
1

We submitted this paper earlier to IEEE S&P 2020. We attached the unaltered IEEE S&P
2020 reviews as follows.

===

Review #692A

Overall merit

2. Reject - This paper is well below the bar for Oakland. Will argue to reject it.

Brief paper summary (2-3 sentences)

This paper follows prior work that identified that if stored authentication credentials of Android
apps are cloned into a different system, auto-login functionality might still work. Prior work
assumed root-access to the victims device and the current paper shifts the threat model into
something less realistic. A modification to the Cell Android container ecosystem shows that attacks
against applications and mobile vendors with low security aptitude can work.

Strengths

+ Seemingly significant investment into updating Cell (will you open source your modifications?)
+ Another study demonstrating that application developers should use appropriate APIs (e.g.,
AccountManager API) instead of storing access credentials in local files

Weaknesses

- No novelty over existing work -- login credential cloning has been demonstrated by [18]-[20] and
the MitM attack on an unprotected public WiFi has been known and used for decades

- Modifications to the threat model make it less likely for the adversary to succeed (i.e., temporal
dependence on phone update and physical proximity for WiFi MitM attack)

Detailed comments for the author(s)

This paper is a great reminder for Android application developers that storing/caching access
credentials in plain-old file-system objects is a terrible design decision. It also serves as a reminder
that sending data over unencrypted connections can be a dangerous enterprise, as confirmed by the
vulnerability acknowledgement of XioMi. While these are valid insights, they are all well known
and nothing new.

The paper tries to distinguish itself from prior work by shifting the threat model. Unfortunately, the
paper is dishonest in presenting the effects of assuming no-root but interception of device cloning
traffic. Two fundamental constraints that the chosen threat model implies are (1) temporal, and (2)
location. In earlier attacks, root access (even if remote) was sufficient. In the current paper, the
attacker must be within WiFi proximity (paper states 8m). So remote attacks are fundamentally no
longer possible. More importantly, the chosen threat model also bounds the temporal dimension of
feasible attacks, and the paper completely ignores this very important aspect. That is, the attack can
only work if the attacker is present when the user performs a device clone operation. Given that
phone upgrade cycles are in the order of years, this means that exposure to the presented attack is
miniscule at best. There is no doubt that the security ignorance of OEMs opened a possible

2

vulnerability, however, these additional restrictions over prior work, makes this attack strictly less
powerful than prior work.

Furthermore, although the engineering effort in updating Cell is appreciated, this aspect does not
contribute to the research aspects of the manuscript. Morever, the description of the Cell updates
in the paper is insufficient to convey to the reader what non-engineering challenges had to be
addressed in that area. The VPDroid aspect only exists to enable 40 more apps to run after the
authentication data has been cloned. Given the attack nature of this work, this addition to the overall
apps that are vulnerable to the problem at hand does not warrant the substantial paper real estate
devoted to VPDroid.

In summary, this paper is serverely short on novelty over prior work. The text tries to create novelty
by shifting the threat model. However, this shift has the effect that the attack becomes severely
limited in practice and is less of a threat than existing attacks against the exact same vulnerabilities.
As such, this paper should not be accepted for publication at the Symposium.

Review #692B

Overall merit

3. Weak reject - The paper has flaws, but I will not argue against it.

Brief paper summary (2-3 sentences)

The authors propose virtualization-assisted data-clone attacks that abuse the auto-login
functionality used by many mobile apps to automatically log the attacker on the victim's account.
The attack leverages vulnerabilities (e.g., weak default passwords) in phone clone apps by device
vendors to copy the authentication data from the victim phone to the attacker's phone. To defeat
device fingerprinting checks done by the apps, the authors present VPDroid, a virtualization
framework build on top of the previously proposed Cells (SOSP 2011), which enables faking the
environment of the target app to make it look as it is still running on the victim's device (instead of
the attacker's device). The authors evaluate their framework on 236 popular and manage to attack
216 using VPDroid compared to 196 using the Xposed hooking framework.

