
ModelPred: A Framework for Predicting Trained
Model from Training Data

Yingyan Zeng
Grado Department of Industrial

and Systems Engineering
Virginia Tech

Blacksburg, USA
yingyanzeng@vt.edu

Jiachen T. Wang
Department of Electrical

and Computer Engineering
Princeton University

Princeton, USA
tianhaowang@princeton.edu

Si Chen
Bradley Department of Electrical

and Computer Engineering
Virginia Tech

Blacksburg, USA
chensi@vt.edu

Hoang Anh Just
Bradley Department of Electrical

and Computer Engineering
Virginia Tech

Blacksburg, USA
just@vt.edu

Ran Jin
Grado Department of Industrial

and Systems Engineering
Virginia Tech

Blacksburg, USA
jran5@vt.edu

Ruoxi Jia
Bradley Department of Electrical

and Computer Engineering
Virginia Tech

Blacksburg, USA
ruoxijia@vt.edu

Abstract—In this work, we propose ModelPred, a framework
that helps to understand the impact of changes in training data
on a trained model. This is critical for building trust in various
stages of a machine learning pipeline: from cleaning poor-
quality samples and tracking important ones to be collected
during data preparation, to calibrating uncertainty of model
prediction, to interpreting why certain behaviors of a model
emerge during deployment. Specifically, ModelPred learns a
parameterized function that takes a dataset S as the input
and predicts the model obtained by training on S. Our work
differs from the recent work of Datamodels [1] as we aim for
predicting the trained model parameters directly instead of
the trained model behaviors. We demonstrate that a neural
network-based set function class is capable of learning the
complex relationships between the training data and model
parameters. We introduce novel global and local regularization
techniques to prevent overfitting and we rigorously characterize
the expressive power of neural networks (NN) in approximating
the end-to-end training process. Through extensive empirical
investigations, we show that ModelPred enables a variety of
applications that boost the interpretability and accountability
of machine learning (ML), such as data valuation, data selection,
memorization quantification, and model calibration.

I. INTRODUCTION

What are the training points with the most or least
contribution to the model? How to select data that
benefit model performance? Is a training data point
memorized by the model? How to produce accurate
estimates of uncertainty on model predictions? Which
point is the most responsible for learning a given
parameter in the model?

Answering these questions is central to building trust in
machine learning (ML). Prior work shows that addressing
these questions requires analyzing the input-output behavior
of a learning process and gaining an understanding of how

models (and the resulting predictions) might have differed if
different training data points are observed [2, 3, 4, 5].

However, due to the complexity of the learning pro-
cess (e.g., end-to-end training), analyzing how its input—a
dataset—affects the output—the trained model—is challeng-
ing. Recent work has made significant progress in approxi-
mating how a small change (e.g., removing one or a handful
of training points) on the full training set would change
the trained model [6, 7, 8, 9], but the existing techniques
remain limited in estimating the effects of removing a large
group of training points [10]. Ilyas et al. [1] propose to
learn a model that predicts the classification performance at a
given test point directly from the training data. However, this
learning procedure will need to be redone if the classification
performance at a different test point is of interest to the
evaluation, which is common for practical applications with
streaming-in testing data; therefore, it lacks the flexibility to
accommodate different evaluation goals.

In this paper, we propose a framework, ModelPred, to
analyze the dependence of the trained models on training data
by building an explicit model for the trained models in terms
of training data. Compared to [1], ModelPred estimates the
trained model parameters instead of the prediction perfor-
mance at a certain test point, thereby providing flexibility
to switch to different test points for evaluation. At the same
time, the test performance estimates based on ModelPred
are more accurate than those from [1] because ModelPred
effectively leverages the knowledge of how test performance
is calculated from a trained model.

Our contributions are summarized as follows:
#1: Introducing ModelPred. ModelPred is a framework
designed to approximate the input-output behavior of a
learning algorithm, A, when applied to a training set S.

The learning algorithm takes the training set and returns a
trained model with parameters θ := A(S). To accomplish
this, ModelPred introduces a cheap-to-evaluate parametric
model Â. We treat the search for the best Â as a supervised
learning problem. Specifically, we generate the labeled data
for training Â via executing A on different data subsets,
and then use standard techniques in supervised learning to
learn the best Â that approximates A. Our framework differs
from the recent work of Datamodels [1] in the sense that we
directly predict the trained model parameters instead of some
behavior of the trained models.
#2: Instantiating ModelPred. There are several critical
design choices of ModelPred: What should be used as the
input for Â? What is the right model class to learn Â? How
to design a proper objective function to fit Â? Ilyas et al.
[1] encodes the presence of each training sample of an input
subset S′ within S as a binary vector. While this reduces the
input complexity, this approach ignores the contents of an
input subset. As a result, it can only estimate the outcome
of learning for a subset within the training dataset yet fails
to estimate the learning result for, new unseen points. In
this paper, we use a neural-network-based set function to
approximate A, which takes in the actual contents of a
subset and predicts the trained model. This design enables the
learned Â to generalize to subsets involving unseen points.
To mitigate overfitting, we propose two novel regularization
techniques: the global regularizer encourages that the models
predicted by the fitted Â predict the labels in the held-out
set as effectively as those obtained from the original A; and
the local one ensures that the gradient of the classification or
regression learning objective function with respect to these
models is close to zero.
#3: Approximability of a learning algorithm with neu-
ral networks. When instantiating ModelPred, we choose
to approximate A with a neural network. While a neural
network seems a reasonable first choice given its popularity
in various vision and language tasks, it remains unclear
whether a neural network can approximate complex training
processes from end to end. This paper presents the first
formal study of the approximability of a learning process
with neural networks. In particular, our results suggest that
learning processes associated with strongly convex or smooth
problems can be efficiently approximated by neural networks
with ReLU units.
#4: Applications of ModelPred. We explore a variety of
applications of ModelPred towards answering the questions
posed at the beginning of the section. Our findings are
summarized as follows.
• ModelPred functions successfully predict trained

