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ABSTRACT

Randomized online experimentation is a key cornerstone for evaluating decisions
for online businesses. The methodology used for estimating policy effects in online
experimentation is critically dependent on user identifiers. However, nowadays
consumers routinely interact with online businesses across multiple devices which
are recorded with different identifiers to maintain privacy. The inability to match
different device identities across consumers leads to an incorrect estimation of
various causal effects. Moreover, without strong assumptions about the device-user
graph, the causal effects are not identifiable. In this paper, we consider the task of
estimating global treatment effects (GATE) from a fragmented view of exposures
and outcomes. Experiments show that estimators obtained through our procedure
are superior to standard estimators, with a lower bias and increased robustness.

1 INTRODUCTION

A/B testing has become indispensable to online businesses for improving user experience and driving
up revenue. The infrastructure which enables this is critically dependent on identifiers, such as
cookies or mobile device IDs, traditionally used by websites and apps to track users’ browsing
behavior and provide personalized content and ads. However, the assumption about the availability of
identifiers has become more and more tenuous. Users nowadays have become increasingly reliant
on multiple devices. At the same time, the use of third-party identifiers is being curbed, due to
privacy concerns, by both governmental and non-governmental entities, through legislation such as
the GDPR ! and through the deprecation of third-party cookies and advertising identifiers such as
the Android Advertising ID (AAID) and the Identifier for Advertisers (IDFA). This means that a
customer’s effective persona as seen by the advertiser is broken into multiple units — a phenomenon
known as ‘identity fragmentation’[18, 50].

>

Identity fragmentation across devices creates a fundamental issue in A/B testing, as the users
exposure to treatment becomes uncertain. Consider the case of a business exploring whether a certain
advertisement produces a higher click-through rate. Under the standard A/B testing protocol, a
random subset of users will be shown the new ad (B), and the outcome recorded. By comparing the
outcomes for these users against the set of users who received ad A, one can estimate the relative
change caused in the click-through rate by ad B. For a user who visits using different devices, for
instance a smartphone and a tablet, the unique identifier (say IDFA), allows the server to consistently
show the user only ad B. However, without identifiers, one cannot be certain of whether a given
device is the treatment group or the control group, and the user gets shown different ads on different
visits, causing the observed outcome to be affected by mixed treatments.

Since the outcomes are dependent on user-level treatments, while our observation of them is at device
level, we see treatments at a device affecting outcomes for other device. This has been known as
interference. or spillover [36, 44]. Most methods involving spillover, assume strong restrictions on
the structure of spillover [55, 46]. The deprecation of identifiers introduces a new scenario, requiring
the estimation of treatment effects on an uncertain network structure. This is because while device
linking might be difficult or impermissible, some information about the device graph can be obtained,
for instance, from devices with signing information, or geolocation based on IP addresses or other

"https://gdpr-info.eu/
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Figure 1: The bipartite graph (left) presents the connections between the set of users and devices.
Treatments Z; applied on a device, exposes the user of the device to the corresponding experience
or algorithm etc. The outcomes depend on the total exposure a user has to the treatment, hence the
outcome at device ¢ depends on the assignment of other device j, which induces an interference graph
(Middle). Under uncertain linkages the induced interference graph has potentially extra (dashed)
edges (Right).

meta-data [66]. As such an assumption can reasonably be made concerning the partial information
about the device-user pairings, represented by the ‘device graph’.

Contribution We consider global average treatment effect (GATE) estimation under identity frag-
mentation assuming that interference comes only from devices that share the same user and that,
for each user, a superset of their devices is known. We formalize this problem as treatment effect
estimation with uncertain network interference, where the interference graph is based on the ‘device
neighborhood’ i.e. the set of devices which share a user. Unlike other works on interference, we do
not assume any of the following a) fully known network structure, b) linear outcomes or c) repeated
measurements/multiple trials. We show that the GATE is identifiable in this setting, and propose a
variational inference based method to estimate the effect. Through extensive experiments on both
simulated and real data we show that our method is superior to other interference aware methods
while making weaker assumptions.

