
Citation: Wei, J.; Zhang, H.; Xie, J. A

Novel Deep Learning Model for

Breast Tumor Ultrasound Image

Classification with Lesion Region

Perception. Curr. Oncol. 2024, 31,

5057–5079. https://doi.org/10.3390/

curroncol31090374

Received: 11 July 2024

Revised: 22 August 2024

Accepted: 27 August 2024

Published: 28 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

A Novel Deep Learning Model for Breast Tumor Ultrasound
Image Classification with Lesion Region Perception
Jinzhu Wei 1, Haoyang Zhang 2 and Jiang Xie 2,*

1 School of Medicine, Shanghai University, Shanghai 200444, China; jinzhuwei@shu.edu.cn
2 School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China;

zhy-jsj-0105@shu.edu.cn
* Correspondence: jiangx@shu.edu.cn

Abstract: Multi-task learning (MTL) methods are widely applied in breast imaging for lesion area
perception and classification to assist in breast cancer diagnosis and personalized treatment. A typical
paradigm of MTL is the shared-backbone network architecture, which can lead to information sharing
conflicts and result in the decline or even failure of the main task’s performance. Therefore, extracting
richer lesion features and alleviating information-sharing conflicts has become a significant challenge
for breast cancer classification. This study proposes a novel Multi-Feature Fusion Multi-Task (MFFMT)
model to effectively address this issue. Firstly, in order to better capture the local and global feature
relationships of lesion areas, a Contextual Lesion Enhancement Perception (CLEP) module is designed,
which integrates channel attention mechanisms with detailed spatial positional information to extract
more comprehensive lesion feature information. Secondly, a novel Multi-Feature Fusion (MFF)
module is presented. The MFF module effectively extracts differential features that distinguish
between lesion-specific characteristics and the semantic features used for tumor classification, and
enhances the common feature information of them as well. Experimental results on two public
breast ultrasound imaging datasets validate the effectiveness of our proposed method. Additionally,
a comprehensive study on the impact of various factors on the model’s performance is conducted to
gain a deeper understanding of the working mechanism of the proposed framework.
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1. Introduction

Breast cancer is the most common malignant tumor among women and a leading
cause of cancer-related death worldwide [1,2]. Over the past four decades, the incidence of
breast cancer has been rising. According to the latest data from the International Agency
for Research on Cancer of the World Health Organization, there were approximately
2.3 million new cases and 660,000 deaths in 2022 globally. It is estimated that by 2045 there
will be about 3.3 million new cases and 1 million deaths due to breast cancer. Clinically,
the strategy for breast cancer is mainly “early diagnosis and early treatment”, as the
timing of diagnosis and treatment is directly linked to prognosis. Therefore, finding
suitable diagnostic and therapeutic strategies is crucial. Early diagnosis plays a key role in
controlling the progression of breast cancer.

With the advancement of medical imaging technology, the use of imaging exams for
cancer detection, early diagnosis, and assessment of therapeutic efficacy has contributed to
improving early detection rates of breast cancer and reducing mortality rates among breast
cancer patients. Currently, early clinical screening assessments for breast cancer include ul-
trasound, computed tomography (CT), mammography, magnetic resonance imaging (MRI),
positron emission tomography (PET), and other medical imaging techniques. Compared
to other imaging methods, ultrasound has characteristics such as rapid and convenient
operation, no radiation, and low cost, making it the most effective means for promoting
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widespread and quick breast tumor screening. However, ultrasound examination heavily
relies on the diagnostic level of the radiologist, with differences in analysis between differ-
ent doctors and disagreements in interpretation during diagnosis. Additionally, manual
analysis of a large number of breast ultrasound screening images is a time-consuming task
that significantly increases the overall workload of radiologists. The inherent characteristics
of breast ultrasound images also bring additional challenges to image analysis, such as the
similarity of texture and contrast between the lesions and surrounding tissues, heterogene-
ity of lesion tissue, and user dependence on scan quality [3]. Thus, interpretation of many
cases can lead to inaccurate diagnoses, particularly for radiologists with less experience [4].

To address these challenges and promote clinical applications such as localization and
classification [5–8], computer-aided diagnosis (CAD) systems have been developed. The
goal of lesion classification is to stratify lesions into different subtypes to support appropri-
ate treatment plans, while lesion localization and segmentation can facilitate classification
tasks to achieve better diagnostic accuracy [9–11]. Unlike the approach of handling these
tasks separately, multi-task learning (MTL) techniques are designed to jointly perform
lesion segmentation and classification [11–13]. A typical MTL model adopts a network
architecture that includes a shared feature extractor and two task-specific branches for
lesion segmentation and classification, respectively. By using a mixed task-related loss
function for training, this shared trunk model can improve classification performance
and robustness. The network design and training process allow for information sharing
between tasks, thereby reducing the risk of model overfitting.

However, training MTL models is significantly more complex and challenging com-
pared to single-task models. The potential for information-sharing conflicts between
different tasks not only increases the complexity of the model but can also degrade the per-
formance of the main task. Balancing cross-task information sharing is crucial to ensuring
the performance of the main task [14]. To address this issue, several methods have been
proposed, such as task-specific loss weighting [15] and gradient modulation [16], which
aim to balance the contribution of each task to the combined loss.

In recent years, many studies have employed the attention mechanism to address
information sharing conflicts in multi-task learning, particularly in the segmentation and
classification of ultrasound images [17,18]. The attention module highlights key input
features and attenuates secondary features [15], generating task-specific representations
that reduce interference during model optimization. Additionally, the attention mechanism
integrates multi-scale features to capture both local and global information, thereby enhanc-
ing lesion segmentation performance [19–21]. Current research on joint segmentation tasks
primarily focuses on aiding breast tumor classification. However, this requires pixel-level
segmentation annotation, which demands substantial time and human resources. More-
over, pixel-level segmentation annotation often involves subjective judgments, potentially
leading to inconsistencies. Different annotators may provide varying annotations, which
can result in inconsistent dataset quality. Additionally, current research mainly concentrates
on designing loss functions to enhance the performance of the classification task, with less
emphasis on how the knowledge learned from auxiliary tasks can provide critical tumor
feature information for the breast tumor classification task.

In this study, to address the aforementioned issues, we propose a novel Multi-Feature
Fusion Multi-Task (MFFMT) convolutional neural network model for joint lesion region
perception and benign–malignant classification of breast tumors, effectively enhancing
classification performance. The model first extracts and integrates multi-scale features
through a Contextual Lesion Enhancement Perception (CLEP) module, obtaining richer
contextual feature information about breast tumor lesions. Then, these lesion features are
effectively fused with the semantic features used for classification through the Multi-Feature
Fusion (MFF) module, significantly improving the performance of the benign–malignant
classification of breast tumors. The experimental results demonstrate the effectiveness
of our proposed method, as validated by experiments conducted on two BUS image
datasets. Additionally, we explore the impact of various network parameters to gain a
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deeper understanding of the distinctive features of our design framework. The primary
contributions of this study are as follows:

• Information sharing and conflict reduction: In the context of multi-task learning for
medical imaging, conflicting gradients and insufficient information sharing between
tasks can hinder performance. Our MFFMT model directly addresses these issues by
employing an adaptive Multi-Feature Fusion mechanism that ensures complemen-
tary features are shared while reducing task interference. This approach not only
enhances classification accuracy but also tackles one of the persistent challenges in
multi-task learning.

• Enhanced lesion perception: The challenge of accurately detecting lesions in ultra-
sound images due to factors like noise, low contrast, and varying lesion sizes is well
known. Our Contextual Lesion Enhancement Perception (CLEP) module is specifically
designed to overcome these limitations. By capturing multi-scale and location-specific
features, the module strengthens the model’s focus on the lesion area, improving
overall diagnostic reliability.

