Supporting Relational Database Joins for Generating
Literals in R2ZRML

Christophe Debruyne’

"University of Liege — Montefiore Institute, 4000 Liége, Belgium

Abstract

Since its publication, R2RML has provided us with a powerful tool for generating RDF from relational
data, not necessarily manifested as relational databases. R2RML has its limitations, which are being
recognized by W3C’s Knowledge Graph Construction Community Group. That same group is currently
developing a specification that supersedes R2RML in terms of its functionalities and the types of resources
it can transform into RDF-primarily hierarchical documents. The community has a good understanding
of problems of relational data and documents, even if they might need to be approached differently
because of their different formalisms. In this paper, we present a challenge that has not been addressed
yet for relational databases—generating literals based on (outer-)joins. We propose a simple extension of
the R2RML vocabulary and extend the reference algorithm to support the generation of literals based on
(outer-)joins. Furthermore, we implemented a proof-of-concept and demonstrated it using a dataset built
for benchmarking joins. While it is not (yet) an extension of RML, this contribution informs us how to
include such support and how it allows us to create self-contained mappings rather than relying on less
elegant solutions.

Keywords
R2RML, Knowledge Graph Generation, Outer-joins, Joins

1. Introduction

R2RML [1] is a powerful technique for transforming relational data into RDF and was published
almost a decade ago. R2RML was conceived for relational databases, but can be applied to
relational data. Since then, it inspired many initiatives to generalize this approach for other
types of data such as RML [2] and xR2RML [3]. Others looked at extending aspects of (R2)RML
not pertaining to the sources being transformed, but to tackle unaddressed challenges and
requirements such as RDF Collections [3, 4] and functions [5, 6].

The R2RML Recommendation specified a reference algorithm in which relational joins (natural
joins or equi-joins, to be specific) can be used to relate resources. The implementation can be
broken into two parts: (1) the generation of triples based on a triples map tm; related to a logical
source, and (2) the generation of triples relating subjects from tm; with those of another triples
map tm,. While (2) does not use an outer-join, the combination of both (1) and (2) ensures that
the data being transformed “behaves” as the result of an outer-join. The problem, however, is

Third International Workshop On Knowledge Graph Construction Co-located with the ESWC 2022, 30th May 2022, Crete,
Greece

Q c.debruyne@uliege.be (C. Debruyne)

® 0000-0003-4734-3847 (C. Debruyne)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR Workshop Proceedings (CEUR-WS.org)

mailto:c.debruyne@uliege.be
https://orcid.org/0000-0003-4734-3847
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

title aka_title
PK id PK id
title FK movie_id
imdb_index title
kind_id imdb_index
production_year kind_id
imdb_id production_year
phonetic_code [Fo—>09 phonetic_code
episode_of_id episode_of_ id
season_nr season_nr
episode nr episode nr
series_years series_years
md5sum md5sum
. J . J

Figure 1: The tables title and aka_title of the database. A title may be related to one or more
aka_titles, and an aka_title may be related to one title.

that support for such outer-joins is only limited to resources; there is no convenient way to do
something similar for literals.

This paper proposes a simple extension of R2RML for supporting joins for the generation
of literals. It furthermore proposes how the reference algorithm should be extended. We
demonstrate this extension using a fairly big relational databases developed for bench marking
joins [7]. This benchmark provides us also with a realistic case, motivating the need for such an
extension. This paper furthermore positions this contribution with other initiatives developed
by the Knowledge Graph Generation community with the aim of opening a discussion.

2. The Problem

We framed the problem in the previous section. In this section, we will rephrase the problem
and discuss several approaches to achieve the desired result that one can observe in practice.
To this end, we will be using a running example based on the database developed by [7].

To benchmark the performance of joins, [7] developed a database based on the Internet Movie
Database! (IMDb). In short, their motivation was that existing synthetic benchmarks may be
biased and real and “messy” provided better grounds for comparison. While that aspect is
not important for this paper, the database they developed did contain two big tables: title
containing information about movies and their titles, and aka_title containing variations in
titles (either an alternative title, or titles in different languages). Figure 1 depicts the relation
between the two tables and their attributes.?