2 RELATED WORK

Network Interference Existing works on network inference incorporate various sets of assumptions
on the interference structure to provide an estimate of treatment effects [8, 14, 16, 30, 81]. A limitation
of these approaches is that they require complete knowledge of the network structure, while we
consider an incomplete knowledge of the network. Recently, some methods have been proposed
based on multiple measurements which can address the issue of interference [73, 19, 98] without any
further knowledge about its structure. However, such methods assume stationarity i.e. the outcomes
do not vary between the trials, which is unrealistic for our motivating use case of continuous
optimization. Furthermore, in the more general settings, conducting multiple trials can be difficult, if
not impossible [72]. As such, we aim to develop a method which can work with only a single trial
and/or observational data from an existing test.

We summarize some common approaches, and how our method differs from them in Table 1. To the
best of our knowledge, the only method which can handle a) non-linearity in outcomes; b) works
with un-structured graphs; c) without exact knowledge of the graph edges and d) without multiple
trials and e) without side information. A detailed survey of the relevant literature is in the Appendix.

3 NOTATION

We are given a population of n devices. Let Z be the treatment assignment vector of the entire
population and let Z denote the treatments’ space, e.g., for binary treatments Z = {0, 1}". We use
the Neyman potential outcome framework [54, 64], and denote by Y;(z) the potential outcome for
each z € Z. We can make observations at only the device level, these observations are denoted as Y;
for device :. Additionally we may have access to covariates X; at the devices. Note that the devices
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General | Uncertain Non- Single
Graph Edges Linear Trial
Outcome

[36, 51] X

[99, 98] X X

[19,73] X

[4, 67] X

[81,23,77] X X

Ours

Table 1: Literature Summary. We list a few important works, criteria relevant to our work, and
whether the criteria are satisfied v* or not x. Ours is the only method which satisfies all criteria.

might have a common user, as presented in Figure 1. We assume that the outcome is determined
by the user action, and hence the potential outcome at a device 7 need not depend only on its own
treatment assignment but also other treatments allocated to the user’s devices. This is a violation of
the SUTVA assumption [21, 36]; and is commonly called interference or spillover.

The user-device graph induces a dependence between device level outcomes. This dependence can
be represented in a device-device graph (Figure 1(Middle)), where each node represents a device and
the presence of an edge indicates a common user between the device pair. The underlying graph is
given by its adjacency matrix A € R"*", with A;; = 1 only if an edge exists between devices 4
and j, and by convention A;; = 1. Let NV;(A) = {j : A;; = 1} be the set of neighbors of device i
in the device-device graph. Since we assume the underlying graph is fixed, we will use A;(A) and
N; interchangeably. We assume that the outcomes depend on the treatments received by a user (i.e.
SUTVA holds at the user level). This means that the interference is limited to a node’s neighbours
in the device-device graph. We will consider randomized Bernoulli designs i.e. each device ¢ gets
allotted the treatment z; = 1 independently with probability p; € (0, 1). This is natural and easy to
implement, and satisfies standard randomization and positivity assumption in causal inference.

The desired causal effect is the mean difference between the outcomes when z = Ti.e. zi = 1Vi
and when z = 0i.e. z; = 0Vi. Under the aforementioned notations, this causal effect is given by
7(1,0) = IS Y (1) — D Y;(0) . If the true graph A is known, under certain assumptions
one can estimate the above treatment effect [36, 33]. However, in our problem setting, knowledge
of the true graph would imply knowing which devices belong to the same user. As such we cannot
assume, that A is known. Instead we assume access to a model M which provides information on A.
Specifically, we assume that the M can be queried for any device ¢ to get a predicted (or assumed)
neighbours of a device (see Figure 1 (Right)). We will denote this neighbourhood by M(i). Our
method is agnostic to how M was formed, and so in this work, we consider M as given. Often time,
sume information can be obtained by using meta-information such as IP, geo-locations or from users
who have given permission for device linking. This provides a significant practical advantage over
the prior methods that necessitate knowledge of the exact neighborhood.

Our primary focus is on estimating the Generalized Average Treatment Effect (GATE) under the
previously outlined scenario, where there exists a degree of uncertainty concerning the network
structure. As such we want an approach which is agnostic to how M is obtained and robust to
variations in it. Furthermore we would like to impose only constraints on M (%) that are easy to
satisfy. A discussion of some common estimators like Horvitz-Thompson (HT) estimate and
Difference-in-Means (DM) estimator, and their inapplicability is in the appendix.