models from the training data (Table II and III).
The Spearman correlation between the accuracy of the
predicted models and the ground-truth is mostly greater
than 97%.

• ModelPred functions enable the discovery of the
connection between data and model parameters
(Figure 3). The level of sensitivity of a ground-truth

model’s parameter to different points matches the results
obtained from a predicted model.

• ModelPred functions successfully boost the accuracy
of data valuation—measuring the contribution of
individual points to learning (Table V). While accu-
rately measuring the value of data has a great potential
to improve model performance and transparency, being
more accurate comes with significant computational
costs. In particular, existing data value notions require
retraining a target model from scratch on many subsets
of the training set and evaluating the corresponding
model performance scores. We leverage the ability of
ModelPred functions to predict models directly from
training data and significantly improve the accuracy of
data valuation.

• ModelPred functions lead to improved data selection
in the presence of bad data (Figure 5). We leverage
the Shapley value (SV) estimated through ModelPred
functions to rank the contributions of all training points
and select the ones with the highest contributions. Mod-
elPred functions lead to a significant improvement in
data selection effectiveness while maintaining a similar
computation cost to conventional Shapley value estima-
tion methods.

• ModelPred functions lead to more efficient and
accurate quantification of model memorization (Fig-
ure 6). To assess whether a given training point is
memorized or not, we evaluate ModelPred functions on
different subsets with the point included and excluded
and then compare the prediction at the point. We find
that ModelPred functions enable the successful discov-
ery of memorized training samples.

• ModelPred functions improve the accuracy of pre-
diction confidence (Table VI). We incorporate the pre-
dictions of the model’s output by ModelPred functions
into an ensemble, and it leads to an improvement in the
accuracy of prediction confidence on various datasets.

II. APPROACH

A. Preliminaries

Denote a data point as (x, y), where x ∈ Rd is the
feature vector and y ∈ R is the label. We define f(x; θ)
as the Base Model, which is a parametric function that is
parameterized by θ ∈ Rdparam and maps an input feature
to a label (i.e., logistic regression model). The loss function
ℓ(θ; (x, y)) = ℓ(f(x; θ), y) is defined to measure the dis-
crepancy between the prediction ŷ = f(x; θ) and the true
label y, which can be a classification or regression learning
objective function. Denote the full training dataset containing
n training data points as D = {(xi, yi)}ni=1. We further
denote S as a subset with nS data points sampled from
D. A learning algorithm (i.e., solver) A is defined as the
mapping from an input dataset S to the parameters of the
trained model θ̂S i.e., θ̂S = A(S). A typical example of
a learning algorithm is empirical risk minimization (ERM)

2

with ℓ2 penalty. Specifically, the parameters are optimized to
minimize the training loss averaged over the subset S:

θ̂S := argmin
θ

L(θ;S) =
1

nS

∑
i∈S

ℓ(θ; (xi, yi)) +
λ

2
∥θ∥22 ,

(1)
where λ is a hyperparameter that controls the degree of
penalization on the ℓ2-norm of the estimated parameters to
increase the model’s generalizability.

B. Algorithm

1) Problem Formulation.
As mentioned in Section I, our goal is to predict the

outcome of the learning algorithm A given training set S.
While A(S) is a complicated function that typically involves
loss function optimization, we leverage a classic technique
in machine learning: picking a suitable function class and
finding the function in the class that best approximates the
target function. To this end, we construct ModelPred as a
surrogate function Â to obtain outputs that match A(·) given
an arbitrary training set S.

Definition 1 (ModelPred function). Given a data domain Z ,
a learning algorithm A, a distribution D over the space of
data sets 2Z , for any dataset S drawn from D, let θ̂S = A(S)
be the model trained on S using A. The proposed ModelPred
function is a parametric function Â optimized to predict the
θ̂S from a training set S ∼ D, i.e.,

Â : 2Z → Rdparam , (2)

where Â = argmin
Ã

ES∼D

[
L
(
Ã (S) ,A(S)

)]
, (3)

where L(·, ·) is a loss function.

2) Instantiating
To develop a generic framework that not only can predict

a model from the subsets within the training dataset but
also from unseen subsets drawn from the same distribution
D, the contents of input data are preserved to be used
as the input for ModelPred function, which makes A(·)
a set function. Taking this into consideration, we choose
deep neural networks (DNNs) as the function class for
ModelPred function Â given their strong expressive power.
Moreover, since A(·) is a set function, the architectures of
neural networks are restricted to those that are invariant
to input permutations. Finding the best neural network that
approximates A(·) becomes a supervised learning problem
when there are samples of (S,A(S)) available.

