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Abstract

Many businesses nowadays rely on large quantities of time series data making1

time series forecasting an important research area. Global forecasting models and2

multivariate models that are trained across sets of time series have shown huge3

potential in providing accurate forecasts compared with the traditional univariate4

forecasting models that work on isolated series. However, there are currently no5

comprehensive time series forecasting archives that contain datasets of time series6

from similar sources available for researchers to evaluate the performance of new7

global or multivariate forecasting algorithms over varied datasets. In this paper, we8

present such a comprehensive forecasting archive containing 20 publicly available9

time series datasets from varied domains, with different characteristics in terms of10

frequency, series lengths, and inclusion of missing values. We also characterise11

the datasets, and identify similarities and differences among them, by conducting12

a feature analysis. Furthermore, we present the performance of a set of standard13

baseline forecasting methods over all datasets across ten error metrics, for the14

benefit of researchers using the archive to benchmark their forecasting algorithms.15

1 Introduction16

Accurate time series forecasting is important for many businesses and industries to make decisions,17

and consequently, time series forecasting is a popular research area. The field of forecasting has18

traditionally been advanced by influential forecasting competitions. The most popular forecasting19

competition series is the M-competition series [1–5]. Other well-known forecasting competitions20

include the NN3 and NN5 Neural Network competitions [6], and Kaggle competitions such as the21

Wikipedia web traffic competition [7].22

The winning approaches of many of the most recent competitions such as the winning method of the23

M4 by Smyl [8] and the winning method of the M5 forecasting competition [5], consist of global24

forecasting models [9] which train a single model across all series that need to be forecast. Compared25

with local models, global forecasting models have the ability to learn cross-series information during26

model training and can control model complexity and overfitting on a global level [10].27

This can be seen as a paradigm shift in forecasting. Over decades, single time series were seen as a28

dataset that should be studied and modelled in isolation. Nowadays, we are oftentimes interested in29

models built on sets of series from similar sources, such as series which are all product sales from a30

particular store, or series which are all smart meter readings in a particular city. Here, time series31
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are seen as an instance in a dataset of many time series, to be studied and modelled together. Global32

(univariate) models and (local) multivariate models are the methods of choice here, the difference33

being that global models train across series, but predict each series in isolation, with no need for34

the time series to have the same length or to be aligned in time, whereas multivariate models train35

and test over time series that are all the same length and all aligned in time, so that dependencies at36

certain time points and for the forecasts can be modelled. Thus, global models are applicable more37

broadly than multivariate models.38

Both global and multivariate models get attention lately in machine learning (especially deep learning),39

with Li et al. [11], Rangapuram et al. [12], Wen et al. [13] presenting global models and Salinas40

et al. [14], Sen et al. [15], Yu et al. [16], Zhou et al. [17] discussing novel approaches for multivariate41

modelling. However, when it comes to benchmarking, these recent works use a mere two [13] to42

seven [11] datasets to evaluate the performance of the new algorithms and the chosen datasets are43

different in each work. The datasets mainly belong to the energy, transport, and sales domains, and44

they do not include datasets from other domains such as banking, healthcare, or nature.45

In contrast, other areas of machine learning, such as general classification and regression, or time46

series classification, have greatly benefitted from established benchmark dataset archives, which47

allow a much broader and more standardised evaluation. The University of California Irvine (UCI)48

repository [18] is the most common and well-known benchmarking archive used in general machine49

learning, with currently 507 datasets from various domains. In time series classification, the dataset50

archives from the University of California Riverside (UCR) [19] and from the University of East51

Anglia (UEA) [20], contain 128 sets of univariate time series, and 30 datasets with multivariate time52

series, respectively, allowing routinely for much broader and more standardised evaluations of the53

methods, and therewith enabling more streamlined, robust, and reliable progress in the field.54

The time series classification datasets, though they contain time series, do usually not resemble55

meaningful forecasting problems, so they cannot be used for the evaluation of forecasting methods.56

