
Learning Dynamic Graph Embeddings Using Random
Walk with Temporal Backtracking

Chenghan Huang∗
Millennium Management, LLC

New York, NY 10022
njhuangchenghan@gmail.com

Lili Wang∗
Dartmouth College
Hanover, NH 03755

lili.wang.gr@dartmouth.edu

Xinyuan Cao
Georgia Institute of Technology

Atlanta, GA 30332
xcao78@gatech.edu

Weicheng Ma
Dartmouth College
Hanover, NH 03755

weicheng.ma.gr@dartmouth.edu

Soroush Vosoughi
Dartmouth College
Hanover, NH 03755

soroush.vosoughi@dartmouth.edu

Abstract

Representation learning on graphs (also referred to as network embedding) can
be done at different levels of granularity, from node to graph level. The majority
of work on graph representation learning focuses on the former, and while there
has been some work done on graph-level embedding, these typically deal with
static networks. However, learning low-dimensional graph-level representations
for dynamic (i.e., temporal) networks is important for such downstream graph
retrieval tasks as temporal graph similarity ranking, temporal graph isomorphism,
and anomaly detection. In this paper, we propose a novel temporal graph-level
embedding method to fill this gap. Our method first builds a multilayer graph
and then utilizes a novel modified random walk with temporal backtracking to
generate temporal contexts for the nodes in the graph. Finally, a “document-level”
language model is learned from these contexts to generate graph-level embeddings.
We evaluate our model on five publicly available datasets for two commonly used
tasks of graph similarity ranking and anomaly detection. Our results show that our
method achieves state-of-the-art performance compared to all prior baselines.

1 Introduction

Graphs (i.e., networks) are a dominant type of data in many diverse domains, from social networks
[24], to protein interactions [2], and scientific collaboration [20]. Through graph representations
learning (also called graph embedding), we can represent graphs using general-purpose vector
representations, removing the need for task-specific feature-engineering.

Networks (sometimes referred to as graphs)fall under two general categories, static and dynamic. As
the name suggests, static networks are those whose structure does not change over time. Networks
capturing natural phenomena usually fall under this category. For instance, the network representing

∗The first two authors contributed equally to this work.

NeurIPS 2022 Temporal Graph Learning Workshop held in New Orleans, United States

the chemical interaction of different compounds is most likely a static network as the rules governing
the interactions between compounds do not change over time. Conversely, dynamic networks,
sometimes also referred to as temporal or evolving networks, are those whose structure does change
over time. Networks capturing man-made systems and human interactions and behavior usually fall
under this category. For instance, the Twitter social network is constantly changing with people
frequently following/unfollowing each other [15]. Representation learning on static and dynamic
networks are different from each other as the static embeddings need to only capture the structure
of the networks while dynamic embeddings need to capture the structural and temporal aspects of
the networks. Though static embedding methods can be applied to dynamic networks, the resulting
embeddings are not ideal as they do not capture the evolving aspect of these networks.

Network embedding methods can be further categorized based on the granularity at which they
operate, from node level to graph level. The most common type of network embedding is node
embedding in which nodes in one network are represented as fixed-length vectors. While these
vectors are supposed to preserve different scales of proximity between the nodes such as microscopic
(such as DeepWalk [29] and node2vec [18]), macroscopic (such as DP [12] and HARP [7]), and
structural role (such as struc2vec [30] and GraphWave [10]), they can not capture proximity
between different networks as the node representations are learned within the context of the network
they occupy. Considerable work has been done on node embedding for dynamic graphs (e.g., see
[27, 41, 17, 23, 34]), which not only preserves the network structural information but also the temporal
information for each node.

Whereas node embedding deals with a single graph, graph-level network embedding allows us to learn
representations of whole graphs and directly compare different graphs. This enables us to investigate
fundamental problems, such as whether two graphs are identical (also called the graph isomorphism
problem). Babai [3] has shown that this problem can be solved in quasipolynomial time. In real-world
applications, however, instead of determining whether two graphs are identical, we care about the
degree of similarity between graphs. A typical application of this problem involves classifying graphs
based on their similarity. Note that this is a generalization of the graph isomorphism problem as two
graphs that are identical will be labeled the same. One approach to solving the graph classification
problem is to learn a representation of the graph as a vector, called whole graph embedding, which is
invariant under the graph isomorphism, and then adopt down-stream classifiers.