4 METHOD

Randomized experiments with interference (even with neighbourhood interference) can be difficult to
analyze since the number of potential outcome functions grows exponentially: 2> for unit i; unlike
the SUTVA case where one has only two outcomes. For meaningful inference, one often invokes an
exposure mapping framework [36, 2, 4, 12]. Under this approach, one uses exposure variables e;,
and assumes that the outcome Y; depends on the treatment z only via the exposure variable e; i.e.
Y; = Yi(e;(z)). Common examples include exposures measured as fraction[23, 81] or number [83]
of neighbours receiving treatment. We too consider an exposure model, but unlike most earlier works
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we allow for non-linearities in the model (A1). We will also assume that for each node ¢, the assumed
neighbours M) are a superset of its true neighbours (A2).

Exposure Assumptions

Exposure Model: Y;(z, ;) = co(x;) + c1(z:)z + g(w? Z o(z;, Xi))+e  (AD
JEN;
Neighbourhood Superset: M (i) D N; (A2)

Here € is mean zero noise, and x; are the covariates at unit . We will sometimes denote > ¢(z, X)
as just the exposure e;. Since ¢ in 4 depends on the individual covariates, this assumption supports
unit-level observed heterogeneity. We can also include the covariates x; of the neighbouring units as
well in ¢ but we supress this for simplicity. In addition to the Assumptions (A1) and (A2), we will
also posit standard assumptions of network ignorability, positivity and consistency [60]. 2.

Remark 1. Unlike most exposure models, we allow ¢ to be a vector function instead of scalar. Due
to using vector ¢, (A1) can support set function of neighbourhood treatments [11, 70, 42].

Remark 2. A2 can seem to be a strong assumption, however in many applications, reasonable meth-
ods to satisfy this assumption. As a simple example, consider all devices which share a geographic
location or IP, with a given device 1. This is very likely to be a superset of all devices that share a user
with i. Furthermore, in practice, device-linking methods are used to link with fragmented identities
based on confidence scores i.e. they have a probabilistic version of the adjacency matrix [76, 66].

4.1 MODEL TRAINING

We propose using a latent variable model to infer the treatment effect. The dependence between
various variables is depicted in Figure 2. We denote by E the true exposure which is the key latent
variable of the model. E is the exposure as implied by M, which is our uncertain representation of
the underlying device graph. The key difference between this and a standard exposure based causal
model, is that in the latter the true exposure F is observed whereas in our model it is unobserved.
Instead of IZ we observe the noise corrupted value E. Due to noisy treatment values, do-calculus
rules [60] are not sufficient for identification [68].

The joint distribution p(E, E, Y| X, Z) factorizes as pg(Y |E, X)p(E|E)p(E|Z). We parameterize
the outcome distribution P(Y|E, X) via a GLM (Generalized Linear Model) which expresses the
mean E[Y|Z = z, X = z] in terms of a neural network i.e. we use a neural network for each of the
functions cg, ¢1, g, w in Al. For the p(E|E) we use a Gaussian model. Finally p(Z]X) is just the
allocation mechanism which is known to us as the experimenter.

Since the space of the latent variable E' is combinatorially large, we solve a continuous relaxation of
the problem, using variational inference [40, 41]. We use a Gaussian variational approximation with
both mean and variance parameterized, as the posterior g for the latent variable.

Specifically, we wuse a ¢q of the form
N(e|uq(éaw7y; ¢)7Uq(é733ay§¢))- As our ObjeC-
tive function, we use the K-sample importance
weighted ELBO L [13], which is a lower bound for

the conditional log-likelihood.

N K
CK:ZIE log%Zwm- <logps (1)
i=1 j=1 Figure 2: Graphical model depicting re-
lationships between different variables
where w; ; = po (€}, 2i j, Ti, Yi)/qp(€ij|€i> Tis ¥i) are for our model. Observed variables E
importance weights, and the expectation is respect to 9¢-(noisy exposure), Y (effect/outcome), X
To reduce training variance we use the DReG estimator (covariates), and Z (treatment allocation)

[82]. Once the parameters ¢ have been trained, 7 can be 410 shaded to distinguish them from the
estimated with the fitted outcome model pg(Y'|E, X). hjdden variable E (true treatment).