• Feature integration for noise reduction: Ultrasound images often suffer from noise
and limited contrast, which can obscure critical features relevant to classification. Our
Multi-Feature Fusion (MFF) module mitigates these issues by integrating features
from different tasks, thus highlighting tumor-specific characteristics while suppressing
irrelevant information. This integration is key to improving classification outcomes,
especially in noisy or low-contrast imaging environments.

• Application potential and clinical significance: The practical applicability of models
in clinical settings is often limited by generalization issues when tested on diverse
datasets. We conducted extensive evaluations on two publicly available breast tumor
ultrasound datasets, demonstrating that our model not only addresses the aforemen-
tioned technical challenges but also shows significant promise for clinical deployment,
contributing to more accurate and consistent tumor classification.

2. Materials and Methods
2.1. Breast Tumor Dataset

This study assesses the model on two publicly available breast ultrasound image
datasets. The first dataset is the Breast Ultrasound Image (BUSI) dataset, which is a publicly
available resource provided by Al-Dhabyani et al. [22]. The database contains 780 images
from 600 patients, with 133 images showing normal, non-tumor tissue and the remaining
647 containing tumor images. Each image includes labeled lesion segmentation contours
and lesion type. Since the BUSI dataset only provides lesion segmentation contours and
lacks bounding box annotations, we generate the bounding boxes for BUSI images during
data preprocessing based on the lesion segmentation contours. An example of a pre-
processed image is shown in Figure 1. It is noteworthy that some images in the dataset
contain two or more tumors, so when generating bounding boxes, multiple bounding box
annotations are created for each image, making each bounding box an individual data
sample. Table 1 presents the detailed information of the preprocessed dataset for training
and testing the model.

Figure 1. Example of BUSI dataset preprocessing.



Curr. Oncol. 2024, 31 5060

Table 1. Details of the BUSI dataset.

Category Training Set Test Set

Malignant tumors 176 45
Benign tumors 407 42

The second dataset, MIBUS, is a publicly available breast lesion ultrasound video dataset
released by Zhu Lei et al., consisting of 188 videos. This dataset includes 113 malignant videos
and 75 benign videos [23]. The 188 videos contain a total of 25,272 images, with the number
of ultrasound images per video ranging from 28 to 413. Each video provides a complete
scan of the tumor, from its appearance to its maximum size and eventual disappearance. All
videos were recorded using LOGIQ-E9 (GE HealthCare, Chicago, IL, USA) and PHILIPS TIS
L9-3 (Philips, Amsterdam, The Netherlands) . A rectangular region around the breast lesion
is annotated in each video frame, and the lesion in the video is assigned a corresponding
classification label.

First, 38 videos were randomly and uniformly selected from the dataset to be used as
the test set (approximately 20% of the dataset), while the remaining videos were designated
as the training set. This approach ensures that images from the same patient do not appear
in both the training set and the test set. Then, from this split video dataset, 5 to 15 images
were selected from each ultrasound video as samples for final model training and testing.
Table 2 provides detailed information about the MIBUS dataset used for model training
and testing.

Table 2. Details of the MIBUS dataset.

Category Training Set Test Set

Malignant tumors 1221 337
Benign tumors 787 177

2.2. MFFMT Model Architecture

This section presents the architecture of the MFFMT model. As shown in Figure 2, the
MFFMT model combines ResNet as its feature extractor (FE) to extract features at different
levels from breast tumor ultrasound images. Additionally, the model includes a Contextual
Lesion Enhancement Perception module for perceiving the tumor lesion area, enabling the
localization of the tumor region. Lastly, for breast tumor classification, the model employs
a Multi-Feature Fusion module to integrate different tumor-related features, which are then
input into the classifier for classification.

Figure 2. The Multi-Feature Fusion Multi-Task model (MFFMT) architecture diagram.
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Given breast tumor ultrasound images, ResNet extracts multi-scale feature maps,
capturing both local and global information. These feature maps are then fed into the CLEP
module for lesion region perception. The lesion enhancement perception feature map Floc,
obtained from the CLEP module, is further utilized in the breast tumor classification task
to improve the performance of lesion type classification. Notably, feature fusion explicitly
associates the classification and lesion perception branches through a module that takes
ResNet’s feature map F4, and CLEP’s feature map Floc as inputs. This design alleviates
potential conflicts and ensures enhanced performance for the breast tumor classification
task. The following sections provide a detailed discussion of each module.

2.2.1. Feature Extractor

The feature extractor (FE) is designed in a hierarchical structure, comprising a se-
ries of n convolutional blocks. Given a two-dimensional breast tumor ultrasound image
X ∈ RM×N , the FE extracts multi-scale feature maps F1, F2, F3, and F4 using each convolu-
tional block. These extracted feature maps serve as the inputs to the CLEP module, while
only the top-level extracted feature map F4 is used as the input to the classification branch.
The FE can be described as follows:

(F1, F2, F3, F4) = F(X, ΘF) (1)

where F represents the mapping function of the FE parameterized by ΘF.

2.2.2. Contextual Lesion Enhancement Perception (CLEP) Module

As shown in Figure 3, the CLEP module incorporates a Coordinate Attention (CA)
module, a Convolutional Block Attention Module (CBAM), and a feature fusion opera-
tion. This design is motivated by the versatility of CBAM when integrated into various
CNNs, which can seamlessly enhance both classification and localization performance [24].
However, CBAM only captures local relationships and cannot model the long-range de-
pendencies crucial for visual tasks. Therefore, we introduce a novel Coordinate Attention
(CA) module on top of CBAM, embedding positional information into channel attention.
This enables the network to capture directionally aware and position-sensitive information,
facilitating the model’s ability to recognize targets of interest [25].

Figure 3. Schematic diagram of the CLEP module.

Specifically, the multi-scale feature maps F1, F2, F3, F4 extracted from the FE are initially
fed into the CA module, as illustrated in Figure 4. This module encodes both channel
relationships and long-range dependencies through two steps: coordinate information
embedding and coordinate attention generation.
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Figure 4. Schematic diagram of the Coordinate Attention module (CA).

Global average pooling is commonly used in channel attention to encode spatial infor-
mation in a global manner. However, this approach compresses global spatial information
into a single channel descriptor, making it difficult to retain positional information, which
is crucial for capturing spatial structure in visual tasks. To facilitate the attention block in
accurately capturing long-range interactions in space, we decompose the global pooling
and convert it into a pair of 1D feature encoding operations. Specifically, for a given feature
F, we use two pooling kernels with spatial ranges of (H, 1) or (1, W), encoding each channel
along the horizontal and vertical coordinates, respectively. Therefore, the output for the cth
channel at height h can be expressed as

ζh
c (h) =

1
W

W

∑
i=0

Fc(h, i) (2)

Similarly, the output for the cth channel at width w can be written as

ζw
c (w) =

1
H

H

∑
j=0

Fc(j, w) (3)

These two transformations aggregate features along two spatial dimensions, resulting
in a pair of directionally aware feature maps. These transformations also allow our attention
block to capture long-range dependencies in one spatial direction while preserving precise
positional information in the other. This enables the network to more accurately localize
objects of interest.