Also in the time series forecasting space there are a number of benchmarking archives, but they57

follow the paradigm of single series as datasets, and consequently contain mostly unrelated single58

time series such as the Time Series Data Library [21] and ForeDeCk [22].59

There are currently no comprehensive time series forecasting benchmarking archives, to the best of60

our knowledge, that focus on sets of time series to evaluate the performance of global and multivariate61

forecasting algorithms. We introduce such an archive, available at https://forecastingdata.62

org/. The archive contains 20 publicly available time series datasets covering varied domains, with63

both equal and variable lengths time series. Many datasets have different versions based on the64

frequency and the inclusion of missing values, resulting in a total of 50 dataset variations.65

We also introduce a new format to store time series data, based on the Weka ARFF file format [23],66

to overcome some of the shortcomings we observe in the .ts format used in the sktime time series67

repository [24]. We use a .tsf extension for this new format. This format stores the meta-information68

about a particular time series dataset such as dataset name, frequency, and inclusion of missing values69

as well as the series specific information such as starting timestamps, in a non-redundant way. The70

format is very flexible and capable of including any other attributes related to time series as preferred71

by the users.72

Furthermore, we analyse the characteristics of different series to identify the similarities and differ-73

ences among them. For that, we conduct a feature analysis using tsfeatures [25] and catch22 features74

[26] extracted from all series of all datasets. The extracted features are publicly available for further75

research use. The performance of a set of baseline forecasting models including both traditional76

univariate forecasting models and global forecasting models are also evaluated over all datasets across77

ten error metrics. The forecasts and evaluation results of the baseline methods are publicly available78

for the benefits of researchers that use the repository to benchmark their forecasting algorithms.79

2 Data records80

This section details the datasets in our time series forecasting archive. The current archive contains81

20 time series datasets. Furthermore, the archive contains in addition 6 single very long time series.82

As a large amount of data oftentimes renders machine learning methods feasible compared with83

traditional statistical modelling, and we are not aware of good and systematic benchmark data in this84
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space either, these series are included in our repository as well. A summary of all primary datasets85

included in the repository is shown in Table 1.86

A total of 50 datasets have been derived from these 26 primary datasets. Nine datasets contain87

time series belonging to different frequencies and the archive contains a separate dataset per each88

frequency. Seven of the datasets have series with missing values. The archive contains 2 versions of89

each of these, one with and one without missing values. In the latter case, the missing values have90

been replaced by using an appropriate imputation technique.91

Table 1: Datasets in the current time series forecasting archive

Dataset Domain No: of Min. Max. No: of Missing Competition
Series Length Length Freq.

1 M1 Multiple 1001 15 150 3 No Yes
2 M3 Multiple 3003 20 144 4 No Yes
3 M4 Multiple 100000 19 9933 6 No Yes
4 Tourism Tourism 1311 11 333 3 No Yes
5 NN5 Banking 111 791 791 2 Yes Yes
6 CIF 2016 Banking 72 34 120 1 No Yes
7 Web Traffic Web 145063 803 803 2 Yes Yes
8 Solar Energy 137 52560 52560 2 No No
9 Electricity Energy 321 26304 26304 2 No No
10 London Smart Meters Energy 5560 288 39648 1 Yes No
11 Wind Farms Energy 339 6345 527040 1 Yes No
12 Car Parts Sales 2674 51 51 1 Yes No
13 Dominick Sales 115704 28 393 1 No No
14 FRED-MD Economic 107 728 728 1 No No
15 San Francisco Traffic Transport 862 17544 17544 2 No No
16 Pedestrian Counts Transport 66 576 96424 1 No No
17 Hospital Health 767 84 84 1 No No
18 COVID Deaths Nature 266 212 212 1 No No
19 KDD Cup Nature 270 9504 10920 1 Yes Yes
20 Weather Nature 3010 1332 65981 1 No No
21 Sunspot Nature 1 73931 73931 1 Yes No
22 Saugeen River Flow Nature 1 23741 23741 1 No No
23 US Births Nature 1 7305 7305 1 No No
24 Electricity Demand Energy 1 17520 17520 1 No No
25 Solar Power Energy 1 7397222 7397222 1 No No
26 Wind Power Energy 1 7397147 7397147 1 No No

