, represented as at:t+k = (at, at+1, . . . , at+k), the Q-function is updated via

Q(xt,at:t+k)←
t+k−1∑
t′=1

[rt′] +Q(xt+k,at+k:t+2k) (41)

and actions are sampled via
a← argmax

a∈{a1,a2,...,aN}
Q(x,a), (42)

where a1, a2, . . . , aN ∼ πbase(· | x). This yields the following loss function for learning the Q-function:

L(θ) = E xt,at∼D
{ai

t+k}
N
i=1∼πbase(·|xt+k)

(Qθ(xt,at)−
k∑

t′=1

rt+t′ −Qθ̄(xt+k,at+k)

)2
 , (43)

where at+k = argmaxa∈{ai
t+k}

Q(s,a).

24

	Introduction
	Background
	Expressive Value Learning for Offline Reinforcement Learning
	Optimal, Expressive Value Learning via Regression
	Scalable Value Learning via Flow-Based TD Learning
	Inference-Time Policy Extraction, Regularization, and Scaling

	Experimental Results
	Experimental Setup
	Experimental Results

	Related Work
	Discussion
	Extended Related Work
	Flow-Based Temporal Difference Learning
	Full Results
	Ablation Studies
	Experimental and Implementation Details
	Experimental Setup
	EVOR Implementation Details
	Baselines