To leverage these expressive capabilities, the module incorporates a second transformation,
referred to as the coordinate attention generation. Specifically, given the aggregated feature
maps derived from Equations (2) and (3), they are concatenated, and then, fed into a shared
1 × 1 convolution transformation function F1. This process generates a feature map f :

f = δ(F1([ζ
h, ζw])) (4)

where [·, ·] represents the concatenation operation along the spatial dimension, and δ denotes
a nonlinear activation function. The resulting feature map f ∈ RC/r×(H+W) serves as an
intermediate representation, encoding spatial information in both the horizontal and vertical
directions. Here, r is a reduction ratio that determines the size of the block. Next, we split f
along the spatial dimension into two separate tensors: f h ∈ RC/r×H and f w ∈ RC/r×W . Two
1 × 1 convolution transformations, Fh and Fw, are used to convert f h and f w into tensors with
the same number of channels as the input feature map F. This results in

gh = σ(Fh( f h)) (5)

gw = σ(Fw( f w)) (6)

where σ represents the sigmoid function. To minimize the computational complexity, we
often use an appropriate reduction ratio r (e.g., 32) to reduce the number of channels in f .
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The outputs gh and gw are then expanded and used as attention weights. Ultimately, the
output Y of the Coordinate Attention block can be expressed as

yc(i, j) = Fc(i, j)× gh
c (i)× gw

c (j) (7)

Then, the feature maps F1, F2, F3, F4 processed by the Coordinate Attention (CA)
module, yielding Fc1, Fc2, Fc3, Fc4, are fed into the Convolutional Block Attention Module
(CBAM). The CBAM module consists of a Channel Attention Module (CAM) and a Spatial
Attention Module (SAM), which process the input feature maps sequentially, as shown in
Figure 5. CBAM effectively compresses the input feature maps and selectively highlights
the inter-channel and inter-spatial discriminative relationships in the input features.

Figure 5. Schematic diagram of Convolution Block Attention Module (CBAM).

Specifically, in the CBAM’s Channel Attention Module (CAM), the input feature map
F undergoes parallel operations of a maximum pooling layer and an average pooling layer.
This yields Fc

max and Fc
avg, each producing a vector of dimensions C × 1 × 1. These two

vectors are then simultaneously processed by a multi-layer perceptron (MLP), consisting of
an input layer, a hidden layer, and an output layer, with the respective weights denoted as
W0 and W1. After passing through the MLP, the two vectors are merged by element-wise
addition. Finally, a sigmoid activation function is applied, resulting in the final output of
the Channel Attention Module. It can be represented as

MC(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F)))

= σ(W1(W0(Fc
avg)) + W1(W0(Fc

max))) (8)

After the CAM, the output Mc is a tensor of dimensions C × 1× 1. Then, element-wise
multiplication is performed between Mc and the corresponding channel of the original
feature map, where the feature map has dimensions H × W. The result is a new feature
map, denoted as FC. In the Spatial Attention Module (SAM) of CBAM, the feature map FC
undergoes two separate pooling operations on its channels: a max-pooling and an average-
pooling operation. This results in a C-dimensional vector for each pooling operation,
generating Fs

max and Fs
avg, respectively. These two vectors are then concatenated and passed

through a 7 × 7 convolution layer, followed by a sigmoid activation function, resulting in
a 1 × H × W feature map. This can be represented as

MS(FC) = σ( f 7×7([Fs
avg; Fs

max]))

= σ( f 7×7([AvgPool(FC); MaxPool(FC)])) (9)

In a manner similar to the Channel Attention module, the final output MS(FC) needs
to be element-wise multiplied with the original input feature map FC to merge the two,
producing the final output feature map for the CBAM module.

The feature maps processed by CA and CBAM are input into a convolutional layer to
compress them into the same number of channels as the feature map F2, thereby extracting
the regions of interest (ROIs) related to the lesion. This refines the learned knowledge.
Each compressed intermediate feature map is resized to match the dimensions of F4,
then concatenated into a merged feature map Floc. Finally, Floc undergoes a series of
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convolutional layers, batch normalization (BN), and a sigmoid activation layer to produce
the lesion perception feature map Fmask, where each pixel represents the probability of
being part of the lesion or background. A binarization function determines the predicted
lesion position mask Y. Since the confidence threshold can impact the model’s final results,
a higher threshold makes the model more conservative (i.e., reducing false positives), while
a lower threshold makes the model more aggressive (i.e., capturing all possible lesions).
Therefore, in this study, we adopt the commonly used default threshold of 0.5 as the
confidence threshold.

Ploc = D(F1, F2, F3, F4, ΘD) (10)

Pmask = Ppixel = σ(BN(Conv2d(Ploc))) (11)

Ypixel = binarize(Ppixel > 0.5) (12)

where σ denotes the sigmoid function, Ppixel represents the probability that each pixel in
Pmask belongs to the lesion, D is the mapping function of CLEP, parameterized by the
trainable parameters ΘD, and the binarize function is a threshold function.

2.2.3. Multi-Feature Fusion Module

Subsequently, we use the Patch Embedding module to convert the feature maps F4 and
Floc into a sequence of tokenized representations Ftoken

4 and Ftoken
loc . The Patch Embedding

process can be represented as

Ftoken
4 = PE(F4) (13)

Ftoken
loc = PE(Floc) (14)

Next, the tokenized representations Ftoken
4 and Ftoken

loc are fed into the Multi-Feature Fusion
(MFF) module to generate the fused feature Ff . The fusion process can be represented as

Ff = MFF(Ftoken
4 , Ftoken

loc ) (15)

where MFF consists of a Discrepancy Feature Fusion module and a pair of alternating
Common Feature Enhancement Fusion modules, which are designed to extract global
dependency features, namely, discrepancy features and common features. A schematic
diagram of this fusion module is shown in Figure 6.

The goal of feature fusion is to obtain a composite feature map that captures prominent
targets while preserving fine texture details. Therefore, leveraging the differences and
shared features present in different feature maps is crucial for achieving optimal fusion
performance. Inspired by the effectiveness of cross-attention mechanisms in extracting
common features between images, we introduce the DFFM and the CFEFM.

To effectively capture the differential features between F4 and Floc generated in the
previous stage, we employ a DFFM in the form of cross-attention, as shown in Figure 7. It
takes Ftoken

4 and Ftoken
loc as input and outputs features that highlight the differences.

Specifically, to explore the long-distance relationships of the feature Floc, we partition
Ftoken

4 and Ftoken
loc into s local feature segments, as follows:

Q1, . . . , Qs = Partition(Ftoken
loc ) (16)

K1, . . . , Ks = Partition(Ftoken
4 ) (17)

V1, . . . , Vs = Partition(Ftoken
4 ) (18)

where Ftoken
loc and Ftoken

4 ∈ RH×W×C, and s = H ×W. Subsequently, we employ a linear layer
to transform the token segments into query Q, key K, and value V. The linear projection
can be expressed as
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Qi = LinearQ(Qi), Ki = LinearK(Ki), Vi = LinearV(Vi) (19)

where i = 1, 2, . . . , s. The Linear(∗) function denotes a linear projection operator shared
among different segments.

Figure 6. Schematic diagram of the Multi-Feature Fusion.

Figure 7. Schematic diagram of the Differential Feature Fusion Module (DFFM).

To explore the shared information between the F4 and Floc features while considering
long-range relationships, we first apply Softmax to Kj to normalize each element into
a probability distribution, and multiply Vi (where i and j range from 1 to s). Then, perform
element-wise multiplication with V to infer the shared feature information between Q and
V. This process can be expressed as

CFQV =
(V1,...,s) · Softmax((K1,...,s)

T)√
dk

· Q (20)

where dk is a scaling factor that mitigates the issue of gradient saturation when the dot
product increases in the Softmax function. After this, we can easily extract the difference
information between Q and V by removing the shared feature information. This process
can be represented as

DFQV = Linear(V − CFQV) (21)

To obtain complementary feature information from the F4 and Floc features, we inject
the differential features into Q, which can be represented as



Curr. Oncol. 2024, 31 5066

Fadd = DFQV + Q (22)

Then, we generate Fd f f m by applying a multi-layer perceptron (MLP) with layer
normalization (LN) to Fadd and adding Fadd again:

Fd f f m = MLP(LN(Fadd)) + Fadd (23)

where Fd f f m is the output of the DFFM.
To integrate the shared feature information of Floc into the fused feature and enhance it,

the proposed fusion module, after DFFM, adopts a CFEFM to alternately extract common
feature information from Floc. The structure of CFEFM is shown in Figure 8.