Strengths

+ Attack does not require physical access, malware, or rooting of the victim's device

+ The authors enable Cells support on recent Android versions

+ Evaluation shows a large number of popular apps affected

Weaknesses

- Low novelty, attack is known and virtualization is built on top of existing framework

- Attacker needs to be nearby when user is cloning its phone. How often does cloning happen in
public spaces?

- Attacker needs to know victim's phone parameters. The authors do not discuss how easy/difficult
that is.

3

Detailed comments for the author(s)

I feel that the novelty is low since the credential cloning attack is known and the virtualization
framework is built on top of an existing one. Also, it is not clear what is learned from this attack
paper in terms of new techniques or defenses. The authors highlight that prior attacks did not work
due to two limitations. First, that not only the credential needs to be copied, but also other files
under /data/data/app directory. But, here it is not clear why that is a challenge. If the attacker has
root access to the device then copying more files is no big a deal. Also, wouldn't the credentials be
stored under /data/data/app? In that case, if the attacker has access to the locally stored credentials,
then it also has access to the rest of files. The second challenge is bypassing device fingerprinting.
That part is stronger, but the authors do not make a good case of highlighting their contribution
over Cell and do not provide a security analysis on the difficulty of detecting VPDroid. You seem
to claim that it is not possible to detect VPDroid for an app, but I have seen such transparency
claims in the past being violated.

Your attack decreases some barriers for the attacker such as no need to have root access (e.g.,
malware, physical accesS) to the victim's device. However, your threat model requires the attacker
to be nearby to the user when the user clones their phone. It seems unlikely that the victim clones
its device in a public space as you suggest. I would expect most users to clone their phone at home
or at the office instead. And the attack window is short. Your attack also assumes that the attacker
knows the target device's attributes, so its fingeprint can be faked. While some attributes like brand
and model may be guessable, low level attributes may not be. You really need to justify why you
think that assumption is realistic. Overall, it does not feel like the attack is much easier in your
scenario than in prior works.

Your attack leverages vulnerabilities in vendor phone clone apps, but these are not detailed. You
are only describing one vulnerabilitiy due to weak default credentials. Instead, you should list
exactly which phone clone apps you have found vulnerabilities in, and describe them. Are all the
vulnerabilities due to weak credentials? Have they all been reported and fixed? What was the
approach used to find them? Did you try to vulnerability discovery for different apps?

The main contribution is VPDroid that updates Cells with support for newer Android and extends
it with some new virtualized functionality (GPS, Bluetooth, ADB). That is good, but feels a bit
incremental. Specially so since you are only supporting one VP on top of the host, which is a
significant limitation for a virtualization framework (although enough for your attack purposes).
One important question here is whether there is additional functionality that would need to be
virtualized. You added support for GPS, Bluetooth, ADB presumably because you observe those
being used by the apps that do device fingerprinting. But, one wonders if other apps may look at
other functionality whose virtualization is not currently supported. In general you need to better
argue why VPDroid is a significant contribution over Cell.

There are already 20/236 (8.5%) apps where the proposed attack does not work because they either
keep the stored credentials in memory use the Android Account Manager. Is this the way to defend
against these attacks? Can the Account Manager cache be attacked in a similar way? Should apps
with subscriber limit simply check the limit before performing an action (e.g., start streaming a
show) instead of on initialization? Attack papers benefit from a discussion on how the issue should
be resolved.

Smaller comments:

4

Did you observe any apps deleting the stored authorization token on phone reboot?

Are you planning to contribute your improvement to Cell? That would be a useful contribution.

You mention that large families of potentially harmful apps use privilege escalation exploits to root
devices. Any app that uses an exploit can safely be considered malware, rather than potentially
harmful.

The paper reads good, but feels quite repetitive. Also, it is weird to have a paper without related
work section. In addition to the previous attacks there seems to be related works on Android
authentication, hardcoded secrets in mobile apps, ...