Out of the 26 datasets, 8 originate from competition platforms, 3 from research conducted by Lai92

et al. [27], 6 are taken from R packages, 1 is from the Kaggle platform [28], and 1 is taken from a93

Johns Hopkins repository [29]. The other datasets have been extracted from corresponding domain94

specific platforms. The datasets mainly belong to 9 different domains: tourism, banking, web, energy,95

sales, economics, transportation, health, and nature. Three datasets, the M1 [1], M3 [2], and M496

[3, 4] datasets, contain series belonging to multiple domains. All datasets are explained in detail in97

the Appendix (supplementary materials).98

2.1 Data format99

We introduce a new format to store time series data, based on the Weka ARFF file format [23]. We100

use the file extension .tsf and it is comparable with the .ts format used in the sktime time series101

repository [24], but we deem it more streamlined and more flexible. The basic idea of the file format102

is that each data file can contain 1) attributes that are constant throughout the whole dataset (e.g., the103

forecasting horizon, whether the dataset contains missing values or not), 2) attributes that are constant104

throughout a time series (e.g., its name, its position in a hierarchy, product information for product105

sales time series), and 3) attributes that are particular to each data point (the value of the series, or106

timestamps for non-equally spaced series). An example of series in this format is shown in Figure 1.107

The original Weka ARFF file format already deals well with the first two types of such attributes.108

Using this file format, in our format, each time series file contains tags describing the meta-information109
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Figure 1: An example of the file format for the NN5 daily dataset.

of the corresponding dataset such as @frequency (seasonality), @horizon (expected forecast horizon),110

@missing (whether the series contain missing values) and @equallength (whether the series have111

equal lengths). We note that in principle these attributes can be freely defined by the user and the file112

format does not need any of these values to be defined in a certain way, though the file readers reading113

the files may rely on existence of attributes with certain names and assume certain meanings. Next,114

there are attributes in each dataset which describe series-wise properties, where the tag @attribute is115

followed by the name and type. Examples are series_name (the unique identifier of a given series)116

and start_ timestamp (the start timestamp of a given series). Again, the format has the flexibility to117

include any additional series-wise attributes as preferred by users.118

Following the ARFF file format, the data are then listed under the @data tag after defining attributes119

and meta-headers, and attribute values are separated by colons. The only extension that our format120

has compared with the original ARFF file format, is that the time series then are appended to their121

attribute vector as a comma-separated variable-length vector. As this vector can have a different122

length for each instance, this cannot be represented in the original ARFF file format. In particular, a123

time series with m number of attributes and n number of values can be shown as:124

< attribute1 >:< attribute2 >: ... :< attributem >:< s1, s2, ..., sn > (1)

The missing values in the series are indicated using the “?” symbol. Code to load datasets in125

this format into R and Python is available in our github repository at https://github.com/126

rakshitha123/TSForecasting.127

3 Methods128

This section details the feature analysis and baseline evaluation we conducted on the datasets in our129

repository.130

3.1 Feature analysis131

We characterise the datasets in our archive to analyse the similarities and differences between132

them, to gain a better understanding on where gaps in the repository may be and what type of133
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data are prevalent in applications. This may also help to select suitable forecasting methods for134

different types of datasets. We analyse the characteristics of the datasets using the tsfeatures [25] and135

catch22 [26] feature extraction methods. All extracted features are publicly available in our website136

https://forecastingdata.org/ for further research use. Due to their large size, we have not137

been able to extract features from the London smart meters, wind farms, solar power, and wind power138

datasets, which is why we exclude them from this analysis.139

We extract 42 features using the tsfeatures function in the R package tsfeatures [25] in-140

cluding mean, variance, autocorrelation features, seasonal features, entropy, crossing points,141

flat spots, lumpiness, non-linearity, stability, Holt-parameters, and features related to the142

Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test [30] and the Phillips–Perron (PP) test [31]. For143

all series that have a frequency greater than daily, we consider multi-seasonal frequencies when144

computing features. Therefore, the amount of features extracted is higher for multi-seasonal datasets145

as the seasonal features are individually calculated for each season presented in the series. Further-146

more, if a series is short and does not contain two full seasonal cycles, we calculate the features147

assuming a non-seasonal series (i.e., setting its frequency to “one” for the feature extraction). We use148

the catch22_all function in the R package catch22 [32] to extract the catch22 features from a given149

time series. The features are a subset of 22 features from the hctsa package [33] which includes the150

implementations of over 7000 time series features. The computational cost of the catch22 features is151

low compared with all features implemented in the hctsa package.152

For the feature analysis, we consider 5 features, as suggested by Bojer and Meldgaard [34]: first153

order autocorrelation (ACF1), trend, entropy, seasonal strength, and the Box-Cox transformation154

parameter, lambda. The BoxCox.lambda function in the R package forecast [35] is used to extract the155

Box-Cox transformation parameter from each series, with default parameters. The other 4 features are156

extracted using tsfeatures. Since this feature space contains 5 dimensions, to compare and visualise157

the features across multiple datasets, we reduce the feature dimensionality to 2 using Principal158

Component Analysis [PCA, 36].159

The numbers of series in each dataset are significantly different, e.g., the CIF 2016 monthly dataset and160

M4 monthly dataset contain 72 and 48,000 series, respectively. Hence, if all series were considered161

to calculate the PCA components, those components would be dominated by datasets that have162

large amounts of series. Therefore, for datasets that contain more than 300 series, we randomly163

take a sample of 300 series, before constructing the PCA components across all datasets. Once the164

components are calculated, we map all series of all datasets into the resulting PCA feature space. We165

note that we use PCA for dimensionality reduction over other advanced dimensionality reduction166

algorithms such as t-Distributed Stochastic Neighbor Embedding [t-SNE, 37] due to this capability167

of constructing the basis of the feature space with a reduced sample of series with the possibility to168

then map all series into the space afterwards.169

3.2 Baseline forecasting models170

In the forecasting space, benchmarking against simple benchmarks is vital [38] as even simple171

benchmarks can oftentimes be surprisingly competitive. However, many works in the machine172

learning space are notoriously weak when it comes to proper benchmarking for time series forecasting173

[39]. To fill this gap, we evaluate the performance of 11 different baseline forecasting models over the174

datasets in our repository using a fixed origin evaluation scheme, so that researchers that use the data175

in our repository can directly benchmark their forecasting algorithms against these baselines. The176

baseline models include 6 traditional univariate forecasting models: Exponential Smoothing [ETS,177

40], Auto-Regressive Integrated Moving Average [ARIMA, 41], Simple Exponential Smoothing178

(SES), Theta [42], Trigonometric Box-Cox ARMA Trend Seasonal [TBATS, 43] and Dynamic179

Harmonic Regression ARIMA [DHR-ARIMA, 44], and 5 global forecasting models: a linear Pooled180

Regression model [PR, 45], Feed-Forward Neural Network [FFNN, 46], CatBoost [47], DeepAR181

[48] and N-BEATS [49].182

Again, we do not consider the London smart meters, wind farms, solar power, and wind power183

datasets for both univariate and global model evaluations, and the Kaggle web traffic daily dataset for184

the global model evaluations, as the computational cost of running these models was not feasible in185

our experimental environment.186
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We use the R packages forecast [50], glmnet [51], catboost [47] and nnet [52] to implement the 6187

traditional univariate forecasting methods, the globally trained PR method, CatBoost and FFNN,188

respectively. We use the implementations of DeepAR and N-BEATS available from the Python189

package GluonTS [53] with their default hyperparameters.190

The Theta, SES, and PR methods are evaluated for all datasets. ETS and ARIMA are evaluated191

for yearly, quarterly, monthly, and daily datasets. We consider the datasets with small frequencies,192

namely, 10 minutely, half hourly, and hourly as multi-seasonal and hence, TBATS and DHR-ARIMA193

are evaluated for those datasets instead of ETS and ARIMA due to their capability of dealing with194

multiple seasonalities [54]. TBATS and DHR-ARIMA are also evaluated for weekly datasets due to195

their capability of dealing with long non-integer seasonal cycles present in weekly data [55].196