Figure 8. Schematic diagram of the Common Feature Enhancement Fusion Module (CFEFM).

To infuse shared feature information from Floc into the fused information, we first use
the segments of Fd f f m as Q1,...,s and the segments of Floc as K1,...,s and V1,...,s. The shared
feature information between Fd f f m and Floc can be expressed as

CMtoken
loc =

(V1,...,s) · Softmax((K1,...,s)
T)√

dk
· Q (24)

Next, we add the shared feature information CMtoken
loc to Fd f f m, yielding

Fadd = Linear(CMtoken
loc ) + Q (25)

Then, we pass Fadd through a multi-layer perceptron (MLP) with layer normalization
(LN) to produce

Fcfefm = MLP(LN(Fadd)) + Fadd (26)

Fcfefm represents the output of the first CFEFM. Subsequently, we infuse the shared
feature information between Fcfefm and Floc into the fused feature to enrich it. This process
follows the same formulation as Formulas (25) and (26). This design enables the learned
features to emphasize the lesion region while mitigating the negative effects caused by
noise or artifacts in non-lesion areas of breast tumor ultrasound images. The classification
head comprises an average pooling layer and a fully connected layer. It leverages the
enriched feature map to predict the probability for each category of the input breast tumor
ultrasound image. The classification process can be described as

Pcls = C(Ff usion, ΘC) (27)
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where C is the mapping function of the classifier parameterized by ΘC. Ff usion represents the
final fused feature, and Pcls indicates the probability that the input breast tumor ultrasound
image belongs to each category.

2.2.4. Loss Function

In this joint task, the hybrid loss L for model training can be described as follows:

L = Lcls + λLloc (28)

Lcls = E[−ȲT
cls log(Pcls)] (29)

Lloc = E[−ȲT
pixel log(Ppixel)] (30)

where Lcls measures the difference between the true class labels and the class labels pre-
dicted by the classifier C, and Lloc is defined as a lesion region localization loss. λ ∈ [0, 1]
is a weighting factor used to adjust the contribution of Lloc. In Lcls, Pcls represents the
probability that the input data X belong to class K, while Ȳcls is a one-hot true label vector
with K elements. In Lloc, Ppixel represents the probability that each pixel in Fmask belongs
to a lesion, and Ȳpixel is the lesion location label determined by applying a binarization
function to Ppixel .

2.3. Hyperparameter Optimization

The deep learning framework selected for this study is PyTorch. The experiments were
conducted on a server equipped with two NVIDIA RTX 3090Ti GPUs, an Intel(R) Xeon(R)
Gold 6226R CPU, and 128 GB of RAM. The model optimization utilized the adaptive Adam
stochastic gradient algorithm [26] to compute the loss function defined in Section 2.2.4. The
initial learning rate was set to lr = 0.00001, and the model was trained for 200 epochs with
a batch size of 8. Input images were preprocessed using data augmentation techniques,
including random rotations [90◦, 180◦, 270◦], and random horizontal and vertical flips.
The preprocessed images were resized to 256 × 256 pixels using bilinear interpolation and
normalized to the range [0, 1] before being fed into the model. In order to fairly compare the
performance of the models, all experiments in this study used the same parameter settings.

In this experiment, we employed ResNet18 and ResNet50 as the backbone networks
for our model, resulting in two model versions: MFFMT18 and MFFMT50. To evaluate
training stability, the process was repeated five times, and the mean of each metric was
calculated as the final experimental results.

The evaluation metrics used include accuracy, precision, sensitivity, specificity, F1-
score, and the area under the ROC curve (AUC).

3. Results
3.1. Validation of Different Modules’ Effectiveness

To investigate the impact of each module on the overall model performance, we
removed each module individually, maintaining the parameter settings described in
Section 2.3, and retrained the model. Figures 9 and 10 present the ablation study results
of our model with ResNet18 and ResNet50 as the backbone networks, respectively, on the
BUSI dataset, referred to as MFFMT18 and MFFMT50.

From Figures 9 and 10, we can observe the performance metrics when MFFMT is
stripped of all modules, using ResNet18 and ResNet50 as backbone networks. For ResNet18
and ResNet50, the accuracy is 0.929 and 0.932, precision is 0.975 and 0.974, sensitivity is
0.883 and 0.888, specificity is 0.976 and 0.9756, F1-score is 0.926 and 0.929, and AUC is 0.971
and 0.973 (±0.0081), respectively. When the designed models, MFFMT18 and MFFMT50,
incorporate various modules, there is a noticeable improvement in performance. Accuracy
increases by 2.3% (0.952 vs. 0.929) and 1.8% (0.950 vs. 0.932), sensitivity increases by 5.5%
(0.938 vs. 0.883) and 2.7% (0.915 vs. 0.888), F1-score increases by 2.7% (0.953 vs. 0.926)
and 2.0% (0.949 vs. 0.929), and AUC increases by 1.0% (0.981 vs. 0.971) and 0.9% (0.982
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vs. 0.973). However, compared to ResNet18, MFFMT18 shows a decrease in precision
and specificity by 0.7% (0.968 vs. 0.975) and 1.0% (0.966 vs. 0.976), respectively. On the
other hand, compared to ResNet50, MFFMT50 shows an improvement in precision and
specificity by 1.3% (0.986 vs. 0.974) and 1.0% (0.986 vs. 0.976), respectively. This indicates
that a greater number of network layers can lead to better performance.

Figure 9. MFFMT18: The results of ablation experiments on the BUSI dataset.

Figure 10. MFFMT50: The results of ablation experiments on the BUSI dataset.

Additionally, for the MFFMT50 model, when the CA module was removed, the model’s
accuracy, precision, sensitivity, specificity, F1-score, and AUC decreased by 3.7% (0.913 vs.
0.950), 3.2% (0.954 vs. 0.986), 3.1% (0.884 vs. 0.915), 4.3% (0.943 vs. 0.986), 3.6% (0.913 vs. 0.949),
and 3.5% (0.947 vs. 0.982), respectively. This highlights that the Coordinate Attention module,
CA, plays a vital role in capturing global information, especially long-range dependencies in
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breast tumor ultrasound images. Removing the CA module may hinder the model’s ability to
leverage global information, potentially affecting the quality of feature representation, and
consequently, degrading overall model performance. Similarly, when the CBAM module was
removed, the overall performance of the model also suffered a decline. This demonstrates
that the spatial attention mechanism in the CBAM module not only helps the model focus
on the significance of different positions in the image but also assists in identifying and
emphasizing important features across channels. Removing the CBAM module can result in
the model ignoring spatial information and failing to effectively utilize channel correlations,
thus impacting the classification performance. When the MFF module was removed, the
model’s accuracy, sensitivity, F1-score, and AUC decreased by 0.7% (0.943 vs. 0.950), 1.7%
(0.898 vs. 0.915), 0.7% (0.942 vs. 0.949), and 0.7% (0.975 vs. 0.982), respectively. In contrast, the
precision and specificity increased by 0.5% (0.991 vs. 0.986) and 0.4% (0.990 vs. 0.986). This
suggests that the inclusion of the MFF module allows the model to exercise greater caution in
identifying potential malignant cases, leading to a tendency to classify suspicious samples as
malignant, thus enhancing its capability to detect malignant cases—a crucial aspect in medical
diagnostic tasks.