2discussed in Appendix
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4.2 IDENTIFIABILITY

A key concern in causal inference, is the identifiability of the desired estimand, as otherwise there
is no justification for the estimated value to correspond to the ground truth. We demonstrate the
identifiability of our model, and state it as Proposition 1. The proof, included in the appendix, uses a
result in Schennach and Hu [69]. We summarize the crux of the argument below, while deferring the
details to Appendix B.

Proposition 1. Under certain technical conditions 3 on the function g, the conditional mean function
E[Y|Z = 2z, X = z] = py (x, ) in our model is identifiable.

When the graph A is exactly known, one can compute the exposures ¢;, and conduct a regression of
the observed outcomes Y; on the exposures e;. Under standard assumptions [60] this identifies the
population-level mean potential outcomes functions, denoted as p1y- [16].

However, since in our problem, the graph is unknown, obtaining e; is not possible. To address this
obstacle, we reframe the inference problem in our scenario as a latent variable regression problem.
Observe that the exposure e; under the assumed graph M is given by e;(M) = 3= vq(i) @(25, Xi).
Due to A2 e;(M) can be decomposed as e;(N;) + Ae;, where Ae; is an independent error term.
Thus e; (M) act as noisy estimates of e; (N;).

Next, we argue the identifiability of the above regression task. In general models of the form:

Y =g(E)+AY; E=E+AE AE 1L E

are identified from observations of Y, E [69]. Using a similar argument, our model is identifiable .

Remark 3. This result does not apply when M(i) C N; because then the error term Ae; =
€;(M) — €;(N;) is no longer independent of the true exposure €;(N;). In that case, our approach is
equivalent to regression with endogenous errors, which requires additional information [94, 104].

5 EXPERIMENTS

5.1 AIRBNB MODEL

We conduct experiments with a model designed for the AirBnB vacation rentals domain [48]. The
original model is for rental listings and their bookings for a two-sided marketplace. We adapt this
model for our purposes, replacing customers with devices and listings with users. The measured
outcome Y; is 1 iff there is a click on device 7. A user watches ads on a its devices and, if interested,
clicks on the ad but on only one device. This leads to interference between outcomes on the devices
as only one (if any) receives a click. The treatment is considered to be a better algorithm which scales
the probability of click on the treated unit by the parameter «v. The underlying outcome model in this
scenario cannot be written as an exposure model. As such this is a good testbed for testing robustness
of our model, since, like in the real-world, exposure models are just approximations to the unknown
and complex actual interference function. We use the protocol in Brennan et al. [12] .

For baselines, we use the SUTVA/DM estimator, an exposure model with oracle graph i.e. one
where the exact graph is known (labelled Exp), and a Horvitz-Thompson estimator with oracle graph
(labelled HT). The Exp model is same as the one used in Brennan et al. [12], while the HT estimator is
the one described in Section 3. We also work with the PERC/DWR [103] and ReFeX [34] estimators,
which also need oracle graphs. The results are presented in Figure 3.

Since the exposure model can only partly model the actual outcomes, in this case, bias is not zero.
On the other hand, the Oracle HT estimator (which makes no exposure assumptions) gives unbiased
though higher variance estimates. The model is Oracle in using the exact interference graph. A
different model is the Oracle Exposure (Exp) model which used the true graph to compute exposure
using the model in Brennan et al. [12]. However even that model will be biased as the ground truth is
not an exposure model. From the result it is also clear that our approach works as well as the Oracle
Exposure model. Furthermore, even on the MSE metric our model performs comparably to the Exp
model. Our method works even when the outcomes do not obey the assumed exposure mapping.
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Figure 3: Visualization of performance of different GATE estimators on the AirBnB model. The lines
represent a) absolute relative bias | ~="| and b) relative RMSE of various algorithms as the indirect
treatment effect « increases.
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Figure 4: Impact of neighbourhood sizes on the absolute relative bias i.e. | f;T | GATE estimation.
Negative fraction of neighbours indicate the case when M(i) C N i.e. we missed pertinent
neighbours. The bias is high when given small neighbourhoods, as they miss pertinent edges. As the
| M (7)] increase, the bias reduces, but the uncertainty widens.