3) Design of the Loss Function L
Despite the strong expressiveness, with the large size of

parameters, the DNN adopted as the surrogate model can be
easily overfitted on the training set if we only push the model
to minimize the discrepancy between the predicted and actual
model parameters. To prevent the DNN from overfitting, we
propose two novel regularization techniques, where the utility
loss is proposed to maintain the utility of the predicted model
as a global regularizer, while the optimality of the predicted

parameters is imposed by the Karuch-Kuhn-Tucker (KKT)
loss as a local regularizer.

Global Regularizer. From an overall perspective, an ac-
curately predicted model should maintain a utility close to
the ground-truth model when evaluated on any test points,
intuitively. For the utility loss as a global regularizer, denote
U(S; θ̂) as the utility function that evaluates the utility of
optimized model parameters θ̂ on a dataset S. For one
training sample, (θ̂S ;S), the utility loss is specified as:

LU =
∣∣∣U(S; Â(S))− U(S; θ̂S)

∣∣∣ .
Local Regularizer. From a local perspective, an accurately

predicted model should satisfy the optimality conditions,
which constrains the gradient of the predicted parameters
with respect to the learning objective function. With this
in mind, we proposed to employ KKT conditions in the
loss function to enhance the generalization of ModelPred
by leveraging the optimality condition.

KKT conditions are found to guarantee the optimality
of a solution [11] for convex problems. For an uncon-
strained convex problem (1), the optimal parameters θ∗S ∈
argminθ∈Rdparam L(θ;S) should satisfy the stationary KKT
condition as follows:

∇L(θ∗S ;S) = 0. (4)

If the learning algorithm can find a near-optimal solution,
then the stationary KKT condition is almost satisfied by the
optimized parameter θ̂S . Therefore, the KKT loss of one
training sample is added as: LKKT =

∥∥∥∇L
(
Â(S);S

)∥∥∥.
This condition also applies to convex problems with hard
constraints where the KKTstationary condition can be en-
forced on the Lagrangian of the optimization problem. Be-
sides, the stationary KKT condition can be treated as the
first-order optimality condition for nonconvex optimization
problems. Therefore, by adding KKT loss, we enhance
the generalization of ModelPred for generic optimization
problems, including neural networks.

Combining the loss on the discrepancy between prediction
and groud-truth with proposed regularizers, the total loss of
one training sample for the proposed DNN is:

LDNN =
∥∥∥θ̂S − Â(S)

∥∥∥+ LKKT + LU . (5)

4) Algorithm Details
The proposed ModelPred framework proceeds in two

phases: offline training and online estimation (Figure 1.)
Offline Training. The offline training of ModelPred

consists of the parameters sampling step and DNN
training step. With the set of training samples Φ =
{(S1, θ̂1), (S2, θ̂2), . . . }, the objective of the offline training
phase is to train an effective parameter model which can
predict the optimized parameters accurately given new input
data points.

The very first question encountered during the training
phase is how to generate training subsets and what distribu-

3

Fig. 1: The offline training phase and online estimate of the proposed ModelPred.

tion should be used.
Denote π as a permutation of all training data points from

the full set and Dπ[:i] as a set of points that precedes the
i-th point in π. We adopt permutation sampling to sample
the trained parameters A(Dπ[:i]) for training DNN-based Â.
The offline training workflow is summarized in Algorithm 1.

Algorithm 1: ModelPred Offline Training
input : Full dataset D = {(xi, yi)}ni=1, learning algorithm

A, the number of permutations T
output: Trained Â

1 Φ ←− ∅
2 for t = 1, . . . , T do
3 πt ←− GenerateUniformRandomPermutation(D)
4 for i = 1, . . . n do
5 θ̂πt

i = A(Dπt[:i])

6 Φ = Φ ∪ {(Dπt[:i]; θ̂
πt
i)}

7 end
8 end
9 Trained Â with Φ

10 return Â

Compared with other kinds of subset sampling strategies
such as sampling uniformly at random, permutation sampling
enables the evaluation of the change of model parameters
with slightly varied subsets. Therefore, the training samples
collected by permutation can better reflect the effect of
individual data points, thus, allowing the DNN to better learn
their influences in the trained parameters. Thus, permutation
sampling is used to generate the training subsets in the
offline training of ModelPred. The empirical experiment
results show a slight advantage of permutation sampling
over uniform sampling when we evaluate the performance
of the DNN trained by subsets. Note that if the distribution
of the subset to be estimated in the testing phase (i.e., test
distribution) is known a prior, it is suggested to directly
sample the training samples from the test distribution. For
instance, in data valuation by SV, the definition of SV
requires the distribution to assign uniform probability to all
data sizes and uniform probability to all subsets of a given
size. Then, in the offline phase, the subsets should be sampled
from the distribution above.

Online Estimation. After the offline training phase, the
trained DNN Â can be used for efficient model parameters
prediction given a new training subset or a batch of subsets

through an evaluation of Â. Note the subsets are not limited
to those containing observed data points.