There are two approaches to solving this problem with R2RML:

Sol1 The first is the creation of two triples maps with one dedicated to the generation of
triples for the outer-join. The problem with this approach is that the mapping is not self-
contained and that there are two distinct triples maps which need to be maintained. One

'https://www.imdb.com/

*The files were loaded into a MySQL database, but required some minor pre-processing: a handful of encoding
issues in the files and NULL values in aka_table were represented with the number 0. We also introduced a foreign
key constraint that was not present in the SQL schema provided by [7]. The reason being that the foreign key
constraint optimizes joins on these two tables. The tables contain 2528312 and 361472 respectively. There are 93
records from aka_table not referring to a record in title and 2322682 records in title have no alternative titles.

https://www.imdb.com/

also needs to document that this construct was necessary to facilitate this outer-join. The
advantage is that there are two distinct processes for querying the underlying database
and thus less overhead.

Sol2 The second, more naive approach, is the use of one triples map with a (outer-)-join in
its logical table. While this makes the triples map self-contained, unlike the approach
above, but may require the processor to process many logical rows that generate the same
triples.

We may observe, in the wild, cases of the first also being conducted for referencing object
maps, especially when the processor used uses the reference algorithm. The problems with
respect to self-containedness of triples maps still holds. An R2RML processor may internally
“rewrite” referencing object maps as triples maps to optimize the process.

In the next section, we propose a small extension of R2RML to provide support for joins on
literal values.

3. Proposed solution

In Listing 1, we demonstrate the extension. It introduces the predicate rrf : parentLogicalTable.?
The domain of that predicate is rr:RefObjectMap and the range is rr:LogicalTable. Our
extension requires that a rr:RefObjectMap must have either a rrf:parentLogicalTable or
rr:parentTriplesMap. A referencing object map may now also generate literals. Where nec-
essary, we will refer to object maps with a parent-triples map as “regular” referencing object
maps.

<#title>
rr:logicalTable [rr:tableName "title"] ;
rr:subjectMap [rr:template "http://data.example.com/movie/{id}" ; rr:class ex:Movie;] ;
rr:predicateObjectMap [rr:predicate ex:title ; rr:objectMap [rr:column "title"] ;] ;
rr:predicateObjectMap [
rr:predicate ex:title ;
rr:objectMap [
rr:column "title" ;
rrf:parentLogicalTable [rr:tableName "aka title"] ;
rr:joinCondition [rr:child "id" ; rr:parent "movie_ id"] ;

15

Listing 1: Using parent-logical tables for managing joins

The reference algorithm? is extended as follows: step 6 will now iterate over all referencing
object maps with a rr:parentTriplesMap and we add a 7th step for each referencing object
map that uses a parent-logical table. The steps for generating are mostly the same. The two
differences are: 1) it may generate any term type, and 2) the column names referred to by the

3The namespace rrf refers to the namespace used in [6].
*https://www.w3.org/TR/r2rml/#generated-rdf

https://www.w3.org/TR/r2rml/#generated-rdf

object map are those of the parent. In other words, if both logical tables share a column X, then
a reference to X would be to that of the parent. This behavior is consistent with that of regular
referencing object maps. An implementation of this algorithm is made available.’

4. Demonstration

We now present a limited experiment comparing the performance of Sol1, Sol2, and our proposal
using the relational database introduced in Section 2. The mappings for Soll and Sol2 are in
Appendix A. In this experiment, we join using the tables as a whole. As R2RML requires result
sets to have unique names for each column, we created a third table aka_title2 where each
column received the suffix ’2’. We also created a foreign key from aka_title2 to title. We
wanted to avoid using subqueries to rename the columns, and these may become materialized
and thus have an unfairly negative impact on the outcome.

The experiment was run on a MacBook Pro with a 2.3 GHz Dual-Core Intel Core i5 processor
and 16 GB 2133 MHz LPDDR3 RAM. The database was stored in a MySQL 8.0 database in a
Docker container. The code for the experiment was written in Java and ran the result of each
mapping 11 times, of which the first run was removed to avoid bias from a cold start. The code
calls upon the extension of RZRML-F and registered timestamps before and after executing the
mapping. We have not registered the time for writing the graph onto the hard disk.

From Figure 2, which shows the average run times in seconds, it is clear that the approach of
using two different triples maps (Sol1) is much faster than the two other approaches, which
comes as no surprise. The problem, however, is that we have two distinct triples maps and
their relationship is not explicit. Placing the outer-join in the logical table (Sol2) has the worst
performance. The outer join yields a result set with 155749 more records than the referred table
and contains twice the number of attributes. The overhead can be significantly reduced by only
selecting the columns of interest, but the three mappings refer to the logical tables as a whole.
Unsurprisingly, our solution is less efficient than Soll but considerably more efficient than Sol2.