Several graph-level embedding methods have been explored, but they mainly deal with static networks
[26, 8, 9, 35, 36, 13, 31]. However, in real-world applications, networks are typically dynamic and
contain information besides their static structures.

In fact, to the best of our knowledge, there is only one prior method designed for dynamic graph-level
embedding, called tdGraphEmbed [5]. However, a limitation of this method is that it treats dynamic
graphs as a collection of independent static graph snapshots, without considering the connections and
evolving information between them.

In this paper, we fill this gap by making the following contributions:

• We propose a novel method called temporal backtracking random walk, and combine it with
doc2vec for dynamic graph-level embedding. Our method smoothly incorporates both graph
structural and historical evolving information.

• We evaluate our method on five publicly available datasets for two tasks: graph similarity
ranking and anomaly detection, and achieve state-of-the-art performance.

• We empirically show that our model scales linearly, which enables real-world application
and scaling to large graphs.

2 Related Work

tdGraphEmbed is currently the only method for dynamic graph-level embedding, which we
discussed in the introduction. Here, we go over two adjacent embedding categories: temporal
node and static graph-level embedding. Different from static node embedding methods (such as
node2vec [18], SDNE [37] and GAE [21]) which only consider structural information, temporal
node embedding methods learn node representations from the historical information in evolving
networks, to preserve both the structural and temporal information. Representative techniques includ-
ing matrix factorization (such as TMF [11] and TMNF [39]), modified random walk to incorporate

2

timestamps (such as dynnode2vec [25], CTDNE [27]), and deep-learning-based methods (such as
DynGEM [17], dyngraph2vec [16], whose variations include DynAE, DynRNN and DynAERNN).
DynamicTriad [40] relies on the triadic closure process, which is the development of closed triads
from open triads.

For static graph-level embedding, a classic approach is to use graph kernels (such as Weisfeiler-
Lehman kernel [33], random walk kernel [14], shortest path kernel [6] and deep graph kernel [38]).
graph2vec [26] and GL2Vec [8] use graph kernels to extract features, which are then passed to a
language model to extract embeddings. Sub2Vec [1] uses id-path and degree-path random walks
to capture the neighborhood and structural property of a set of sub-graphs, and in this way get the
representation of arbitrary sub-graphs. UGraphEmb [4] uses a multi-scale node attention to combine
node-level embeddings into graph-level embeddings to preserve their graph-graph proximity. Other
methods like SF [9], NetLSD [35], and FGSD [36] use the information from the Laplacian matrix
and eigenvalues of graphs to generate embeddings.

3 Framework

In this section, we formally define the problem we address in this paper and introduce our framework.
Our framework is simple but effective, which consists of two parts: (1) Building a multilayer graph
and adopting temporal backtracking random walk on it (2) Learning a doc2vec language model on
the output of the modified random walk to get graph-level embedding.

3.1 Background

Let G = (V,E, T) be a discrete temporal graph where each temporal edge (u, v)t ∈ E is directed
from a node u to a node v at time t ∈ T. A snapshot of G at time t is defined as Gt = (Vt, Et) , as
the graph of all edges occurring at time t. We consider the problem of representing each snapshot
Gt as a low-dimensional vector which captures both the dynamic evolution information and graph
topology as a n-dimensional Euclidean vector Xt ∈ Rn, with n << |V |. We solve this problem in
an unsupervised way and do not require any task-specific information.

3.2 Our Framework

We construct a multilayer weighted graph M(VM , EM) that encodes the evolution between nodes.
Each layer Mt, t = 0, 1..., |T | is constructed by the nodes of G and the edges of snapshot Gt.
Next, we build the inter-layer edges between each pair of Mt and Mt−1 by directly connecting the
corresponding nodes from t to t−1, note that the edges between the two layers are unidirectional. We
model each snapshot Gt by using temporal backtracking random walk from each node as a sentence,
and then all the sentences are concatenated to create a document to represent the whole snapshot.