III. CHARACTERIZATION OF EFFICIENTLY
APPROXIMATABLE LEARNING ALGORITHMS

In this paper, we try to use a neural network to fit the
function θ̂ = A(D). When the context is clear, we omit the
learning algorithm and simply write the function as θ̂(D).
We denote the function associated with kth parameter as
θ̂k(D), and thus θ̂(D) = (θ̂1(D), . . . , θ̂dparam

(D)), where
dparam is the number of model parameters. Although D is a
set of data points, it can be equivalently viewed as a vector
concatenation of all (xi, yi). We assume we always normalize
input features to [0, 1]. Therefore, we have D ∈ [0, 1]n(d+1).
In order to fit θ̂(D) with a neural network, the very first
question is whether θ̂(D) could be efficiently expressed
or approximated by neural networks of certain structures.
Here, the efficiency is measured by the total number of
computational units in the neural networks.

Despite the strong expressive power of neural networks,
not every function could be efficiently approximated by them.
Particularly, while the famous universal approximation theo-
rem (UAT) includes many functions, there are requirements
regarding the continuity of the functions and compactness
of the domain. A recent study [12] shows that functions
g : Rd → R that have a smaller upper bound of gradi-
ent norm ∥∇g∥ could be more efficiently approximated by
neural networks with ReLU activation. As long as θ̂k(D)
could be efficiently approximated by certain neural network
architectures, we could put dparam such networks in parallel
to approximate θ̂(D). The parallel networks share the same
input but have no internal connections or computational
units. Therefore, we can reduce the problem of understanding
the efficient approximability of a function to that one of
bounding its gradient norm. Particularly, this section aims
to understand sufficient conditions for which

∥∥∥∂θ̂k
∂D

∥∥∥ could
be upper bounded.

Our first result is under the setting that the learning
algorithm A is able to find an optimal parameter θ∗ ∈
argminθ L(θ;D). There are three major assumptions in our
result: (1) the loss function ℓ(θ) is α-strongly convex, (2)∥∥∥ ∂
∂θ∂zi

ℓ(θ, z)
∥∥∥ is upper bounded by some constant B1, and

(3) ∥θ∗∥ ≤ B2.

4

Definition 2 (α-strongly convex). A differentiable function
f is α-strongly convex if

f(y) ≥ f(x) +∇f(x)T (y − x) +
α

2
∥y − x∥2 , (6)

for some α > 0 and for all x, y in the domain.

Since ℓ(θ; (x, y)) is α-strongly convex, the training loss
L(θ;D) = 1

n

∑n
i=1 ℓ(θ; (xi, yi))+

λ
2 ∥θ∥22 is (α+λ)-strongly

convex. Together with the condition that ∥θ∗∥ is finite, it im-
plies L has a unique global minimum θ∗ = argminθ L(θ;D).
Our main result for strongly convex functions is below:

Theorem 1. If for all z ∈ [0, 1]d, the loss function ℓ(θ; z)

is α-strongly convex in θ, and
∥∥∥ ∂
∂θ∂zi

ℓ(θ, z)
∥∥∥ ≤ B1 for i ∈

[d], then for θk(D) = [argminθ L(θ;D)]k, where L(θ;D) =
1
n

∑n
i=1 ℓ(θ; (xi, yi))+

λ
2 ∥θ∥22 and [·]k means the kth element

in the vector, then we have∥∥∥∥∂θk∂D

∥∥∥∥ ≤ B1

√
dparam(d+ 1)
√
n(α+ λ)

. (7)

We then analyze the case where the learning algorithm A
is gradient descent. Gradient descent is a commonly used op-
timization algorithm in machine learning. Formally, suppose
the parameter θ is initialized by 0 and denoted by θ(0). For
the ith iteration, we update θ(t) = θ(t−1) − η∇L(θ(t−1);D)
with a learning rate η. Given the maximum step number T ,
we have θ̂(D) = θ(T). The only different assumption for
bounding

∥∥∥∂θ̂k
∂D

∥∥∥ in this case is that the loss function ℓ(θ) is
β-smooth instead of α-strongly convex.

Definition 3 (β-smoothness). A differentiable function f is
β-smooth if

∥∇f(x)−∇f(y)∥ ≤ β ∥x− y∥ (8)

for some β > 0, and for all x, y in the domain.

Theorem 2. If for all z ∈ [0, 1]d, the loss function ℓ(θ; z)

is β-smooth in θ, and
∥∥∥ ∂
∂θ∂zi

ℓ(θ, z)
∥∥∥ ≤ B1 for i ∈ [d],

then for θ
(t)
k (D) defined by the kth entry of θ(t), which

is iteratively computed by θ(t) = θ(t−1) − η∇L(θ(t−1);D)
and θ(0) = 0 with a learning rate η > 0, and L(θ;D) =
1
n

∑n
i=1 ℓ(θ; (xi, yi)) +

λ
2 ∥θ∥22, we have∥∥∥∥∥∂θ(t)k

∂D

∥∥∥∥∥ ≤
(
1− (1− ηλ− ηdparamβ)

t
) B1

√
(d+ 1)√

n(λ+ dparamβ)
.

Theorem 1 and 2 demonstrate that
∥∥∥∂θ̂k

∂D

∥∥∥ could be upper
bounded by the dimension of data domain d and model
parameter dimension dparam, and the dependency is only
O(
√
dparamd/n) for the case of A being able to find the

optimal parameter, and O(
√
d/dparam

√
n) for the case of

gradient descent.