Figures 11 and 12 illustrate the comparison results of ablation experiments conducted
on the MIBU dataset for MFFMT18 and MFFMT50 , respectively. From Figures 11 and 12, it
is evident that when MFFMT removes all modules, the accuracy of ResNet18 and ResNet50
is 0.847 and 0.824, the precision is 0.882 and 0.849, the sensitivity is 0.885 and 0.889, the
specificity is 0.774 and 0.698, the F1-score is 0.884 and 0.869, and the AUC is 0.878 and 0.840,
respectively. On the other hand, when we introduce each module to our designed models
MFFMT18 and MFFMT50, there is a significant performance improvement. The accuracy of
MFFMT18 and MFFMT50 are increased by 2.0% (0.867 vs. 0.847) and 5.0% (0.874 vs. 0.824),
the precision by 1.1% (0.893 vs. 0.882) and 4.4% (0.893 vs. 0.849), the sensitivity by 2.1%
(0.906 vs. 0.885) and 2.9% (0.918 vs. 0.889), the specificity by 1.8% (0.792 vs. 0.774) and
9.3% (0.791 vs. 0.698), the F1-score by 1.5% (0.899 vs. 0.884) and 3.6% (0.905 vs. 0.869), and
the AUC by 0.3% (0.881 vs. 0.878) and 4.7% (0.887 vs. 0.840), respectively. This confirms
that the proposed MFFMT model is effective on the MIBU dataset, and particularly the
MFFMT50 model has a more significant performance improvement.

Additionally, when comparing the results of MFFMT18 and MFFMT50 on both the
BUSI and MIBU datasets, we observe that due to the smaller number of ultrasound images
in the BUSI dataset, both the ResNet18 and ResNet50 models tend to overfit. Consequently,
when tested on the larger MIBU dataset under the same conditions, the performance of
these models significantly declines. In contrast, our proposed MFFMT model effectively
mitigates the overfitting phenomenon, especially in the MFFMT50 model, where the effect
is more pronounced. This suggests that with increased network depth, the likelihood
of overfitting rises. However, multi-task learning provides a viable solution, effectively
reducing the occurrence of this issue.

3.2. Exploring the Impact of Different Feature Fusion Methods on the Model

The proposed MFF module aims to leverage the distinct and shared characteristics
present in different feature maps to generate a composite feature map that captures promi-
nent targets and retains rich texture details. To validate its effectiveness, this section
compares the module with common fusion methods, namely, Sum and Concat. Sum
performs element-wise addition of feature maps while preserving the original channel
numbers, whereas Concat merges feature maps by increasing the channel count to facilitate
the fusion.
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Figure 11. MFFMT18: The results of ablation experiments on the MIBU dataset.

Figure 12. MFFMT50: The results of ablation experiments on the MIBU dataset.

Tables 3 and 4 present the results of MFFMT18 and MFFMT50, respectively, using
different fusion methods on the BUSI dataset.

Table 3. Results of MFFMT18 on the BUSI dataset using different fusion methods.

Fusion Method Accuracy Precision Sensitivity Specificity F1-Score AUC

Sum 0.938 0.967 0.911 0.966 0.938 0.983
Concat 0.933 0.971 0.898 0.971 0.933 0.979

MFF (ours) 0.952 0.968 0.938 0.966 0.953 0.981
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Table 4. Results of MFFMT50 on the BUSI dataset using different fusion methods.

Fusion Method Accuracy Precision Sensitivity Specificity F1-Score AUC

Sum 0.952 0.977 0.929 0.976 0.952 0.981
Concat 0.950 0.956 0.947 0.952 0.951 0.980

MFF (ours) 0.950 0.986 0.915 0.986 0.949 0.982

From Tables 3 and 4, it is evident that on the BUSI dataset MFFMT achieves the highest
performance with the Multi-Feature Fusion method MFF, reaching optimal levels across all
three metrics. Specifically, MFFMT18, when utilizing the MFF fusion method, outperforms
the next best fusion method, Sum, with increases of 1.4% (0.952 vs. 0.938) in accuracy,
2.7% (0.938 vs. 0.911) in sensitivity, and 1.5% (0.953 vs. 0.938) in F1-score. Additionally,
the MFF method’s performance in AUC is only 0.2% (0.981 vs. 0.983) lower than the Sum
method. However, MFFMT50, when employing the MFF method, exhibits slightly reduced
performance compared to the Sum method. This decrease in performance may be attributed
to the increased depth of the MFFMT50 model, leading to overfitting on the smaller BUSI
dataset. Therefore, comparative experiments of different fusion methods were conducted
on the larger MIBU dataset, with results presented in Tables 5 and 6.

Table 5. Results of MFFMT18 on the MIBU dataset using different fusion methods.

Fusion Method Accuracy Precision Sensitivity Specificity F1-Score AUC

Sum 0.849 0.880 0.893 0.766 0.886 0.871
Concat 0.849 0.871 0.904 0.744 0.887 0.863

MFF (ours) 0.867 0.893 0.906 0.792 0.899 0.881

Table 6. Results of MFFMT50 on the MIBU dataset using different fusion methods.

Fusion Method Accuracy Precision Sensitivity Specificity F1-Score AUC

Sum 0.863 0.882 0.913 0.767 0.897 0.873
Concat 0.866 0.889 0.909 0.784 0.899 0.888

MFF (ours) 0.874 0.893 0.918 0.791 0.906 0.887

From Tables 5 and 6, it is apparent that MFFMT with the MFF method performs the
best. Specifically, MFFMT18 with the MFF method exhibits superior results on the MIBU
dataset across all metrics when compared to other models. When compared to the next best
fusion method, Sum, MFFMT18 shows improvements of 1.8% (0.867 vs. 0.849) in accuracy,
1.3% (0.893 vs. 0.880) in precision, 1.3% in sensitivity (0.906 vs. 0.893), 2.6% in specificity
(0.792 vs. 0.766), 1.3% in F1-score (0.899 vs. 0.886), and 1.0% (0.881 vs. 0.871) in AUC.
Similarly, MFFMT50 with the MFF method, when compared to the next best fusion method,
Concat, shows improvements of 0.8% (0.874 vs. 0.866) in accuracy, 0.4% (0.893 vs. 0.889)
in precision, 0.9% (0.918 vs. 0.913) in sensitivity, 0.7% (0.791 vs. 0.784) in specificity, and
0.7% (0.906 vs. 0.899) in F1-score. The only slight decrease in performance was observed in
the AUC metric, where MFFMT50 achieved 0.1% (0.887 vs. 0.888) lower than the Concat
method. In summary, our proposed MFF method is effective in leveraging features that
contribute to the classification of benign and malignant breast tumors. Additionally, it
is evident that deeper networks benefit more from feature fusion on the MIBU dataset,
suggesting that when features are fused at a shallower level they might contain more
redundant information and noise. On the other hand, deeper feature fusion helps to filter
out redundant information and noise, resulting in more discriminative and representative
features. Moreover, by fusing features at deeper layers, the network can learn more complex
feature interactions and relationships, enhancing the network’s expressive capabilities and
classification performance.
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3.3. Exploring the Impact of Loss Function Parameters on Model Performance

To explore the impact of the λ value in the loss function (Equation (28)), we compared
the accuracy of MFFMT18 and MFFMT50 across the BUSI and MIBU datasets, using λ
values in the range (0, 1). The results are presented in Figures 13–16.

Figure 13. Accuracy rate of MFFMT18 with different λ values on the BUSI dataset.

Figure 14. Accuracy rate of MFFMT50 with different λ values on the BUSI dataset.
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Figure 15. Accuracy rate of MFFMT18 with different λ values on the MIBU dataset.

Figure 16. Accuracy rate of MFFMT50 with different λ values on the MIBU dataset.