For each step of the temporal backtracking walk, it can either walk inside the current layer to get
the structural information or walk into the previous layer to get historical evolving information. We
define the stay constant α, such that for each step the probability of staying in the current layer is α
and the probability of going to the previous layer is 1− α. A temporal backtracking walk on M is a
sequence of vertices ⟨v1, v2, · · · , vk⟩ such that ⟨vi, vi+1⟩ ∈ EM for 1 ≤ i < k, which can be derived
by the transition probability on M . Assume we have got ⟨v1, v2, · · · , vi⟩, and vi ∈ Mtthe transition
probability at step i+1 is defined as:

P (vi+1|vi−1, vi) =



1− α vi+1 ∈ Mt−1
α
pZ dvi−1,vi+1 = 0, vi+1 ∈ Mt
α
Z dvi−1,vi+1 = 1, vi+1 ∈ Mt
α
qZ dvi−1,vi+1 = 2, vi+1 ∈ Mt

0 otherwise

(1)

Here, inspired by node2vec, the du,v measures the length of the shortest path between node u
and v. p is the return parameter and q is the in-out parameter and in this way smoothly interpolates
breadth-first and depth-first sampling. Z is the normalizing constant. Each step of the temporal
backtracking random walk can be done efficiently in O(1) time complexity using a modified alias
sampling method [22].

3

Algorithm 1 Dynamic Graph-Level Embedding

Input: G =
{
G1, G2, . . . , G|T |

}
: the snapshots of the dynamic graph, and Gt = (Vt, Et) .

Parameter: p : return parameter, q : in-out parameter, α : staying constant, n : number of walks per
node, L : length of walk
Output: X1, X2, . . . , X|T | ∈ Rn, the embeddings for each snapshot

1: Create the multilayer graph M from G
2: for t ∈ {1, . . . , T} do
3: π[t] = PrecomputeProbabilities(Mt, p, q)
4: end for
5: docs = ϕ
6: for t ∈ {1, . . . , T} do
7: for v ∈ Vt do
8: for i = 1 to n do
9: walks = ϕ, s = v, time = t

10: while len(walks) ≤ L & Neighbor(s) ̸= ϕ do
11: flag = Random(0, 1)
12: if flag ≤ α then
13: s = AliasSample(s, π[time])
14: walks = walks + s
15: else
16: time = min(1, time− 1)
17: end if
18: end while
19: docs = docs + [walks, t]
20: end for
21: end for
22: end for
23: return X = Doc2Vec(docs)

The idea behind the temporal backtracking random walk is that the contexts of nodes within one
layer capture the neighborhood proximity; through backtracking to the former layer, it smoothly
incorporates the structural information of previous timestamps. The stay constant is set to be larger
than 0.5, so the influence of older timestamps will be smoothly decayed as the possibility of entering
previous layers will be reduced exponentially.

The context from each node of a certain Gt can be seen as a sentence, which we combine into a
document to represent a snapshot. Since these sentences do not have a specific order, we adopt a
modified doc2vec language model to learn a representation of the snapshot “documents” where each
sentence is tagged with the corresponding timestamp (t of Gt) as the paragraph id of doc2vec. After
training, that final paragraph vector is the dynamic graph-level embedding of Gt. Algorithm 1 shows
the pseudocode of our method.

4 Experiment

For a thorough evaluation of the performance of our proposed method, we conduct all the quantitative
tasks for dynamic graph-level embedding introduced by Beladev et al. [5] (the only other dynamic
graph-level embedding method). Specifically, these tasks are temporal similarity ranking and anomaly
detection. We also the scalability evaluations to show our model’s applicability to large networks
commonly found in real-world applications. For a fair comparison, we use the exact same datasets,
experiments, settings, and metrics as Beladev et al.