IV. EXPERIMENTS

A. Experimental setup

1) Computational Considerations
The retraining of a large base model, such as a neural

network on a large dataset is computationally intensive. To
apply the proposed method efficiently to large base models,
we propose to employ the technique of transfer learning,
where the weights in all layers except the last one are fixed as
a feature extractor [13]. To retrain a neural network on large
size subsets, only the last layer in the neural network will be
modified and adjusted to the training dataset, This technique
has been widely used in natural language processing and
computer vision domains [14]. Besides, by removing the data
loading bottleneck, fast neural network training techniques
such as FFCV[15] make it possible to train large amouts
of models on diverse subsets in an efficient manner. Our
paper does not incorporate such advanced techniques, and
we expect that doing so can further improve efficiency.

2) Base Model
To demonstrate that our proposed ModelPred is a model-

agnostic approach, three kinds of base models (i.e., Logistic
Regression (LR), Support Vector Machine (SVM)), and a
neural network (Resnet-18)) are chosen, and ModelPred will
learn to predict the parameters of these models. For LR and
SVM, a regularization term with ℓ2-norm coefficient λ = 1 is
added to the loss function. We adopt L-BFGS-B [16] as the
learning algorithm (i.e., solver) for LR and LIBLINEAR [17]
as the solver for SVM with a squared hinge loss. Stochastic
Gradient Descent (i.e., SGD with learning rate as 0.001, and
momentum as 0.9) is adopted as the solver to train NN.

3) Dataset
We evaluate the proposed ModelPred on five datasets:
Iris([18]). We use the binary version of Iris dataset with

the first two classes of data. The binary version contains
100 samples in total with feature dimension d = 4. 67 data
points are randomly selected to generate training subsets. The
remaining 33 data points are used for SV calculation, and 17
of them are used for dataset addition.

SPAM([19]). SPAM dataset is a collection of spam and
non-spam e-mails with feature dimension d = 215. 300 data
points are randomly selected to generate training subsets. 500
data points are used as the testing set for SV calculation, and
150 of them are used for dataset addition.

HIGGS([20]). HIGGS dataset is produced using Monte
Carlo simulations with feature dimension d = 30. After
preprocessing, we keep 25 features. 300 data points are
randomly selected to generate training subsets. 500 data
points are used as the testing set for SV calculation, and
150 of them are used for dataset addition.

MNIST([21]). MNIST dataset is a collection of grayscale
handwritten digits with size 28× 28 and 10 classes. We use
a CNN in the preprocessing stage to extract the features and
reduce the dimension to 128. 300 data points are randomly
selected to generate training subsets. 500 data points are used

5

as the testing set for SV calculation, and 150 of them are used
for dataset addition.

CIFAR-10([22]) and Hymenoptera([23]). CIFAR-10 is
a collection of 60,000 3-channel images in 10 classes.
Hymenoptera is a small 3-channel dataset used to classify
ants and bees, which consists of 245 training images and
153 testing images. These two datasets are used for applying
ModelPred to large NNs by transfer learning. In the exper-
iment, we fine-tune the weights of the last layer of a pre-
trained Resnet-18 model on CIFAR-10 dataset for the binary
classification of hymenoptera images and use ModelPred to
estimate the parameters of the new model. In particular, a
Resnet-18 model is pre-trained on CIFAR-10. The dimension
of the weight in the last layer is 512 (i.e., d = 512). 208
images are randomly selected to generate training subsets
and the remaining 190 are treated as the testing set, where
100 of them are used for dataset addition.

All the input data x are normalized to rescale the norm
∥x∥ to be within the range of [0, 1]

4) Sampling Distribution
15000 subsets are sampled from each dataset following

permutation sampling procedures in Algorithm 1 to construct
the training sample set Φ.

5) Proposed Network Structure
We adopt a canonical model architecture DeepSets [24]

for proposed DNN. DeepSets is designed to be permutation
invariant of the input samples, which is fit for set function
learning (i.e., mapping a set of samples to a target output).
A DeepSet model is a set function f(S) = ρ(

∑
x∈S ϕ(x))

where both ρ and ϕ are neural networks. In the experiment,
both ρ and ϕ networks have 3 fully-connected layers with
128 neurons in each layer.

6) Evaluation Metrics and Baseline
To evaluate the performance of the proposed ModelPred,

baseline comparisons are conducted in two main scenarios:
dataset deletion and dataset addition, where ModelPred is
used to predict the model on deleted or added datasets.
During the deletion, the size of training subsets is decreased
from 100% of the full size to 50% (i.e, for SPAM, from
300 to 150). During the addition, the size of training subsets
is increased from 50% of the full size to 100% (i.e, for
SPAM, from 150 to 300). Notably, the added samples are
unseen during the offline training phase. In both scenarios, 10
subsets are generated randomly with each size. To illustrate
the generalizability of the proposed ModelPred to new data
points from the same distribution, previously unseen data
points are incorporated to form a larger subset in the dataset
addition scenario. Table I details the size of the added or
deleted subsets for each dataset for dataset deletion and
dataset addition.