From Figures 13 and 14, it is evident that on the BUSI dataset, the MFFMT18 model
achieves its highest accuracy at a λ value of 1.0, with an accuracy of 0.952. At this point,
the model’s stability (minimum standard deviation) is also optimal. For the MFFMT50

model, the highest accuracy is achieved at a λ value of 0.1, with an accuracy of 0.954,
and it reaches the second-best performance at a λ value of 1.0, with an accuracy of 0.950.
This phenomenon is consistent on the MIBU dataset as well. This indicates that in the
multi-task learning framework for breast tumor image lesion localization and classification,
the MFFMT18 model, which uses ResNet18 as the backbone network, achieves the best
classification performance when the weights for lesion localization loss and classification
loss are equal (λ = 1). This can be attributed to the shallower nature of ResNet18, which
has fewer parameters and limited feature extraction capabilities. The synergistic effect
between the classification and lesion localization tasks is stronger, allowing balanced
losses to better leverage shared features, thereby enhancing classification performance.
Additionally, the gradient propagation in shallower networks is more stable, allowing



Curr. Oncol. 2024, 31 5074

simultaneous optimization of both tasks’ losses. Conversely, for the MFFMT50 model,
which uses ResNet50 as the backbone network, the best classification performance is
observed when the weight for the lesion localization loss is lower (λ = 0.1). This is
because ResNet50, being deeper with more parameters, has stronger feature extraction
capabilities and can learn more fine-grained classification features. A higher weight for
the lesion localization loss might interfere with the learning of classification features and
cause instability in the optimization process. By reducing the weight of the localization
loss, the interference with classification features is minimized, enhancing the stability of
the optimization process, and thus, improving classification performance.

3.4. Comparison with Other Models

In this study, we implemented and compared the proposed method with two state-
of-the-art MTL methods and four single-task classification methods. The four single-task
classification methods include ResNet18 [27], ResNet50 [27], EfficientNet [28], and Vision
Transformer (ViT) [29]. Additionally, we evaluated two recently proposed MTL methods for
breast tumor classification: RMTL [12] and LA-Net [30]. RMTL is a typical shared-backbone
MTL method specifically designed for breast tumor imaging, similar to our approach. LA-Net
is also a joint localization and malignancy classification model for breast tumors, which can
utilize various CNN-based networks as its feature extraction backbone. In our experimental
setup, we used ResNet50 and ResNet18 as the feature extraction backbones for our method,
RMTL, and LA-Net, resulting in the models being named MFFMT18, MFFMT50, LA-Net18,
LA-Net50, RMTL18, and RMTL50, respectively. Tables 7 and 8 present the comparative results
of our model against the other models on the BUSI and MIBU datasets.

From Table 7, we can observe that among the single-task models, EfficientNet performs
the best, achieving an accuracy, precision, sensitivity, specificity, F1-score, and AUC of 0.956,
0.980, 0.932, 0.955, and 0.984, respectively. Our MFFMT50 model achieves the second-best
performance, only falling short of EfficientNet by 0.6% in accuracy (0.950 vs. 0.956), 1.7%
in sensitivity (0.915 vs. 0.932), 0.6% in F1-score (0.949 vs. 0.955), and 0.2% in AUC (0.982
vs. 0.984). However, it surpasses EfficientNet in precision and specificity by 0.6% (0.986 vs.
0.980) and 0.5% (0.986 vs. 0.981), respectively. These results may be attributed to EfficientNet’s
deep architecture (237 layers), which allows it to learn more complex and abstract feature
representations. Such representations can better capture high-level patterns and structures in
the data, thus enhancing model performance. However, this depth also increases the risk of
overfitting, particularly when the training data are limited. The enhanced expressive power
of the model makes it more prone to memorizing details and noise in the training data, rather
than generalizing the true underlying patterns in the data.

Table 7. Comparison results of various models in the BUSI dataset.

Model Method Accuracy Precision Sensitivity Specificity F1-Score AUC

ResNet18 0.929 0.975 0.883 0.976 0.926 0.971
ResNet50 0.932 0.974 0.888 0.976 0.929 0.973

EfficientNet 0.956 0.980 0.932 0.981 0.955 0.984
VIT 0.788 0.798 0.776 0.800 0.784 0.839

RMTL18 0.924 0.977 0.876 0.976 0.923 0.962
RMTL50 0.934 0.969 0.902 0.967 0.933 0.968

LA-Net18 0.920 0.968 0.876 0.967 0.918 0.960
LA-Net50 0.913 0.956 0.871 0.957 0.912 0.964
MFFMT18 0.952 0.968 0.938 0.966 0.953 0.981
MFFMT50 0.950 0.986 0.915 0.986 0.949 0.982
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Table 8. Comparison results of various models on the MIBU dataset.

Model Method Accuracy Precision Sensitivity Specificity F1-Score AUC

ResNet18 0.847 0.882 0.885 0.774 0.884 0.878
ResNet50 0.824 0.849 0.889 0.698 0.869 0.840

EfficientNet 0.866 0.888 0.911 0.780 0.899 0.880
VIT 0.835 0.863 0.893 0.724 0.876 0.798

RMTL18 0.839 0.877 0.879 0.764 0.877 0.853
RMTL50 0.816 0.845 0.882 0.691 0.863 0.838

LA-Net18 0.834 0.868 0.881 0.745 0.874 0.860
LA-Net50 0.860 0.875 0.917 0.750 0.895 0.887
MFFMT18 0.867 0.893 0.906 0.792 0.899 0.881
MFFMT50 0.874 0.893 0.918 0.791 0.906 0.887

Additionally, as observed in Table 7, our designed model achieves the best per-
formance when compared to other multi-task models. Specifically, compared to the
RMTL model, MFFMT50 outperforms RMTL50 in terms of accuracy, precision, sensitiv-
ity, specificity, F1-score, and AUC by 1.6% (0.950 vs. 0.934), 1.7% (0.986 vs. 0.969), 1.3%
(0.915 vs. 0.902), 1.9% (0.986 vs. 0.967), 1.6% (0.949 vs. 0.933), and 1.4% (0.982 vs. 0.968),
respectively. This indicates that MFFMT is more effective in capturing the latent features
in lesion perception tasks that aid in the benign and malignant classification of breast
tumors while alleviating potential information-sharing conflicts during model training.
Moreover, we notice that the ViT model exhibits relatively lower accuracy. This suggests
that traditional convolutional neural networks (CNNs) are still better suited for handling
image data, especially on smaller datasets, compared to pure Transformer models.

As shown in Table 8, when the models are trained on the MIBU dataset, our designed
model MFFMT demonstrates the best overall performance. Specifically, the MFFMT50

model achieves an accuracy of 0.874, precision of 0.893, sensitivity of 0.918, specificity of
0.791, F1-score of 0.906, and AUC of 0.887. Interestingly, by comparing the results from
Tables 7 and 8, we can see that although EfficientNet performed exceptionally well on the
BUSI dataset, its performance on the MIBU dataset was significantly worse. This could
be because the MIBU dataset was collected using different ultrasound devices, leading
to notable differences in image brightness, texture, background, or object angles, which
resulted in poorer robustness for EfficientNet. In contrast, the MFFMT model demonstrated
better robustness. Moreover, by comparing the precision, sensitivity, and specificity results
of the MFFMT model on the BUSI and MIBU datasets, we can easily observe that on the
BUSI dataset, where the number of benign tumors greatly exceeds that of malignant tumors,
the model’s ability to predict benign tumors is higher than its ability to predict malignant
tumors. Conversely, on the MIBU dataset, where the number of malignant tumors far
exceeds that of benign tumors, the model is more sensitive to identifying malignant tumors.
This phenomenon underscores the importance of dataset balance when training machine
learning models. If a dataset significantly over-represents one class, the model may become
biased towards predicting the more frequent class. In clinical settings, different types of
tumors may have varying frequencies in different environments. Therefore, the model’s
performance may vary in different clinical environments. Understanding and accounting
for these environmental differences is crucial for the successful application of models in
clinical practice.