5.2  EFFECT OF NETWORK UNCERTAINTY

Next we examine the impact of the neighborhood accuracy M (i) on our methos. We experiment
with both the AirBnB Model and synthetic Erdos-Renyi graphs. For these experiments, we fix a
single graph, and find how treatment effect estimate from our method behaves as we change the
neighbourhoods M ().

We observe a similar trend in both experiments: when M (i) 2 N holds true for all nodes %, our
approach can offer an lower bias estimate of the treatment effect. Nonetheless, as the number of
extraneous connections within M (i) grows, so does the uncertainty in estimation. Conversely, if
M (i) neglects a pertinent node, it may introduce greater bias into the estimation process. This
manifests within our results, where the model predictions initially exhibit strong bias. However, as
neighborhood sizes expand, bias diminishes while variance increases.

6 CONCLUSION

Identity fragmentation is an increasingly relevant problem in online A/B testing. We develop a method
to estimate GATE under a relaxed assumption of having knowledge only about the super-set of the
identities that belong to the user. This relaxed assumption can be practically far more feasible than
requiring the exact network. We establish the efficacy of our method under this superset assumption.
A limitation of our work is that the variance of the estimate grows with the size of the neighbourhoods,
and so for practical applications one needs to balance the risk of higher variance against potential
bias. Future research direction include incorporating temporal data and longitudinal studies.

3The primary restriction is that g should not be of the form ¢(z) = a + bln(exp(cz) + d)
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A RELATED WORK

Network Interference Network interference is a well studied topic in causal inference literature,
with a variety of methods proposed for the problem. Existing works in this area incorporate various
sets of assumptions to provide an estimate of treatment effects. A common approach is the exposure
mapping framework which allows defines a degree of ”belonging” of a unit to either the treatment
or control group [4, 7, 49, 88]. Typically linearity with respect to neighbouring treatments is also
assumed [23, 47, 100, 91] but is not neccessary [77]. A limitation of these approaches is that they
require complete knowledge of the network structure. While our approach also relies on imposing an
exposure-based structure to the form of interference, however we work with an incomplete knowledge
of the network.

Treatment effect estimation with unknown network interference has also been studied beginning with
the seminal work of Hudgens and Halloran [36]. The key insight behind these works is that if the
network can be broken into clusters, then one can perform treatment effect estimation without the
full knowledge of the interference structure withing the clusters. Other works such as Auerbach
and Tabord-Meehan [7], Bhattacharya et al. [10], Liu and Hudgens [51], Tchetgen and VanderWeele
[79], VanderWeele et al. [86] have extended this idea further. Often the bias of these estimators
depends on the the number of edges between the clusters, which has led to optimization-based
methods for constructing clusters [23, 30]. However, this still requires information about the clusters,
and is not applicable if multiple clusters of the required type do not exist. On the other hand, our
method can handle general unstructured graphs. Finally, there are methods, which under restrictive
assumptions, use SUTVA based estimates for one-sided hypothesis tests for treatment effect under
interference [17, 6, 43].

Estimation without any side information: Recently, some methods have been proposed based on
multiple measurements which can address the issue of interference[73, 19, 98] without any further
knowledge. However, such methods assume stationarity i.e. the outcomes do not vary between the
trials. This simplifies GATE estimation by providing access to both the factual and counterfactual
outcome. However, such a model is unrealistic for our motivating use case of continuous optimization.
Furthermore, in the more general settings, conducting multiple trials can be difficult, if not impossible,
in itself [72]. As such, we aim to develop a method which can work with only a single trial and/or
observational data from an existing test.