4.1 Datasets

We use all the five publicly available social graphs and corresponding ground truth for temporal
similarity ranking and anomaly detection used by Beladev et al. [5]. Similar to Beladev et al., nodes
with a degree less than five are removed. The descriptive statistics of these datasets are shown in
Table 1. The datasets are described in detail below:

4

Dataset Nodes Edges Timestamps Granularity Temporal Complexity
Reddit (Game of Thrones) 156,732 834,753 62 Daily 4.67

Reddit (Formula1) 38,702 254,731 61 Daily 13.30
Facebook wall posts 46,873 857,815 30 Monthly 5.56

Enron 87,062 1, 146, 800 182 Weekly 3.45
Slashdot 51,083 140,778 13 Monthly 2.88

Table 1: Descriptive statistics of the five datasets used in the temporal similarity ranking experiments.
Graph temporal complexity denotes the average time interval between each snapshot to its most
similar snapshot in previous timestamps. This table is taken from Beladev et al. [5].

• Reddit Game of Thrones: This dataset consists of the TV series ‘Game of Thrones’
subreddit. The nodes are Reddit users and the edges are replies from one user to the posts of
another user. This dataset includes 62 daily granularity snapshots with 156,732 nodes and
834,753 edges.

• Reddit Formula1: This dataset consists of the ‘Formula1’ subreddit. The nodes are Reddit
users and the edges are replies from one user to the posts of another user. This dataset
includes 61 daily granularity snapshots with 38,702 nodes and 1,146,800 edges.

• Facebook wall posts: This dataset consists of a subset of posts to other users’ walls on
Facebook. The nodes are Facebook users and the edges are posts. This dataset includes 30
monthly granularity snapshots with 46,873 nodes and 857,815 edges.

• Enron: This dataset consists of emails sent between employees of Enron. The nodes are
Enron employees and the edges are emails between them. This dataset includes 182 weekly
granularity snapshots with 87,062 nodes and 1,146,800 edges.

• Slashdot: This dataset consists of the replies network on Slashdot website. The nodes
are Slashdot users and the edges are replies from one to another. This dataset includes 13
monthly granularity snapshots with 51,083 nodes and 140,778 edges.

4.2 Experiment Settings

We compare our model with three types of baselines: static graph-level embedding (represented
by graph2vec, UGraphEmb, and Sub2vec), temporal node-level embedding (represented
by node2vec aligned, SDNE aligned, GAE aligned2, DynGEM, DynamicTriad,
DynAE, and DynAERNN), temporal graph-level embedding (the only existing SOTA method
tdGraphEmbed). For all of these baselines, we use the same parameter settings introduced by
Beladev et al. and report the best results between our experiments and the results reported by them.
We do this to err on the side of caution and fairness.

For our model, we set the number of temporal backtracking random walks from each node to 40 with
a length of 32. The return parameter p is set to 1, the in-out parameter q is set to 0.5, and the stay
constant α is set to 0.8. For the doc2vec model training, the maximum distance between the current
and predicted word within a sentence is set to 5, the initial learning rate is set to 0.025, and the size of
the final embedding is set to 128.

4.3 Temporal Similarity Ranking

For a snapshot Gt of a dynamic graph G, the most similar snapshot to it may not be Gt− 1 or Gt+1,
but some other snapshot far away from it [5]. This task aims to test the ability of a model to capture
the similarity among each snapshot. Temporal similarity ranking has many potential real-world
applications. For example, this task can be used for detecting organized influence operations on social
media. Many organized influence operations on social media rely on sharing and replying to each
other to artificially boost support for their agenda. By analyzing the similarity of dynamic share/reply
networks, we can detect new organized influence operations.

For this task, first we train our model to get the representations for all the snapshots. For each
snapshot Gt, we rank all the other snapshots Gi, (i ̸= t) based on the cosine similarity between their

2Since these three methods are static ones, the “aligned” here means that each snapshot is trained separately,
then have their embeddings rotated for alignment [19].