Forecast horizons are chosen for each dataset to evaluate the model performance. For all competition197

datasets, we use the forecast horizons originally employed in the competitions. For the remaining198

datasets, 12 months ahead forecasts are obtained for monthly datasets, 8 weeks ahead forecasts199

are obtained for weekly datasets, except the solar weekly dataset, and 30 days ahead forecasts are200

obtained for daily datasets. For the solar weekly dataset, we use a horizon of 5 as the series in this201

dataset are relatively short compared with other weekly datasets. For half-hourly, hourly and other202

low frequency datasets, we set the forecasting horizon to one week, e.g., 168 is used as the horizon203

for hourly datasets.204

The number of lagged values used in the PR models are determined based on a heuristic suggested205

in prior work [56]. Generally, the number of lagged values is chosen as the seasonality multiplied206

with 1.25. If the datasets contain short series and it is impossible to use the above defined number207

of lags, for example in the Dominick and solar weekly datasets, then the number of lagged values208

is chosen as the forecast horizon multiplied with 1.25, assuming that the horizon is not arbitrarily209

chosen but based on certain characteristics of the time series structure. When defining the number of210

lagged values for multi-seasonal datasets, we consider the corresponding weekly seasonality value,211

e.g., 168 for hourly datasets. If it is impossible to use the number of lagged values obtained with the212

weekly seasonality due to high memory and computational requirements, for example with the traffic213

hourly and electricity hourly datasets, then we use the corresponding daily seasonality value to define214

the number of lags, e.g., 24 for hourly datasets. In particular, due to high memory and computational215

requirements, the number of lagged values is chosen as 50 for the solar 10 minutely dataset which is216

less than the above mentioned heuristics based on seasonality and forecasting horizon suggest.217

4 Results & discussion218

This section details the results of feature analysis and baseline evaluation together with a discussion219

of the results.220

4.1 Feature analysis results221

Figure 2 shows hexbin plots of the normalised density values of the low-dimensional feature space222

generated by PCA across ACF1, trend, entropy, seasonal strength and Box-Cox lambda for 20223

datasets. The figure highlights the characteristics among different datasets. For the M competition224

datasets, the feature space is highly populated on the left-hand side and hence, denoting high trend225

and ACF1 levels in the series. The tourism yearly dataset also shows high trend and ACF1 levels. In226

contrast, the car parts, hospital, and Kaggle web traffic datasets show high density levels towards227

the right-hand side, indicating a higher degree of entropy. The presence of intermittent series can228

be considered as the major reason for the higher degree of entropy in the Kaggle web traffic and car229

parts datasets. The plots confirm the claims of prior similar studies [34, 57] that the M competition230

datasets are significantly different from the Kaggle web traffic dataset.231

The monthly datasets generally show high seasonal strengths compared with datasets of other232

frequencies. Quarterly datasets also demonstrate high seasonal strengths except for the M4 quarterly233

dataset. In contrast, the datasets with high frequencies such as weekly, daily, and hourly show low234

seasonal strengths except for the NN5 weekly and NN5 daily datasets.235

Related to the shapes of the feature space, the 3 yearly datasets: M3, M4, and tourism show very236

similar shapes and density populations indicating they have similar characteristics. The M4 quarterly237

dataset also shows a similar shape as the yearly datasets, even though it has a different frequency. The238
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Figure 2: Hexbin plots showing the normalised density values of the low-dimensional feature space
generated by PCA across ACF1, trend, entropy, seasonal strength, and Box-Cox lambda for 20
datasets. The dark and light hexbins denote the high and low density areas, respectively. The M3
Yearly facet shows the directions of the 5 features, which are the same across all facets.

other 2 quarterly datasets M3 and tourism are different, but similar to each other. The M3 and M4239

monthly datasets are similar to each other in terms of both shape and density population. Furthermore,240

the electricity hourly and traffic hourly datasets have similar shapes and density populations, whereas241

the M4 hourly dataset has a slightly different shape compared with them. The daily datasets show242

different shapes and density populations, where the NN5 daily dataset is considerably different from243

the other 2 daily datasets: M4 and Kaggle web traffic, in terms of shape and all 3 daily datasets are244

considerably different from each other in terms of density population. The weekly datasets also show245

different shapes and density populations compared with each other.246

PCA plots showing the normalized density values of all datasets corresponding with both tsfeatures247

and catch22 features are available in the Appendix (supplementary materials).248

4.2 Baseline evaluation results249

It is very difficult to define error measures for forecasting that perform well under all situations250