Estimation with Noisy Data Many methods and heuristics have been proposed for estimation of
treatment effect [15, 68, 56, 52] with measurement noise in data. Yi et al. [96] provides an overview of
recent literature on the bias introduced by measurement error on causal estimation. Earlier works have
focused on qualitative analysis by encoding assumptions of the error mechanism into a causal graph
[35], outcome [75], confounders [61, 53] and mediators [84]. Methods based on assuming knowledge
of the error model are also common [32, 74, 28]. Existing methods for estimating causal effects
under noise rely upon additional information such as repeated measurements [73, 19], instrumental
variables [104, 80] or a gold standard sample of measurements [72]. While few works have also tried
to study causal inference with measurement errors and no side information [53, 62], these works focus
on noisy measurements of unknown confounders or covariates, whereas our focus is on uncertain
network interference. Finally, some works have considered partial identification of treatment effects
[102, 95, 101, 97, 31] and sensitivity analysis [37, 87, 22].

Inverse Propensity/Horvitz-Thompson Estimate If the graph is known and when all treatment
decisions independently set with probability p, one can use the classic Horvitz Thompson estimator
(or inverse propensity estimator) as:

1 Hje/\fizj Hjej\/,;(lfzj) 1 Zj (1—2;)
= o (s ) = h s (5 - I 6

HjENi p 7 JEN; JEN; p)

This inverse propensity estimators (and its derivatives) do not require any further assumption other
than randomization and positivity. However, this estimator filters out any units for which all neigh-
bours are not in control or treatment groups, and is not be meaningful, when there do not not exist
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units for which all the neighbours are in control or treatment groups. This is particularly trouble-
some under lack of indentifiers, as uncertainty in the linkages means accounting for more possible
units which interfere with a given unit, and including such units adds to the estimation issue of
HT-estimators.

SUTVA Estimate The SUTVA estimate (or the DM estimate) is given by
2 YillZz =1] > Yil[Z; = 0]
212 =1] 2112 = 0]

. 1 0
Tsutva =Y —Y =

where Y%/1 are the average of observed outcomes for units where Z; = 0/1 respectively. This
estimator while simple and practical, requires the SUTVA assumption; and hence can be misleading
in our scenario.

B ESTIMATION AND IDENTIFIABILITY

Proposition 1. [f the neighbourhood proposed by M i.e. M(i) always contains the true neighbour-
hood N, and is sufficiently larger than N, then under the exposure assumption we can treat AZ as
approximately gaussian.

Proof. Under Equation (A2) we can rewrite the exposure under M as:

Z b(z, Xi) = Z b(zj, Xi)

JEM(i) JEM>)NN;

+ Z ¢(Ziji)

JEM@)—N;

Now, since allocation of device level treatments are independent, Z; 1L Z;, as well as its in-
dependent of X;, the individual exposure terms ¢(Z;, X;) 1L Z; for any i € M(i) — N;. If
|IM(3)] >> |N;|é(z;, X;), then the central limit theorem implies that the sum is approximately

D jemii-n; (25, Xi) as N(, [M (i) — Ni|[Var(9)) = N(¢, |M(i)|Var(¢)) u

B.1 ASSUMPTIONS

Assumptions

Model: Y;(z,z;) =E[Y|Z =2,X,; = xi] +e

= co(x;) + c1(xy)z + g(w Z é(z5, X (A2)
JEN;

Neighbourhood Superset: M (i) 2 N (A3)

Network Ignorability: Y (z) 1L Z Vz (Ad)

Positivity: P(z|X) > 0Vz (A5)

Consistency: Y; =Y;(2)if Z = z (A6)

B.2 IDENTIFIABILITY

Proposition 2. Our model is identifiable if 1) Vx, vy (x, 2) is continuously differentiable everywhere
as a function of z, and 2) Vx, 0, puy (x, z) # 0

Before arguing the previous proposition, we first state Theorem 1 from [69]. Our presentation of this
result broadly follows that of Plldnen and Marttinen [62].
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Theorem 1 from Schennach and Hu [69]: Let y, z, z*, Az, Ay be scalar real-valued random
variables related through

y=9(") + Ay 2
z=2z"+ Az, 3)
and y, z are observed while all remaining variables are not and satisfy the following conditions:

Condition 1. The variables z*, Az, Ay, are mutually independent, E[Az] = 0, and E[Ay] = 0
(with E[|Az|] < oo and E[|Ay]] < c0).

Condition 2. E[¢?27] and E[¢"72Y] do not vanish for any ¢,y € R, where i = /—1.