3.5. Explainable Analysis

Class activation mapping (CAM) [31,32] has been widely used to interpret classifica-
tion networks across various applications, including breast ultrasound image analysis [30].
This technique enhances the interpretability of model performance by visualizing the
regions that contribute most to classification decisions. Gradient-weighted class activa-
tion mapping (Grad-CAM) [32] is an effective and widely applicable CAM technique that
highlights potential regions of interest (ROIs) based on the gradient scores of each class.
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In this study, Grad-CAM is utilized to identify discriminative lesion regions in breast
ultrasound images. Our proposed method, along with other multi-task learning methods,
underwent Grad-CAM analysis. Examples of the generated Grad-CAM visualizations
are shown in Figures 17 and 18. It was observed that the attention regions identified by
our method exhibited a higher degree of overlap with the actual lesion locations. These
examples indicate that MFFMT effectively assists the feature extraction process, enabling
the feature extractor to capture more discriminative information from the lesion regions.
Additionally, by analyzing the visualizations across all data, we found that the MFFMT
model produced a higher number of effective visual results compared to other models.
Consequently, our framework reduces interference from noisy backgrounds and enhances
overall classification performance.

Figure 17. Example of Grad-CAM heatmap on the BUSI dataset.

Figure 18. Example of Grad-CAM heatmap on the MIBU dataset.

4. Conclusions and Future Directions

In breast imaging analysis, MTL methods are widely used for lesion region perception
and classification, aiding in breast cancer diagnosis and treatment. However, traditional
MTL methods often overlook how to effectively utilize knowledge from auxiliary tasks for
tumor classification in their shared-backbone network architectures, which may lead to
information-sharing conflicts and impact the performance of the main task. Additionally,
these models have limitations in extracting fine-grained tumor features.

This study proposes a Multi-Feature Fusion Multi-Task convolutional neural network
model for joint lesion perception and benign–malignant classification of breast tumors.
The model effectively extracts richer feature information for lesion region perception and
integrates it with semantic feature information of the tumor. This approach addresses
the inherent information-sharing conflict issues in shared-backbone multi-task learning
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methods and the overfitting problems faced by single-task models, thereby improving the
performance of benign–malignant classification of breast tumors. The experimental results
show that the designed MFFMT model achieves excellent results through Multi-Feature
Fusion and demonstrates good robustness under different data distributions. Moreover,
we used visualization techniques for interpretability analysis of the model, making the
prediction process more transparent and understandable. This enhances trust in the model
by allowing users to understand how the model makes predictions or decisions based on
input data, rather than passively accepting the model’s output.

Despite the good performance of our model, there are still some limitations. For
example, our model was trained under a fully supervised learning paradigm, which
requires a large amount of data with category labels and pixel-level tumor segmentation
annotations or bounding boxes, with it often being both time-consuming and labor intensive
to obtain the latter. Semi-supervised learning (SSL) techniques have received increasing
attention for training deep learning models by utilizing unlabeled data and reducing the
need for large amounts of labeled data. Future research could explore various approaches
to address this issue. For instance, investigating new semi-supervised learning techniques
and designing models suitable for breast tumor classification using SSL could be valuable.
This might include experimenting with generative adversarial networks (GANs) or self-
supervised learning methods to leverage unlabeled data and improve model performance.
Additionally, employing data augmentation and pseudo-labeling methods to develop new
strategies for enhancing training data diversity and improving model generalization could
be beneficial. This includes generating synthetic images and annotations or using self-
training methods to enhance the model’s adaptability to unlabeled data. Finally, integrating
multi-task learning with semi-supervised learning could enhance the model’s performance
on limited labeled data by combining relevant auxiliary tasks (such as region segmentation
or anomaly detection) with the main task of breast tumor classification.

In addition, our MFFMT model incorporates multi-feature fusion and multi-task learn-
ing to enhance breast tumor classification performance. However, this complex network
architecture can lead to higher computational complexity compared to single-task models.
The MFFMT model includes multiple convolutional layers and feature fusion modules,
which result in significant computational and parameter demands, requiring substantial
computational resources during both training and inference. In the future, exploring model
pruning and quantization techniques could reduce the number of parameters and compu-
tational load, thereby accelerating inference speed. Furthermore, in clinical applications,
fast and accurate inference is crucial. After training, the MFFMT model’s inference time
primarily comes from model loading. Therefore, developing a lightweight version of
the model in the future to reduce inference time and improve the feasibility of real-time
applications is an important step. Lastly, in practice, different medical institutions use
various ultrasound imaging devices, which can lead to inconsistencies in data distribution
and affect model performance robustness. To address this issue, future research could
incorporate domain adaptation techniques from transfer learning to effectively handle
potential problems arising from discrepancies between datasets.
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CAD Computer-aided diagnosis
BUSI Breast Ultrasound Image
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SSL Semi-supervised learning

References
1. Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin. 2024, 74, 12–49. [CrossRef]
2. Giaquinto, A.N; Sung, H.; Miller, K.D.; Kramer, J.L.; Newman, L.A.; Minihan, A.; Jemal, A.; Siegel, R.L. Breast cancer statistics,

2022. CA Cancer J. Clin. 2022, 72, 524–541. [CrossRef] [PubMed]
3. Hooley, R.J.; Scoutt, L.M.; Philpotts, L.E. Breast ultrasonography: State of the art. Radiology 2013, 268, 642–659. [CrossRef]

[PubMed]
4. Miglioretti, D.L.; Smith-Bindman, R.; Abraham, L.; Brenner, R.J.; Carney, P.A.; Bowles, E.J.A.; Buist, D.S.M.; Elmore, J.G.

Radiologist characteristics associated with interpretive performance of diagnostic mammography. J. Natl. Cancer Inst. 2007,
99, 1854–1863. [CrossRef] [PubMed]

5. Shan, J.; Alam, S.K.; Garra, B.; Zhang, Y.T.; Ahmed, T. Computer-aided diagnosis for breast ultrasound using computerized
BI-RADS features and machine learning methods. Ultrasound Med. Biol. 2016, 42, 980–988. [CrossRef]

6. Han, S.; Kang, H.K.; Jeong, J.Y.; Park, M.H.; Kim, W.; Bang, W.C.; Seong, Y.K. A deep learning framework for supporting the
classification of breast lesions in ultrasound images. Phys. Med. Biol. 2017, 62, 7714. [CrossRef] [PubMed]

7. Yap, M.H.; Goyal, M.; Osman, F.M.; Martí, R.; Denton, E.; Juette, A.; Zwiggelaar, R. Breast ultrasound lesions recognition:
End-to-end deep learning approaches. J. Med. Imaging 2019, 6, 011007–011007.