5

Reddit - Game of Thrones Reddit- Formula1
p@10 p@20 τ ρ p@10 p@20 τ ρ

Static graph-level
graph2vec 0.260 0.381 0.038 0.056 0.169 0.320 0.043 0.063

UGraphEmb 0.278 0.416 0.046 0.068 0.238 0.37 0.026 0.039
Sub2Vec 0.160 0.355 0.022 0.039 0.182 0.300 -0.030 -0.040

Temporal node-level
node2vec aligned 0.336 0.431 0.069 0.103 0.214 0.361 0.047 0.083

SDNE aligned 0.352 0.457 0.120 0.197 0.262 0.388 0.044 0.078
GAE aligned 0.235 0.342 0.044 0.066 0.200 0.342 0.036 0.062

DynGEM 0.340 0.441 0.075 0.113 0.192 0.339 0.029 0.045
DynamicTriad 0.277 0.364 0.131 0.195 0.243 0.396 0.024 0.033

DynAE 0.192 0.357 0.019 0.030 0.229 0.397 0.009 0.012
DynAERNN 0.192 0.349 -0.002 -0.004 0.164 0.357 0.026 0.037

Temporal graph-level
tdGraphEmbed 0.355 0.457 0.160 0.232 0.274 0.400 0.060 0.092

Our method 0.435 0.481 0.177 0.272 0.265 0.410 0.076 0.106

Table 2: The temporal similarity ranking results for the two Reddit datasets (Reddit Game of Thrones
and Reddit Formula1). The baselines are divided into three categories: static graph-level embeddings,
temporal node-level embeddings, and temporal graph-level embeddings. p@10 denotes precision at
10, p@20 denotes precision at 20, ρ denotes Spearman’s rank correlation coefficient, and τ denotes
Kendall’s rank correlation coefficient.

Enron Facebook-wall posts Slashdot
p@10 p@20 τ ρ p@10 p@20 τ ρ p@5 p@10 τ ρ

Static graph-level
graph2vec .045 .059 -.033 -.046 .423 .713 .120 .176 .292 .800 .026 .045

UGraphEmb .168 .269 .110 .150 .750 .871 .355 .452 .462 .900 .215 .271
Sub2Vec .073 .137 .028 .044 .353 .685 .012 .021 .385 .808 .037 .074

Temporal node-level
node2vec aligned .379 .452 .107 .139 .680 .840 .303 .414 .538 .908 .229 .306

SDNE aligned .316 .400 .087 .138 .400 .645 .095 .120 .415 .885 .095 .124
GAE aligned .277 .360 .118 .156 .613 .820 .292 .397 .492 .885 .168 .227

DynGEM .335 .377 .103 .143 .356 .733 .094 .115 .569 .915 .245 .314
DynamicTriad .322 .425 .112 .153 .733 .818 .271 .395 .646 .869 .201 .276

DynAE .069 .145 .009 .012 .389 .743 .122 .163 .473 .900 .002 .025
DynAERNN .061 .110 .004 .006 .393 .755 .065 .076 .509 .900 .041 .088

Temporal graph-level
tdGraphEmbed .385 .489 .127 .188 .750 .892 .398 .522 .785 .915 .347 .463

Our method .479 .532 .172 .251 .806 .896 .447 .559 .723 .885 .400 .524

Table 3: The temporal similarity ranking results for Enron, Facebook wall posts, and Slashdot datasets.
The baselines are divided into three categories: static graph-level embeddings, temporal node-level
embeddings, and temporal graph-level embeddings. p@5 denotes precision at 5, p@10 denotes
precision at 10, p@20 denotes precision at 20, ρ denotes Spearman’s rank correlation coefficient, and
τ denotes Kendall’s rank correlation coefficient.

embeddings Xt and Xi:

cos(Xt, Xi) =
Xt ·Xi

∥Xt∥∥Xi∥
(2)

Using the predicted and ground truth ranking lists of Gt, we can get a correlation and precision score.
For these metrics, we report the average precision at 10, precision at 20, Spearman’s rank correlation
coefficient (ρ), and Kendall’s rank correlation coefficient (τ) for all the snapshots. For the Slashdot
dataset we used precision at 5, and precision at 10 since there are only 13 time-steps. We show the
results in Tables 2 and 3. As can be seen, our model outperforms all the baselines for all the datasets
and metrics with three exceptions (out of 220), where tdGraphEmbed generates better results in
the p@10 metric for the Reddit Formula1 dataset and p@5 and p@10 for the Slashdot dataset.