Condition 3. (i) E[¢*¢*"] # 0 for all £ in a dense subset of R and (ii) E[¢?9(*7)] # 0 for all v in a
dense subset of R (which may be different than in (i)).

Condition 4. The distribution of z* admits a uniformly bounded density f,-(z*) with respect to the
Lebesgue measure that is supported on an interval (which may be infinite).

Condition 5. The regression function g(z*) is continuously differentiable over the interior of the
support of z*.

Condition 6. ¢'(2*) # 0 almost everywhere, and f.«(z*) is continuous and nonvanishing
Theorem 1. Let Condition 1-6 hold. Then the following holds:

1. g(z*) is not of the form
g(z*) =a+bln(e”™ +d) 4)

for some constants a,b,c,d € R. Then, f,+(z*) and g(z*) (over the support of f.«(z*))
and the distributions of Az and Ay are identified.

2. If g(z*) is of the form (4) then, neither f,«(2*) nor g(z*) in Model 1 are identified iff z*
has a density of the form

for (2%) = Aexp(—Be®® + CDz*) (e + B)~F, 5)
withc € R, A, B, D, E,F € Rt

Next, we argue how Theorem 1 implies Proposition 2.

Consider the conditional versions of our, i.e. consider the restricted version where the covariates X
have been fixed. It is clear from Proposition 1 and Assumption A2 that Equations (2) and (3) are
satisfied for this model. Condition 1 of Theorem 1 also follows from Proposition 1 and Assumption
A2.

Condition 2,3 are technical conditions satisfied by most distributions ( including Gaussian, Uniform

and exponential family distributions). Condition 4 is satisfied because F|FE is approximately normal.
Furthermore it will also hold for a variety of bounded continuous distributions. Condition 5,6 hold
from the assumption on py stated in the proposition. With the conditions of Theorem 1 satisfied,
the conditional mean function E[Y|Z.X = x| are identified based on Theorem 1 except for when

py (, z*) might be of the form a + bln(e®*” + d).

Since the conditional means py (Z, X = x) is identifiable for all x, the overall function py (Z, X) is
also identified.

B.3 RELATION TO SCHENNACH AND HU [69] METHOD

Schennach and Hu [69] proposed estimating the function g in Equation 2 through the following
optimization.

g:argmgaxfir}%ﬁgln/fl(y—g(z*))fQ(z—z*)f3(z*)dz* (6)
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where f1, f2, f3 are restricted to be probability densities. This method is effectively maximizing the
log-likelihood of the observed data under a latent variable framework. The latent variable, denoted as
z*, is integrated out within the objective which is a normalized density. Comparing this equation with
our Equation 1, it becomes apparent that these methods are related. Specifically, the log-likelihood
in Equation 1; can be obtained from Equation 6 by replacing z* with e and z by €. The two key
differences between our objective and that of Schennach and Hu [69] is a) that our likelihoods model
conditioned on covariates X, and b) we can use specifics form for the densities f2, f3 and c) instead
of directly maximizing likelihood we are maximizing the ELBO. The first difference is natural as
we are fitting conditional models, unlike Schennach and Hu [69]. The choice of specific densities is
also an issue in our scenario. As the experimenter, we already know the data generating density f3
function, and by Proposition 1, f2 is well approximated by a Gaussian. This eliminates the need to
learn these densities for our problem. Finally, instead of computing the objective integral via MCMC
and optimization, we are instead learning using stochastic variational bayes method. Given ideal
conditions, such as fully flexible posteriors and exact optimization, our proposed method converges
towards the same solution as that obtained by the method of Schennach and Hu [69].

B.4 ESTIMATION

Here we describe obtaining the estimate of treatment effect 7 from the model learnt in Section 4.2. We
note that the variational posterior ¢4 is providing us the estimate of the latent exposures I, while the
model py(Y'|E, X) is learning the outcome models. Specifically, since pg(Y'|E, X) is a GLM-style
model parameterizing the mean py (e, ) one can directly obtain the counterfactual mean functions
from it. These estimated means can be then plugged in Equation ?? to obtain the treatment effect 7.