We may conclude from these initial results that the proposed solution is not only a viable
solution. It also ensures that the mappings remain self-contained. While performance is crucial
in knowledge graph generation, we argue that even the vocabulary is a contribution and that
an R2RML processor can rewrite referencing object maps (both types) into distinct triples maps.

5. Discussion

In this paper, we extended the concept of rr:RefObjectMap to support joins for literal values.
The reference algorithm for R2RML processes these in a separate loop for the generation of
relations between subjects of two triples maps. Our approach added a similar step to the
generation of literals based on a join. One may ask whether this approach may be adopted
for term maps in general. The generation of subjects, predicates, and graphs for relational
databases is based on a logical row. Generalizing this approach for such term maps may require
a join per row, which is not efficient and is thus best done in the logical table of a triples map.

*https://github.com/chrdebru/r2rml/tree/r2rml-join

https://github.com/chrdebru/r2rml/tree/r2rml-join

Soll (2 TMs)

Sol2 (outer join in TM)

Proposed solution *

80 85 90 95 100 105 110 115 120

Figure 2: Time taken to process three mappings: Sol1-2 triples maps for the outer-join, Sol2— one
triples map with the outer-join in the logical table, and out proposed solution.

As we can generate resources with our approach, one can question whether the notion of
parent-triples maps is still necessary. The reference algorithm uses both logical tables, even
though a processor can only select those used by the subject maps. The question rises: do we
refer to (data in) sources, or do we refer to triples maps?

Related to this work is the approach proposed by [8] where they proposed “fields” to manip-
ulate and even combine the source prior to generating RDF. Their work, demonstrated with
hierarchical data, aimed to address the problem of references that may yield multiple results and
that sources may contain data of mixed formats. They also introduced an abstraction allowing
one to retrieve information via a reference that does not depend on the underlying reference
formulation. To the best of my knowledge, support for relational databases and the addition
of fields from different tables has not yet been published. However, as they declare fields on
the logical source, such an approach may boil down to a situation similar to Sol2 mentioned in
Section 2.

6. Conclusions

We addressed the problem of generating literals from an outer-join, which R2RML does not
support. While interesting initiatives are proposed for mostly hierarchical documents, we
wanted to address this problem for relational databases by extending R2RML. We proposed a
small extension with few implications regarding the R2RML vocabulary. We also extended the
reference algorithm and provided an implementation that we have analyzed in an experiment.

From this paper, we can conclude that, for relational databases, our approach is a viable
solution. While not as efficient as disjoint triples maps, it may be worth considering not as
an approach. It is essential not to consider this vocabulary extension as syntactic sugar, as
that would imply it is shorthand for something semantically equivalent. In our approach, the

mappings are self-contained, and the relationship between the two logical tables is thus explicit.

We have addressed this problem for relational databases and RZRML. We could envisage that

such an approach could be part of RML, which has the ambition to supersede R2RML. How this
approach would work for non-relational data is to be studied.

A.

Mappings Used in the Experiment

MAPPING USED FOR SOL1 IN THE EXPERIMENT
<#title_tm>

rr:logicalTable [rr:tableName "title"]
rr:subjectMap [rr:template "http://data.example.com/movie/{id}" ; rr:class ex:Movie;] ;
rr:predicateObjectMap [rr:predicate ex:title ; rr:objectMap [rr:column "title"] ;]

<f#aka_title_tm>

rr:logicalTable [rr:tableName "aka_title"]
rr:subjectMap [rr:template "http://data.example.com/movie/{movie_id}" ; rr:class ex:Movie;] ;
rr:predicateObjectMap [rr:predicate ex:title ; rr:objectMap [rr:column "title"] ;]

MAPPING USED FOR SOL2 IN THE EXPERIMENT
<#title_tm>

rr:logicalTable [
rr:sqlQuery "SELECT * FROM title t LEFT OUTER JOIN aka_title2 a ON t.id = a.movie_ID2"] ;
rr:subjectMap [rr:template "http://data.example.com/movie/{id}" ; rr:class ex:Movie;] ;
rr:predicateObjectMap [rr:predicate ex:title ; rr:objectMap [rr:column "title"]
rr:objectMap [rr:column "title2"] ;

]

References

(1]
(2]

(3]

(4]
(5]

(6]

(7]
(8]