4.4 Anomaly Detection

This task aims to detect anomalies during the evolution of a dynamic graph. This task has several
real-world applications. For instance, prior work has shown that there is a connection between the

6

Reddit - Game of Thrones Reddit- Formula1
p@5 p@10 r@5 r@10 p@5 p@10 r@5 r@10

Static graph-level embedding
graph2vec 0.8 0.6 0.571 0.857 0.2 0.2 0.25 0.5

UGraphEmb 1 0.7 0.714 1 0 0 0 0
Sub2Vec 0.2 0.3 0.142 0.428 0.4 0.3 0.5 0.75

Temporal node-level embedding
node2vec aligned 1 0.7 1 0.714 0 0.3 0 0.75

SDNE aligned 0 0 0 0 0 0 0 0
GAE aligned 0 0 0 0 0.2 0.3 0.25 0.75

DynGEM 0.4 0.4 0.285 0.571 0.2 0.1 0.25 0.25
DynamicTriad 0.4 0.4 0.285 0.571 0.4 0.3 0.5 0.75

DynAE 0 0.1 0 0.142 0 0 0 0
DynAERNN 0.2 0.1 0.142 0.142 0 0 0 0

Temporal graph-level embedding
tdGraphEmbed 1 0.7 0.714 1 0.8 0.4 1 1

Our method 1 0.7 0.714 1 0.8 0.4 1 1

Table 4: Results for anomaly detection task. p@5 denotes the metric Precision at 5, p@10 denotes
Precision at 10, r@5 denotes Recall at 5, and r@10 denotes Recall at 10.

stock market and social networks [32, 28]. Detecting anomalies in a social network could potentially
be used to improve financial prediction and help with risk aversion.

For this task, after generating the representations for all the snapshots, we define the difference
between all the consecutive timestamps Gt and Gt + 1 as the cosine distance between Xt and Xt+1.
The prediction of anomalies is made by sorting all the differences and selecting the top K as anomalies.
We test this task on two datasets, Reddit Game of Thrones (the anomalies represent the air dates of
the episodes of “Game of Thrones” season seven as during these times the volume of discussion is
anomalous compared to other times) and Reddit Formula1 (dates of “Formula 1” races; same logic as
before). As evaluation metrics, we report the Precision at 5, Precision at 10, Recall at 5, and Recall at
10 between our predicted results and the ground truth.

The results are shown in Table 4. Our method outperforms other baselines and achieves the same
scores as the current SOTA method tdGraphEmbed. The reason may be because this task only
takes the consecutive timestamps into account, and these two datasets only have 7 and 4 anomalies,
respectively. Different from the temporal similarity ranking task, which considers all the pairs of
similarities, this task is relatively simple allowing several methods to achieve high performance
(as seen by the performance of node2vec aligned and UGraphEmb which are not temporal
graph-level embedding methods).

4.5 Scalability

To investigate the scalability of our model, we learn temporal graph representations using our model
with the default parameters on Erdos-Renyi graphs with increasing sizes from 100 to 1,000,000 edges
with average degrees of 10 for each node. For each Erdos-Renyi graph, we uniformly split the edges
into 10 different snapshots. We run these tests (and all other experiments in this paper) on a Lambda
Deep Learning 2-GPU Workstation (RTX 2080) with 100GB of memory. Fig. 1 shows the log-log
plot of the running time vs the number of nodes. The linear curve in log-log space indicates that our
model is polynomial in time with respect to the size of the graph. In fact, the slopes of the curves are
less than 1 in the log-log space, meaning that our model is performing in sub-linear time; due to its
use of parallel processing. This suggests that our method is able to be scaled to large networks found
in real-world scenarios.

5 Conclusion

In this paper, we proposed a novel dynamic graph-level embedding method based on temporal
backtracking random walk. Our method smoothly incorporates both graph structural and historical
evolving information. Through experimentation on five publicly available datasets for the tasks of
graph similarity ranking and anomaly detection, we showed that our method achieves superior overall

7

2 3 4 5 6
log10 of edges

2.5

5.0

lo
g 1

0 o
f r

un
ni

ng
 se

co
nd

s running time of sampling
running time of training

Figure 1: Scalability of our model on Erdos-Renyi graphs with an average degree of 10.

performance compared to other baselines and that our model is scalable to larger networks, making it
applicable to real-world applications. An avenue for future work can be the extension of our proposed
model to heterogeneous dynamic networks, which are dynamic networks that have multiple edge or
node types.