Under A1, this computation is further simplified by noting that output of ¢ is independent of the
treatment z. Furthermore, we can see from A1 that the mean E[Y'|F, X] is direct sum of the output
of the networks cg, c1, w when provided the corresponding inputs. As such one can directly obtain
the treatment effect using the following equation:

£ =

> iy (T,a) — iy (0, )

3=

— izn: [cl(mi) + g(w(z;) e (T, l‘i))]

Here c1, g, w etc are neural networks whose parameter was estimated in learning py.

B.5 STATISTICAL INFERENCE
In general analytical formulas for non-linear models are difficult and use some form of approximation

using estimating equation or quasi-likelihood[1, 89].Another approach is to use bootstrap approaches
[24]. We describe a method for conducting inference in both these approaches here.

B.5.1 PARAMETRIC BOOTSTRAP

Algorithm 1 Parametric Bootstrap

Input: D = {{X,Y, Z}1.,, A}, Bootstraps B, Estimator .A
0,7 + A(D)
for b from 1 to B do
Z7s. . 2y~ Py(Zi] X5)
725z 2
Y, .. Y~ Py(Y|X, Z)
é*b7 %*b < A({{Xa Y*a Z*}l:na A})
end for
return 7, (7*1,..., #*P)

R e A A
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Parametric bootstrap [85, 9] is a model based variation of classical bootstrap [24, 25, 26], wherein
the distribution of an estimator A4 is obtained by repeatedly appliyng A to simulated datasets whose
distribution mirrors that of the original data. In the parametric bootstrap, the simulated datasets
are generated based on Py, representing the parametric distribution with the estimated parameter

6. We describe the algorithm in Algorithm 1, where A is our overall procedure which fits the
variational model and return the model parameters and the estimated treatment effect. Bootstrap
methods, generally make fewer assumptions compared to purely asymptotic approaches, provide
practically tight bounds and works naturally with variational inference based methods [93]. In context
of variational inference it is also related to posterior predictive checks [65, 29].

The general idea of the approach is to a) consider the estimated parameters 7, 0 as the ground truth, b)
generate replicates from the generative distribution (in this case re-assigning the treatments at nodes
and sample outcomes from the new treatments), c) run the estimator .4 on the replicates to obtain
replicate estimates (7*), and d) then treat the pair (7*,7) analogously to (7, 7) to approximate the

distribution of the latter. Mathematically, if &, is the 1 — -y quantile of 7*, then the intervals for 7 can
be obtained as [§ 1-g, f o] [26] for the chosen confidence level a.

B.5.2 LINEARIZED MODEL

We propose to linearize the assumption (A1) model around the estimated parameters, and consider
fitting the outcomes via a square loss *, i.e. we fit

Vi —py (2, X)) — > 0z,mv (2, X:))*(E,E,X)
JEM(i)

where 1) includes the rest of the terms in the likelihood. The variance of the estimate is then determined
by the (uncentered) covariance matrix for a linear regression problem [78, 63]. Specifically the
posterior variance for the prediction Y; is upper bounded by

e - Y 2

JEM(3)

where ;i are the coefficients of Zj, in the regression. We refer the readers to Theorem 3 in Qu et al.
[63] for the derivation. In our case, the regression is derived from locally linearizing the E[Y |z, X],
and so the coefficient are nothing but the partial derivatives of the mean outcome function Y; w.r.t Zj.
For the value of these derivatives, we can use the the current value of 6 as the estimate. Next, for
the variance of the effect 7, we see that the estimator is just the mean of n sample means of these
Y/s. If the max-degree of each node is bounded, then by generalized CLT [3, 45], the estimator is
asymptotically normal with variance given by:

*Z Zczk 1=p)7'( Y, %)

JEM(3)

. If the max degree of any node in the graph is §, then above sum can further be bounded by:

*Z 2 el (1 =) 78"

This variance can then be used to provide conservative intervals for a Wald test [93]. Note however
that this is only under a linearized approximation and hence using the above variance for confidence
intervals are only approximately valid. However from the results of Sussman and Airoldi [77], Cortez-
Rodriguez et al. [20], this bound is minimax optimal in its dependence on p, g, §. As such these can
still provide consistently conservative confidence intervals.

“consider only a single unit 4 currently
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