S. Das, R. Cyganiak, S. Sundara, R2ZRML: RDB to RDF Mapping Language, 2012. URL: https://www.w3.org/TR/r2rml/.

A. Dimou, M. V. Sande, P. Colpaert, R. Verborgh, E. Mannens, R. V. de Walle, RML: A Generic Language for Integrated RDF
Mappings of Heterogeneous Data, in: C. Bizer, T. Heath, S. Auer, T. Berners-Lee (Eds.), Proceedings of the Workshop on Linked
Data on the Web co-located with the 23rd International World Wide Web Conference (WWW 2014), Seoul, Korea, April 8, 2014.,
volume 1184 of CEUR Workshop Proceedings, CEUR-WS.org, 2014. URL: http://ceur-ws.org/Vol-1184/ldow2014_paper_01.pdf.
F. Michel, L. Djimenou, C. Faron-Zucker,]. Montagnat, Translation of relational and non-relational databases into RDF with
xr2rml, in: V. Monfort, K. Krempels, T. A. Majchrzak, Z. Turk (Eds.), WEBIST 2015 - Proceedings of the 11th International
Conference on Web Information Systems and Technologies, Lisbon, Portugal, 20-22 May, 2015, SciTePress, 2015, pp. 443-454.
URL: https://doi.org/10.5220/0005448304430454. doi:10.5220/0005448304430454.

C. Debruyne, L. McKenna, D. O’Sullivan, Extending RZRML with support for rdf collections and containers to generate
MADS-RDF datasets, volume 10450 LNCS, 2017. doi:10.1007/978-3-319-67008-9_42.

B. D. Meester, W. Maroy, A. Dimou, R. Verborgh, E. Mannens, Declarative data transformations for linked data generation:
The case of dbpedia, in: E. Blomqvist, D. Maynard, A. Gangemi, R. Hoekstra, P. Hitzler, O. Hartig (Eds.), The Semantic
Web - 14th International Conference, ESWC 2017, Portoroz, Slovenia, May 28 - June 1, 2017, Proceedings, Part II, volume
10250 of Lecture Notes in Computer Science, 2017, pp. 33—-48. URL: https://doi.org/10.1007/978-3-319-58451-5_3. doi:10. 1007/
978-3-319-58451-5_3.

C. Debruyne, D. O’Sullivan, R2RML-F: towards sharing and executing domain logic in R2RML mappings, in: S. Auer,
T. Berners-Lee, C. Bizer, T. Heath (Eds.), Proceedings of the Workshop on Linked Data on the Web, LDOW 2016, co-located
with 25th International World Wide Web Conference (WWW 2016), volume 1593 of CEUR Workshop Proceedings, CEUR-WS.org,
2016. URL: http://ceur-ws.org/Vol-1593/article-13.pdf.

V. Leis, A. Gubichev, A. Mirchev, P. A. Boncz, A. Kemper, T. Neumann, How good are query optimizers, really?, Proc. VLDB
Endow. 9 (2015) 204-215. URL: http://www.vldb.org/pvldb/vol9/p204-leis.pdf. doi:10.14778/2850583.2850594.

T. Delva, D. V. Assche, P. Heyvaert, B. D. Meester, A. Dimou, Integrating nested data into knowledge graphs with RML fields,
in: D. Chaves-Fraga, A. Dimou, P. Heyvaert, F. Priyatna, J. F. Sequeda (Eds.), Proceedings of the 2nd International Workshop
on Knowledge Graph Construction co-located with 18th Extended Semantic Web Conference (ESWC 2021), Online, June 6,
2021, volume 2873 of CEUR Workshop Proceedings, CEUR-WS.org, 2021. URL: http://ceur-ws.org/Vol-2873/paper9.pdf.

https://www.w3.org/TR/r2rml/
http://ceur-ws.org/Vol-1184/ldow2014_paper_01.pdf
https://doi.org/10.5220/0005448304430454
http://dx.doi.org/10.5220/0005448304430454
http://dx.doi.org/10.1007/978-3-319-67008-9_42
https://doi.org/10.1007/978-3-319-58451-5_3
http://dx.doi.org/10.1007/978-3-319-58451-5_3
http://dx.doi.org/10.1007/978-3-319-58451-5_3
http://ceur-ws.org/Vol-1593/article-13.pdf
http://www.vldb.org/pvldb/vol9/p204-leis.pdf
http://dx.doi.org/10.14778/2850583.2850594
http://ceur-ws.org/Vol-2873/paper9.pdf

	1 Introduction
	2 The Problem
	3 Proposed solution
	4 Demonstration
	5 Discussion
	6 Conclusions
	A Mappings Used in the Experiment