In these two scenarios, Influence Function is selected as
one baseline. With the ability to approximate the effect of
single data point deletion or addition on model parameters,
Influence Function can also be extended to evaluate the
subset change [10]. Datamodel [1] is selected as another
baseline only for dataset deletion since it cannot make pre-

dictions for newly added training points. Besides, DeltaGrad
[8] can also serve as a baseline for batch deletion or addition.
However, it requires the application of SGD to optimize the
base model, which cannot provide the optimal solution in
a timely manner and cannot solve the primal problem of
SVM accurately. Therefore, we do not include DeltaGrad
in the experiments. Additionally, we conduct the ablation
study by creating ParaLearn as another baseline. ParaLearn
has the same neural network structure as ModelPred and
also predicts the optimized parameter for a convex learning
model. The difference is that it does not include local and
global regularizers.

Three metrics are adopted to evaluate the effectiveness of
the proposed method: 1) the Euclidean distance between
the estimated model parameters and the exact parameters θ∗

provided by the solver, i.e.,
∥∥∥θ̂ − θ∗

∥∥∥; 2) the Normalized-
Root-Mean-Squared Error (NRMSE) of the estimated
utility calculated by the estimated model parameters; 3)
the Spearman rank-order correlation ([25]) between the
ground-truth utility and the estimated utility on the testing
set. The first metric evaluates the accuracy of parameter esti-
mation. Here, we use the parameters optimized by retraining
the model with the solver as the ground-truth. We adopt the
Spearman correlation in addition to the NRMSE because
most of the applications of subsets utility [26] desire that
the utility is ranked in the correct order.

7) Machine configuration
We run experiments with one Intel(R) Xeon(R) Gold 5218

CPU and use one GeForce RTX 2080 Ti for DNN training
and inference.

B. Experimental results

1) ModelPred can predict training outcomes
Table II and III summarize results of proposed ModelPred

and the baseline in scenarios of dataset deletion and addition,
respectively. LR is used as the base model for the first
four datasets while NN is used for the last Hymenoptera
dataset. First, we focus on the results with LR as the base
model. In general, ModelPred demonstrates a significant
advantage in the accurate prediction of parameters if we
compare

∥∥∥θ̂ − θ∗
∥∥∥. Comparing the results of different

datasets, the Euclidean distance grows slightly with
the dimension of the input feature dimension, but the
estimated utility is unaffected. It can also be shown the
predicted parameters well maintain the utility by checking
the NRMSE of utility and the Spearman correlation (i.e.,
over 95% for most datasets) between the estimated utility
and ground-truth. However, it is seen that both the parameter
prediction accuracy and the utility estimation accuracy are
relatively low on the HIGGS dataset. This might be caused
by the low performance of the base model (i.e., LR) on
this dataset, which generates similar optimal parameters as
training samples in the training phase.

By investigating the performance of three baselines, al-
though ParaLearn outperforms the Influence Function on

6

TABLE I: Setting for Dataset Deletion and Dataset Addition.

Dataset
Total Training

Data Points
Total Testing
Data Points

Dataset Deletion Dataset Addition

Size of
Starting Subset

Size of
Deleted Subsets

Size of
Ending Subset

Size of
Starting Subset

Size of
Added Subsets

Size of
Ending Subset

Iris 67 33 63 [5, 10, 15, . . . , 30] 33 67 [1, 2, 3, . . . , 17] 84
SPAM, HIGGS, MNIST 300 500 300 [5, 10, 15, . . . , 150] 150 150 [5, 10, 15, . . . , 150] 300

Hymenoptera 208 190 208 [5, 10, 15, . . . , 100] 108 108 [5, 10, 15, . . . , 100] 208

TABLE II: A summary of ModelPred results and baseline comparison results in the scenario of dataset deletion with LR (i.e., for Iris, SPAM, HIGGS, and
MNIST) and NN (i.e., for Hymenoptera) as the base model. Mean and standard deviation reported over 10 experimental trials. The best result is highlighted
in bold.

Dataset Algorithm Parameter Utility∥∥∥θ̂ − θ∗
∥∥∥ Std NRMSE Std Spearman Corr Std

Iris

ModelPred 9.67E-02 1.51E-02 2.80% 0.42% 0.9964 0.0107
Influence function 8.97E-01 1.39E-02 74.62% 16.98% 0.4071 0.4262

ParaLearn 1.95E-01 2.49E-02 9.47% 2.61% 0.9679 0.0297
Datamodel N/A N/A 22.78% 5.72% 0.9571 0.0474

SPAM

ModelPred 3.72E-01 1.27E-02 6.48% 1.19% 0.9856 0.0040
Influence function 1.07E+00 3.40E-03 50.60% 3.70% 0.1841 0.1797

ParaLearn 2.36E+00 2.15E-02 125.55% 10.62% N/A N/A
Datamodel N/A N/A 69.53% 9.98% 0.6174 0.0612

HIGGS

ModelPred 2.41E-01 1.77E-02 12.58% 3.86% 0.7980 0.0662
Influence function 3.32E-01 5.11E-03 22.68% 6.11% 0.7504 0.1275

ParaLearn 5.11E-01 2.89E-02 65.30% 17.03% N/A N/A
Datamodel N/A N/A 167.83% 62.34% 0.3414 0.1412

MNIST

ModelPred 9.92E-01 9.60E-03 2.28% 0.42% 0.9978 0.0010
Influence function 1.04E+01 6.65E-01 48.85% 2.81% 0.0278 0.2375

ParaLearn 4.58E+00 4.96E-03 113.94% 7.11% N/A N/A
Datamodel N/A N/A 46.30% 3.12% 0.9866 0.0058

Hymenoptera

ModelPred 1.18E+00 1.14E-02 6.54% 0.53% 0.9920 0.0025
Influence function 1.24E+00 6.24E-03 56.43% 2.71% 0.03623 0.13195

ParaLearn 2.04E+00 1.16E-02 73.97% 4.05% N/A N/A
Datamodel N/A N/A 51.83% 4.86% 0.8042 0.0622

Iris dataset, the Spearman correlation for other datasets
cannot be calculated. This is because it provides constant
prediction regardless of the input subset change, resulting
in constant utility for all subsets. This result indicates
the proposed KKT and utility loss effectively prevent
overfitting.