8. Wu, G.G.; Zhou, L.Q.; Xu, J.W.; Wang, J.Y.; Wei, Q.; Deng, Y.B.; Cui, X.W.; Dietrich, C.F. Artificial intelligence in breast ultrasound.
World J. Radiol. 2019, 11, 19. [CrossRef] [PubMed]

9. Abbas, A.; Abdelsamea, M.M.; Gaber, M.M. Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional
neural network. Appl. Intell. 2021, 51, 854–864. [CrossRef]

10. Tang, P.; Yang, X.T.; Nan, Y.; Xiang, S.; Liang, Q.K. Feature pyramid nonlocal network with transform modal ensemble learning
for breast tumor segmentation in ultrasound images. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2021, 68, 3549–3559. [CrossRef]

11. Zhou, Y.; Chen, H.J.; Li, Y.F.; Liu, Q.; Xu, X.; Wang, S.; Yap, P.T.; Shen, D.G. Multi-task learning for segmentation and classification
of tumors in 3D automated breast ultrasound images. Med. Image Anal. 2021, 70, 101918. [CrossRef] [PubMed]

12. Rasaee, H.; Rivaz, H. Explainable AI and susceptibility to adversarial attacks: A case study in classification of breast ultrasound
images. In Proceedings of the 2021 IEEE International Ultrasonics Symposium (IUS), Xi’an, China, 11–16 September 2021;
pp. 1–4.

13. Chowdary, J.; Yogarajah, P.; Chaurasia, P.; Guruviah, V. A multi-task learning framework for automated segmentation and
classification of breast tumors from ultrasound images. Ultrason. Imaging 2022, 44, 3–12. [CrossRef] [PubMed]

14. Li, K.; Li, H.; Anastasio, M.A. A task-informed model training method for deep neural network-based image denoising. In Medical
Imaging 2022: Image Perception, Observer Performance, and Technology Assessment; SPIE: Bellingham, WA, USA, 2022; pp. 249–255.

https://github.com/jinzhuwei/MFFMT
http://doi.org/10.3322/caac.21820
http://dx.doi.org/10.3322/caac.21754
http://www.ncbi.nlm.nih.gov/pubmed/36190501
http://dx.doi.org/10.1148/radiol.13121606
http://www.ncbi.nlm.nih.gov/pubmed/23970509
http://dx.doi.org/10.1093/jnci/djm238
http://www.ncbi.nlm.nih.gov/pubmed/18073379
http://dx.doi.org/10.1016/j.ultrasmedbio.2015.11.016
http://dx.doi.org/10.1088/1361-6560/aa82ec
http://www.ncbi.nlm.nih.gov/pubmed/28753132
http://dx.doi.org/10.4329/wjr.v11.i2.19
http://www.ncbi.nlm.nih.gov/pubmed/30858931
http://dx.doi.org/10.1007/s10489-020-01829-7
http://dx.doi.org/10.1109/TUFFC.2021.3098308
http://dx.doi.org/10.1016/j.media.2020.101918
http://www.ncbi.nlm.nih.gov/pubmed/33676100
http://dx.doi.org/10.1177/01617346221075769
http://www.ncbi.nlm.nih.gov/pubmed/35128997


Curr. Oncol. 2024, 31 5079

15. Liu, S.K.; Johns, E.; Davison, A.J. End-to-end multi-task learning with attention. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition 2019, Long Beach, CA, USA, 15–19 June 2019; pp. 1871–1880.

16. Crawshaw, M. Multi-task learning with deep neural networks: A survey. arXiv 2020, arXiv:2009.09796.
17. Vakanski, A.; Xian, M.; Freer, P.E. Attention-enriched deep learning model for breast tumor segmentation in ultrasound images.

Ultrasound Med. Biol. 2020, 46, 2019–2033. [CrossRef]
18. Zhang, G.; Zhao, K.H.; Hong, Y.F.; Qiu, X.Y.; Zhang, K.X.; Wei, B.Z. SHA-MTL: Soft and hard attention multi-task learning for

automated breast cancer ultrasound image segmentation and classification. Int. J. Comput. Assist. Radiol. Surg. 2021, 16, 1719–1725.
[CrossRef]

19. Xu, M.; Huang, K.; Qi, X.J. Multi-task learning with context-oriented self-attention for breast ultrasound image classification
and segmentation. In Proceedings of the 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), Kolkata, India,
28–31 March 2022; pp. 1–5.

20. Xu, M.; Huang, K.; Qi, X.J. A regional-attentive multi-task learning framework for breast ultrasound image segmentation and
classification. IEEE Access 2023, 11, 5377–5392. [CrossRef]

21. Lyu, Y.C.; Xu, Y.H.; Jiang, X.; Liu, J.N.; Zhao, X.Y.; Zhu, X.J. AMS-PAN: Breast ultrasound image segmentation model combining
attention mechanism and multi-scale features. Biomed. Signal Process. Control 2023, 81, 104425. [CrossRef]

22. Al-Dhabyani, W.; Gomaa, M.; Khaled, H.; Fahmy, A. Dataset of breast ultrasound images. Data Brief 2020, 28, 104863. [CrossRef]
[PubMed]

23. Lin, Z.; Lin, J.H.; Zhu, L.; Fu, H.Z.; Qin, J.; Wang, L.S. A new dataset and a baseline model for breast lesion detection in ultrasound
videos. In Medical Image Computing and Computer Assisted Intervention—MICCAI 2022, Conference on Medical Image Computing and
Computer-Assisted Intervention, Singapore, 18–22 September 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 614–623.

24. Woo, S.;Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional block attention module. In Proceedings of the European Conference
on Computer Vision (ECCV), 2018, Munich, Germany, 8–14 September 2018; pp. 3–19.

25. Hou, Q.; Zhou, D.; Feng, J. Coordinate attention for efficient mobile network design. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2021, Nashville, TN, USA, 20–25 June 2021; pp. 13713–13722.

26. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
27. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition 2016, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
28. Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the 36th International

Conference on Machine Learning, Long Beach, CA, USA, 10–15 June 2019; pp. 6105–6114.
29. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;

Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929.
30. Fan, Z.; Gong, P.; Tang, S.; Lee, C.U.; Zhang, X.; Song, P.; Chen, S.; Li, H. Joint localization and classification of breast masses on

ultrasound images using an auxiliary attention-based framework. Med. Image Anal. 2023, 90, 102960 [CrossRef] [PubMed]
31. Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning deep features for discriminative localization. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition 2016, Las Vegas, NV, USA, 27–30 June 2016; pp. 2921–2929.
32. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual explanations from deep networks

via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision 2017, Venice, Italy,
22–29 October 2017; pp. 618–626.

33. BUSI DateSet. Available online: https://scholar.cu.edu.eg/?q=afahmy/pages/dataset (accessed on 11 June 2023).
34. MIBUS DateSet. Available online: Available online: https://drive.google.com/file/d/1LVXK34OJhC2LkqqyMmVFnXsXQavvZdeF/

view (accessed on 12 June 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.ultrasmedbio.2020.06.015
http://dx.doi.org/10.1007/s11548-021-02445-7
http://dx.doi.org/10.1109/ACCESS.2023.3236693
http://dx.doi.org/10.1016/j.bspc.2022.104425
http://dx.doi.org/10.1016/j.dib.2019.104863
http://www.ncbi.nlm.nih.gov/pubmed/31867417
http://dx.doi.org/10.1016/j.media.2023.102960
http://www.ncbi.nlm.nih.gov/pubmed/37769552
https://scholar.cu.edu.eg/?q=afahmy/pages/dataset
https://drive.google.com/file/d/1LVXK34OJhC2LkqqyMmVFnXsXQavvZdeF/view
https://drive.google.com/file/d/1LVXK34OJhC2LkqqyMmVFnXsXQavvZdeF/view

	Introduction
	Materials and Methods 
	Breast Tumor Dataset
	MFFMT Model Architecture
	Feature Extractor
	Contextual Lesion Enhancement Perception (CLEP) Module
	Multi-Feature Fusion Module
	Loss Function

	Hyperparameter Optimization

	Results
	Validation of Different Modules' Effectiveness
	Exploring the Impact of Different Feature Fusion Methods on the Model
	Exploring the Impact of Loss Function Parameters on Model Performance
	Comparison with Other Models
	Explainable Analysis

	Conclusions and Future Directions
	References 