References
[1] Bijaya Adhikari, Yao Zhang, Naren Ramakrishnan, and B Aditya Prakash. Sub2vec: Feature

learning for subgraphs. In Pacific-Asia Conference on Knowledge Discovery and Data Mining,
pages 170–182. Springer, 2018.

[2] Nir Atias and Roded Sharan. Comparative analysis of protein networks: hard problems, practical
solutions. Communications of the ACM, 55(5):88–97, 2012.

[3] László Babai. Graph isomorphism in quasipolynomial time. In Proceedings of the forty-eighth
annual ACM symposium on Theory of Computing, pages 684–697, 2016.

[4] Yunsheng Bai, Hao Ding, Yang Qiao, Agustin Marinovic, Ken Gu, Ting Chen, Yizhou Sun,
and Wei Wang. Unsupervised inductive graph-level representation learning via graph-graph
proximity. arXiv preprint arXiv:1904.01098, 2019.

[5] Moran Beladev, Lior Rokach, Gilad Katz, Ido Guy, and Kira Radinsky. tdgraphembed: Temporal
dynamic graph-level embedding. In Proceedings of the 29th ACM International Conference on
Information & Knowledge Management, pages 55–64, 2020.

[6] Karsten M Borgwardt and Hans-Peter Kriegel. Shortest-path kernels on graphs. In Fifth IEEE
International Conference on Data Mining (ICDM’05), pages 8–pp. IEEE, 2005.

[7] Haochen Chen, Bryan Perozzi, Yifan Hu, and Steven Skiena. Harp: Hierarchical representation
learning for networks. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 32, 2018.

[8] Hong Chen and Hisashi Koga. Gl2vec: Graph embedding enriched by line graphs with edge
features. In International Conference on Neural Information Processing, pages 3–14. Springer,
2019.

[9] Nathan de Lara and Edouard Pineau. A simple baseline algorithm for graph classification. arXiv
preprint arXiv:1810.09155, 2018.

[10] Claire Donnat, Marinka Zitnik, David Hallac, and Jure Leskovec. Learning structural node
embeddings via diffusion wavelets. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 1320–1329, 2018.

8

[11] Daniel M Dunlavy, Tamara G Kolda, and Evrim Acar. Temporal link prediction using matrix
and tensor factorizations. ACM Transactions on Knowledge Discovery from Data (TKDD),
5(2):1–27, 2011.

[12] Rui Feng, Yang Yang, Wenjie Hu, Fei Wu, and Yueting Zhang. Representation learning for scale-
free networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32,
2018.

[13] Feng Gao, Guy Wolf, and Matthew Hirn. Geometric scattering for graph data analysis. In
International Conference on Machine Learning, pages 2122–2131. PMLR, 2019.

[14] Thomas Gärtner, Peter Flach, and Stefan Wrobel. On graph kernels: Hardness results and
efficient alternatives. In Learning theory and kernel machines, pages 129–143. Springer, 2003.

[15] Saptarshi Ghosh, Bimal Viswanath, Farshad Kooti, Naveen Kumar Sharma, Gautam Korlam,
Fabricio Benevenuto, Niloy Ganguly, and Krishna Phani Gummadi. Understanding and com-
bating link farming in the twitter social network. In Proceedings of the 21st International
Conference on World Wide Web, pages 61–70, 2012.

[16] Palash Goyal, Sujit Rokka Chhetri, and Arquimedes Canedo. dyngraph2vec: Capturing network
dynamics using dynamic graph representation learning. Knowledge-Based Systems, 187:104816,
2020.

[17] Palash Goyal, Nitin Kamra, Xinran He, and Yan Liu. Dyngem: Deep embedding method for
dynamic graphs. arXiv preprint arXiv:1805.11273, 2018.

[18] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 855–864. ACM, 2016.