[58], in the sense that it is difficult to define a scale-free measure that works for any type of non-251
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stationarity in the time series. Thus, how to best evaluate forecasts is still an active area of research,252

and (especially in the machine learning area) researchers often use ad-hoc, non-adequate measures.253

For example, usage of the Mean Absolute Percentage Error (MAPE) for normalised data between254

0 and 1 may result in undefined or heavily skewed measures, or errors using the mean of a series255

like the Root Relative Squared Error [RSE, 27] will not work properly for series where the mean256

is essentially meaningless, such as series with steep trends. We use four error metrics that – while257

having their own problems – are common for evaluation in forecasting, namely the Mean Absolute258

Scaled Error [MASE, 59], symmetric MAPE (sMAPE), Mean Absolute Error [MAE, 60], and Root259

Mean Squared Error (RMSE) to evaluate the performance of the seven baseline forecasting models260

explained in Section 3.2. For datasets containing zeros, calculating the sMAPE error measure may261

lead to divisions by zero. Hence, we also consider the variant of the sMAPE proposed by Suilin [61]262

which overcomes the problems with small values and divisions by zero of the original sMAPE. We263

report the original sMAPE only for datasets where divisions by zero do not occur. Equations 2, 3, 4,264

5, and 6, respectively, show the formulas of MASE, sMAPE, modified sMAPE, MAE, and RMSE,265

where M is the number of data points in the training series, S is the seasonality of the dataset, h is the266

forecast horizon, Fk are the generated forecasts and Yk are the actual values. We set the parameter ε267

in Equation 4 to its proposed default of 0.1.268

MASE =

∑M+h
k=M+1 |Fk − Yk|

h
M−S

∑M
k=S+1 |Yk − Yk−S |

(2)

sMAPE =
100%

h

h∑
k=1

|Fk − Yk|
(|Yk|+ |Fk|)/2

(3)

msMAPE =
100%

h

h∑
k=1

|Fk − Yk|
max(|Yk|+ |Fk|+ ε, 0.5 + ε)/2

(4)

MAE =

∑h
k=1 |Fk − Yk|

h
(5)

RMSE =

√∑h
k=1 |Fk − Yk|2

h
(6)

The MASE measures the performance of a model compared with the in-sample average performance269

of a one-step-ahead naïve or seasonal naïve (snaïve) benchmark. For multi-seasonal datasets, we270

use the length of the shortest seasonality to calculate the MASE. For the datasets where all series271

contain at least one full seasonal cycle of data points, we consider the series to be seasonal and272

calculate MASE values using the snaïve benchmark. Otherwise, we calculate the MASE using the273

naïve benchmark, effectively treating the series as non-seasonal.274

The error metrics are defined for each series individually. We further calculate the mean and median275

values of the error metrics over the datasets to evaluate the model performance and hence, each276

model is evaluated using 10 error metrics for a particular dataset: mean MASE, median MASE,277

mean sMAPE, median sMAPE, mean msMAPE, median msMAPE, mean MAE, median MAE, mean278

RMSE and median RMSE. Table 2 shows the mean MASE of the SES, Theta, ETS, ARIMA, TBATS,279

DHR-ARIMA, and PR models on the same 20 datasets we considered for the feature analysis. The280

results of all baselines across all datasets on all 10 error metrics are available in the Appendix.281

Overall, SES shows the worst performance and Theta shows the second-worst performance across all282

error metrics. ETS and ARIMA show a mixed performance on the yearly, monthly, quarterly, and283

daily datasets but both outperform SES and Theta. TBATS generally shows a better performance284

than DHR-ARIMA on the high frequency datasets. For our experiments, we always set the maximum285

order of Fourier terms used with DHR-ARIMA to k = 1. Based on the characteristics of the datasets,286

k can be tuned as a hyperparameter and it may lead to better results compared with our results.287

Compared with SES and Theta, both TBATS and DHR-ARIMA show superior performance.288
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Table 2: Mean MASE results. The best model across each dataset is highlighted in boldface.