Typos: ", where have"

Review #692C

Overall merit

4. Weak accept - While flawed, the paper has merit and we should consider accepting it.

Brief paper summary (2-3 sentences)

The paper proposed a practical approach to stealing the Android app user's login data and reuse
this data to access the user's account in other mobile phones. The authors successfully mount their
attacks on 216 apps and reported 14 zero-day vulnerabilities.

Strengths

+ A practical approach to mounting the data-clone attack

+ A lightweight virtualization platform to efficiently provide a virtualized environment for
Android.

+ 14 zero-day vulnerabilities reported to and confirmed by app vendors.

Weaknesses

- The writing on VPDroid details are quite dense and hard to follow

- No performance evaluation

Detailed comments for the author(s)

This paper introduces a new attack: an attacker steals the locally-stored auto-login data of an
Android user and uses this data to access the user's account. To steal the auto-login data, the authors
propose to use the OEM-made phone clone apps which contain zero-day vulnerabilities. In the
login phase, the authors also design a lightweight Android-based virtualization system called
VPDroid to simulate the victim's phone environment without being noticed by the applications.

The proposed attack is not completely novel. There are some existing researches [18-20] that also
use the auto-login data to access user accounts. However, the authors introduce a more practical
attack solution that can deploy the data-clone attack on a non-rooted smartphone.

5

The following are some questions and concerns about this paper.

Writing: I found this paper quite well-written before Section IV (VPDroid System Design).
However, Section IV is quite dense and hard for me to understand. This section describes how the
authors modify each part of Cells and adds some new functions to Cells. But it assumes that the
readers are familiar with Cells and thus does not explain the design of Cells well. Furthermore, this
section mixes the mechanism of Cells and the updates made by VPDroid. Sometimes, it is not easy
to differentiate these two parts.

 - After reading the Filesystem paragraph, I cannot understand why "Cells's SD card
partition virtualization does not work now".

 - Some design choices are not well explained. For example, why do you modify the binder-
driver data structure? Can’t Cells's binder support multiple VPs?

2. I am curious about possible defense solutions. First, it seems that it is easy to detect how many
devices are concurrently connecting to the server from the server side and thus it can place a limit
on the number of concurrent connections. Second, why does the Android AccountManager APIs
can defeat the data-clone attack? Where is the AccountManager cache? Third, VPDroid needs more
Binder IPCs to virtualize a VP. Therefore, the application in VP may deduce that it is in a virtualized
environment if the measured API latency is larger than in a native environment.

3. The VPDroid adds many new functionalities (11676 LOCs) to Cells. However, there are no
performance experiments and data to show the performance overheads of VPDroid in the
evaluation section. It is better to use evaluation data to make the readers understand VPDroid. For
example, the binder service sharing technique makes it simpler to virtualize wireless and GPU in
VPDroid. How does it improve the performance compared with Cells?

4. All the experiments in this paper are based on old Android versions (Android 6 and 8.1) while
the newest version is 10.0. More experiments on the newer Android versions would make this paper
stronger.

Minor issues:

1. Figures are not readable when printed in grayscale.

2. Celll->Cells, Cell->Cells

3. Kernal->Kernel (Figure 10)

==

6

Authors’ Response to Previous Reviews

1. We highlight our intellectual contributions on Android OS virtualization: new user-
level device virtualization & virtual phone’s attribute customization. Among our
updates and new additions to Cells’s device virtualization solutions, we improve Cells in
two significant ways. First, we design a new user-level device virtualization solution,
which has better portability and transparency than Cells. Second, we are able to customize
the VP’s device attributes, but this function is not offered by Cells. Cells is not designed to
edit device attributes, and its user-level device virtualization modifies the VP’s application
framework layer, which can be detected by cloned apps.

2. The assumption of a rooted device. In the first attack model of data-clone attacks (victim
identify theft), we assume that the victim’s device is rooted, because we need to copy user-
private credentials. However, if authentication schemes entirely rely on device-specific
attributes, we do not require this aggressive assumption. As suggested by Reviewer A and
B, we have mostly removed the part that exploiting the phone clone app to steal user
credentials and made a weak claim on the first attack model.