[19] William L Hamilton, Jure Leskovec, and Dan Jurafsky. Diachronic word embeddings reveal
statistical laws of semantic change. arXiv preprint arXiv:1605.09096, 2016.

[20] Norman P Hummon and Patrick Dereian. Connectivity in a citation network: The development
of dna theory. Social Networks, 11(1):39–63, 1989.

[21] Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016.

[22] Aaron Q Li, Amr Ahmed, Sujith Ravi, and Alexander J Smola. Reducing the sampling
complexity of topic models. In Proceedings of the 20th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 891–900. ACM, 2014.

[23] Taisong Li, Jiawei Zhang, S Yu Philip, Yan Zhang, and Yonghong Yan. Deep dynamic network
embedding for link prediction. IEEE Access, 6:29219–29230, 2018.

[24] Francois Lorrain and Harrison C White. Structural equivalence of individuals in social networks.
The Journal of Mathematical Sociology, 1(1):49–80, 1971.

[25] Sedigheh Mahdavi, Shima Khoshraftar, and Aijun An. dynnode2vec: Scalable dynamic network
embedding. In 2018 IEEE International Conference on Big Data (Big Data), pages 3762–3765.
IEEE, 2018.

[26] Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui Chen, Yang
Liu, and Shantanu Jaiswal. graph2vec: Learning distributed representations of graphs. arXiv
preprint arXiv:1707.05005, 2017.

[27] Giang Hoang Nguyen, John Boaz Lee, Ryan A Rossi, Nesreen K Ahmed, Eunyee Koh, and
Sungchul Kim. Continuous-time dynamic network embeddings. In Companion Proceedings
of the The Web Conference 2018, pages 969–976. International World Wide Web Conferences
Steering Committee, 2018.

[28] Michael Nofer and Oliver Hinz. Using twitter to predict the stock market. Business &
Information Systems Engineering, 57(4):229–242, 2015.

9

[29] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 701–710. ACM, 2014.

[30] Leonardo FR Ribeiro, Pedro HP Saverese, and Daniel R Figueiredo. struc2vec: Learning node
representations from structural identity. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 385–394, 2017.

[31] Benedek Rozemberczki and Rik Sarkar. Characteristic Functions on Graphs: Birds of a Feather,
from Statistical Descriptors to Parametric Models. In Proceedings of the 29th ACM International
Conference on Information and Knowledge Management (CIKM ’20), page 1325–1334. ACM,
2020.

[32] Dehua Shen, Andrew Urquhart, and Pengfei Wang. Does twitter predict bitcoin? Economics
Letters, 174:118–122, 2019.

[33] Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M
Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(9),
2011.

[34] Uriel Singer, Ido Guy, and Kira Radinsky. Node embedding over temporal graphs. In IJCAI,
2018.

[35] Anton Tsitsulin, Davide Mottin, Panagiotis Karras, Alexander Bronstein, and Emmanuel Müller.
Netlsd: hearing the shape of a graph. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 2347–2356, 2018.

[36] Saurabh Verma and Zhi-Li Zhang. Hunt for the unique, stable, sparse and fast feature learning
on graphs. In NIPS, pages 88–98, 2017.

[37] Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network embedding. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 1225–1234. ACM, 2016.

[38] Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In Proceedings of the 21st
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
1365–1374, 2015.

[39] Wenchao Yu, Charu C Aggarwal, and Wei Wang. Temporally factorized network modeling for
evolutionary network analysis. In Proceedings of the Tenth ACM International Conference on
Web Search and Data Mining, pages 455–464, 2017.

[40] Lekui Zhou, Yang Yang, Xiang Ren, Fei Wu, and Yueting Zhuang. Dynamic network embedding
by modeling triadic closure process. In Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

[41] Yuan Zuo, Guannan Liu, Hao Lin, Jia Guo, Xiaoqian Hu, and Junjie Wu. Embedding temporal
network via neighborhood formation. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 2857–2866. ACM, 2018.

10

	Introduction
	Related Work
	Framework
	Background
	Our Framework

	Experiment
	Datasets
	Experiment Settings
	Temporal Similarity Ranking
	Anomaly Detection
	Scalability

	Conclusion