We visualize the result on MNIST in Figure 2. The x axis
of Figure 2 a) and b) is the ground-truth utility (i.e., testing
loss) and the y axis shows the estimated utility. The red line
represents the ground-truth utility and each circle represents
the estimated utility of one subset, where the circle size is
proportional to the subset size. It clearly shows that the error
of loss predicted by Influence Function increases with the
scale of the change on a dataset (either deletion or addition)
since the utility estimated by Influence Function rapidly
deviates from the red line, whereas ModelPred consistently
provides accurate utility prediction.

Figure 2 c) and d) demonstrate the Euclidean distance∥∥∥θ̂ − θ∗
∥∥∥ with error bar where the x axis in c) is the size

of the training subset after addition and the x axis in d) is
the size of the remaining training subset after deletion, both
of which are formatted as the percentage of the size of the
full training set (i.e., n = 300 for MNIST). From Figure 2
c) and d), it is shown that Influence Function can make
an accurate approximation of the parameter change with a
small scale of change (i.e., at the beginning of data addition

Fig. 2: Results on MNIST dataset with LR as the base model. a) and b):
the estimated loss by predicted parameters of each subset in the scenario
of dataset deletion and addition; c) and d): the Euclidean distance between
predicted parameters and optimal parameters in the same scenario.

and deletion). However, the distance grows rapidly with
the scale of change. The first-order Taylor approximation
adopted in Influence Function cannot accurately estimate the
effect of a large group of data points on the base model.
The inferior performance of Datamodel is also caused by its
nature of linear approximation by linear regression, which
cannot accommodate large dataset changes.

For better readability, we defer the results of two scenarios
with SVM as the base model to the Appendix, which

7

TABLE III: A summary of ModelPred results and baseline comparison results in the scenario of dataset addition with LR as the base model. Mean and
standard deviation reported over 10 experimental trials. The best results are highlighted in bold.

Dataset Algorithm Parameter Utility∥∥∥θ̂ − θ∗
∥∥∥ Std NRMSE Std Spearman Corr Std

Iris

ModelPred 1.34E-01 8.81E-03 5.10% 0.52% 0.9882 0.0067
Influence function 3.56E-01 6.13E-04 63.07% 3.15% 0.0779 0.1521

ParaLearn 2.85E-01 4.22E-03 43.91% 2.83% 0.9730 0.0161

SPAM

ModelPred 5.96E-01 4.56E-03 10.22% 0.82% 0.9919 0.0026
Influence function 1.11E+00 2.34E-03 65.44% 2.26% 0.1886 0.1683

ParaLearn 2.19E+00 2.10E-02 145.73% 4.36% N/A N/A

HIGGS

ModelPred 3.26E-01 1.56E-02 14.11% 2.71% 0.8054 0.0684
Influence function 4.58E-01 3.23E-03 20.40% 4.27% 0.9008 0.0381

ParaLearn 1.92E+00 1.86E-02 838.62% 128.59% N/A N/A

MNIST

ModelPred 1.81E+00 1.22E-02 5.46% 0.25% 0.9969 0.0009
Influence function 1.31E+01 4.75E-01 125.26% 4.22% -0.8431 0.0367

ParaLearn 4.76E+00 6.01E-03 131.73% 2.17% N/A N/A

Hymenoptera

ModelPred 1.94E+0 1.57E-02 17.45% 0.58% 0.70000 0.09458
Influence function 7.11E+00 2.81E-02 558.29% 8.77% 0.35000 0.14044

ParaLearn 2.25E+00 1.37E-02 27.13% 0.24% N/A N/A

demonstrate the similar performance of ModelPred in terms
of efficiency and effectiveness.

By checking the performance of applying ModelPred on
transfer learning in NN. similar conclusions can be drawn
compared to those of LR. Firstly, ModelPred can accurately
predict the high-dimensional parameters for the transfer
learning of NN. Secondly, the utility of the refitted NN
can be accurately estimated by the proposed method, which
indicates the effectiveness and generalizability brought by
the proposed regularizers. Thirdly, the parameter prediction
error is larger than the results of convex base models (i.e.,
Table II and III), which might be due to the stochastic
training process of NN.

C. Applications

We leverage ModelPred to a variety of ML applications
to answer questions mentioned in Section I.

Which point is the most responsible for learning a given
parameter in the model?