Dataset SES Theta ETS ARIMA TBATS DHR-ARIMA PR CatBoost FFNN DeepAR N-BEATS
NN5 Daily 1.521 0.885 0.865 1.013 - - 1.263 0.973 1.409
NN5 Weekly 0.903 0.885 - - 0.872 0.887 0.854 0.853 1.009
CIF 2016 1.291 0.997 0.841 0.929 - - 1.019 1.175 2.434
Kaggle Daily 0.924 0.928 1.231 0.890 - - - - - - -
Tourism Yearly 3.253 3.015 3.395 3.775 - - 3.516 3.553 7.352
Tourism Quarterly 3.210 1.661 1.592 1.782 - - 1.643 1.793 6.424
Tourism Monthly 3.306 1.649 1.526 1.589 - - 1.678 1.699 5.159
Traffic Hourly 1.922 1.922 - - 2.482 2.535 1.281
Electricity Hourly 4.544 4.545 - - 3.690 4.602 2.912
M3 Yearly 3.167 2.774 2.860 3.417 - - 3.223 3.788 7.938
M3 Quarterly 1.417 1.117 1.170 1.240 - - 1.248 1.441 4.212
M3 Monthly 1.091 0.864 0.865 0.873 - - 1.010 1.065 2.215
M4 Yearly 3.981 3.375 3.444 3.876 - - 3.625
M4 Quarterly 1.417 1.231 1.161 1.228 - - 1.316
M4 Monthly 1.150 0.970 0.948 0.962 - - 1.080
M4 Weekly 0.587 0.546 - - 0.504 0.550 0.481 0.615 5.266
M4 Daily 1.154 1.153 1.239 1.179 - - 1.162 1.593
M4 Hourly 11.607 11.524 - - 2.663 13.557 1.662 1.771
Carparts 0.897 0.914 0.925 0.926 - - 0.755
Hospital 0.813 0.761 0.765 0.787 - - 0.782 0.798 0.986

The globally trained PR models show a mixed performance compared with the traditional univariate289

forecasting models. The performance of the PR models is considerably affected by the number of290

lags used during model training, performing better as the number of lags is increased. The number291

of lags we use during model training is quite high with the high-frequency datasets such as hourly,292

compared with the other datasets and hence, PR models generally show a better performance than the293

traditional univariate forecasting models on all error metrics across those datasets. But on the other294

hand, the memory and computational requirements are also increased when training PR models with295

larger numbers of lags. Furthermore, the PR models show better performance across intermittent296

datasets such as car parts, compared with the traditional univariate forecasting models.297

We note that the MASE values of the baselines are generally high on multi-seasonal datasets. For298

multi-seasonal datasets, we consider longer forecasting horizons corresponding to one week unless299

they are competition datasets. As benchmark in the MASE calculations, we use a seasonal naïve300

forecast for the daily seasonality. As therewith the MASE compares the forecasts of longer horizons301

(up to one week) with the in-sample snaïve forecasts obtained with shorter horizons (one day),302

the MASE values of multi-seasonal datasets are considerably greater than one across all baselines.303

Furthermore, the error measures are not directly comparable across datasets as we consider different304

forecasting horizons with different datasets.305

5 Conclusion306

Recently, global forecasting models and multivariate models have shown huge potential in providing307

accurate forecasts for collections of time series compared with the traditional univariate benchmarks.308

However, there are currently no comprehensive time series forecasting benchmark data archives309

available that contain datasets to facilitate the evaluation of these new forecasting algorithms. In310

this paper, we have presented the details of an archive that contains 20 publicly available time series311

datasets with different frequencies from varied domains. We have also characterised the datasets312

and have identified the similarities and differences among them by conducting a feature analysis313

exercise using tsfeatures and catch22 features extracted from each series. Finally, we have evaluated314

the performance of seven baseline forecasting models over all datasets across ten error metrics to315

enable other researchers to benchmark their own forecasting algorithms directly against those.316
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