3. Attackers can intercept user password on a rooted device and then log in to the user’s
account. Our argument is our attack via the auto-login function is much stealthier. Most
apps do not allow duplicate access from different devices. For example, the messaging app
KakaoTalk restricts that a single user can only log in from one device at a time. If the legal
user is online, the attacker cannot log in to the same account by typing the victim’s ID and
password. However, counting the number of login devices is typically not affected by the
auto-login function from the same device, which leaves a backdoor for VPDroid to break
through the login-device number limit. Our demo video demonstrates our approach is better
than intercepting user password (https://youtu.be/cs6LxbDGPXU).

4. Session management. Reviewer C says one possible defense solution is to detect how
many devices are concurrently connecting to the server from the server side and thus it can
place a limit on the number of concurrent connections. Unfortunately, such simple session
management is not adopted by most mobile devices. The variable nature of mobile devices
(e.g., the frequent connection switch between Wi-Fi hotspot and cell site) makes it difficult
to determine an adequate number of connections, and complicates the session management
on the app server side. Although most apps do not allow duplicate access from different
devices, they do permit multiple session requests that have the same device ID. This results
in maintaining two or more connections per user. We add session management discussion
in Sec. 6

5. As suggested by Reviewer C, we add performance evaluation (Sec. 5.1). Figure 8 shows
that no user-noticeable performance difference between running in VPDroid and running
natively on the phone. VPDroid is better than Cells in Quadrant I/O, SunSpider, and
Network results from 5% to 9%.

6. Like Cells, VPDroid also supports running multiple virtual phones, but we did not
claim this in our paper. Because only the VP running in the foreground can always have
the direct access to hardware devices. This is the requirement that we must meet to evade
the detection of Android emulators. Before completing the data-clone attack, we cannot
switch between multiple VPs. So, one VP is enough for data-clone attacks.

7. VPDroid on Android 10.0: the leading authors are in the city that is under complete
lockdown due to the coronavirus outbreak. This also affects the development progress
of VPDroid on Android 10.0, but we are confident that it will be ready in this summer!

https://youtu.be/cs6LxbDGPXU

7

8. Additional functionality that would need to be virtualized: Mobile device virtualization
is susceptible to the new update and replacement of hardware devices in future Android
versions. Especially, many devices are physically not designed for multiplexing, which
will always be the key challenge of Android OS virtualization. To support additional
functionalities, VPDroid’s user-level virtualization solution offers a flexible and portable
alternative without compromising transparency.

9. Data-clone attack experiment result updates:
a. The number of confirmed zero-day vulnerabilities increases from 14 to 21.
b. We figure out the failure reason when attacking the apps that rely on Android

AccountManager APIs. The reason is AccountManager stores auto-login
depended data under the directory of “/data/system_xx/” rather than
“/data/data/[app_name]/”. After we copy the “/data/system_xx/” folder to the
virtual phone, our data-clone attacks succeeded.

c. Before CCS submission, we redo our data-clone attack experiments (as shown in
Table 1) on the latest versions of popular apps. The reason is that we observe many
apps have already embedded device-consistency checks to secure their auto-login
functions. On real devices, the successful number of data-clone attacks drops from
169 to 131, while on Xposed-based sandbox, this number drops from 196 to 148.
In contrast, in VPDroid, data-clone attacks succeed in 234 out of 237 apps.

d. Google SafetyNet is an advanced anti-abuse/anti-fraud APIs. It helps developers
determine whether their apps are running on a genuine Android device. We add a
new experiment to show that SafetyNet is able to recognize all of the common
virtualization environments and Android sandboxes, but it fails to detect VPDroid.

10. Screenshots of CVE and CNVD IDs discovered by us:

CVE-2019-15843

8

	Review #692A
	Review #692B
	Review #692C
	Authors’ Response to Previous Reviews