ModelPred Learns Learning Patterns To demonstrate
the effectiveness of neural networks in learning the mappings
between training data and the final parameters, we plot the
saliency map of model parameter changes when a specific
data point is excluded (“turned off”) from the training set.
In detail, LR is selected as the base model, and 300 data
points from MNIST are used as the full training dataset. An
LR model with L1 penalty [27] is firstly trained on the full
training set to identify the significant parameters. Then, a
subset of parameters is randomly selected for visualization.
We flip the label of the first 20 samples in each training set to
investigate the effect of noisy data on the fitted model, as well
as to examine the generalizability of the proposed method.
Note that during the training process of ModelPred, we do
not include the flipped samples.

By checking the second row of four parameters in the
left panel of Figure 3, it shows the color of the reordered

samples gradually changes from blue to red, which indicates
ModelPred can accurately predict relative parameter change
caused by removing individual samples. By comparing the
color of the boxed samples on the right panel of Figure 3,
the parameter changes caused by noisy data (i.e., first 20
samples) are more significant than others.

We further investigate the average value of the parameter
changes caused by the exclusion of noisy and good samples
and summarize them in Table IV. By checking the average
parameter change estimated by Solver, we find a systematic
difference between noisy samples and good samples. Remov-
ing noisy samples causes a decrease in the parameters while
removing good samples leads to an increase. The change
estimated by ModelPred is consistent with this pattern under
most scenarios. This demonstrates the capability of Model-
Pred in accurately capturing the mapping from the training
data to the learned model as well as its generalizability on
noisy samples.

What are the training points with the most or least
contribution to the model?

Data Valuation. Quantifying the value of each training
data point to a learning task is a fundamental problem in ML.
SV is a widely used data value notion nowadays to identify
the contribution of each training point [3, 28, 2, 29, 30].
However, the exact SV calculation for a training dataset
with n points involves computing the marginal utility of
every point in all subsets, which requires 2n times of utility
evaluation by retraining the model. Since ModelPred is
capable of efficient utility evaluation by predicting the model
parameters on a new training subset, ModelPred can speed
up the SV calculation.

To validate the performance of ModelPred on calculating
SV, we use permutation sampling [31] to generate the subsets
evaluated from the full training set D in sequence. We com-
pare the SV results calculated by ModelPred, and UtlLearn
(i.e., predicted SV) with the SV calculated by the solver as
ground truth, and we also record the total time consumed

8

Fig. 3: Saliency map of model parameter changes estimated by the solver and ModelPred with LR as the base model on MNIST dataset. a) Samples are
ordered by the corresponding value of parameter changes estimated by the Solver. b) Samples are ordered by the original index. Flipped sample indexes are
boxed.

TABLE IV: Average parameter changes caused by the exclusion of noisy and good samples.

Method Theta 0 Theta 12 Theta 36 Theta 42

noisy samples good samples noisy samples good samples noisy samples good samples noisy samples good samples

Solver -2.17E-03 5.27E-03 -6.86E-03 4.70E-03 -6.86E-03 3.32E-03 -2.81E-03 3.74E-03
ModelPred -1.27E-03 9.68E-04 9.64E-04 1.66E-03 -1.28E-03 1.47E-03 -5.59E-04 2.28E-03

by each method for subset utility evaluation. Here, we create
UtlLearn as a baseline which has the same neural network
structure as ModelPred but directly predicts the utility of a
subset, and thus, not including KKT loss. We set the number
of permutations T ∈ {10, 50, 100, 500, 1000} for Iris, SPAM,
and HIGGS. For MNIST, we set T ∈ {10, 50, 100, 200} due
to the long computation time of the solver caused by high
feature dimension. Similarly, we use NRMSE and Spearman
correlation as performance metrics to evaluate the predicted
SV.

Table V summarizes the results for Iris, SPAM, and
HIGGS. It can be observed that ModelPred outperforms
UtlLearn in terms of SV prediction under all scenarios.
Compared to UtlLearn, ModelPred has more network pa-
rameters to train due to the higher output dimension dparam.
However, ModelPred gains its advantage from the KKT
regularization which enforces the optimality of predicted
parameters, thus, achieving accurate parameter and utility
prediction.

Additionally, comparing the results of a varied number of
permutations, it is shown that the Spearman correlation tends
to increase with the number of permutations T . When T is
small, the ground-truth SV calculated by permutation sam-
pling is very sensitive to the utility of small subsets. There-
fore, the relatively inaccurate prediction on small subsets
results in the high NRMSE and low Spearman correlation.
With the increase of T , the SV predicted by ModelPred can
better represent the true SV with the increasing correlation.

Figure 4 presents the trends of Spearman Correlation of
predicted SV by ModelPred, and compares the total com-

putation time of SV calculation with the solver on MNIST
and HIGGS. It demonstrates the advantage of ModelPred
over the solver in computation time, where time consumed
by ModelPred has a slow growth with the increasing number
of permutations.

Fig. 4: Total computation time consumed by ModelPred and the solver on
training a different number of subsets in SV calculation for MNIST (left)
and HIGGS (right).

How to select data that benefit model performance?
Data Selection. Despite the rapid growth of big data, the

performance of all learning algorithms is upper bounded
by the quality of training data [32]. Low-quality training
data could be attributed to the contamination of various
harmful examples (i.e., noisy samples, mislabeled samples
) or the lack of representativeness of the data distribution.
Furthermore, a small but high-quality training dataset can
significantly reduce the computation workload of an ML
model as well as maintain comparable utility.

In this application, we aim to efficiently identify the quality
of training data by estimating the Shapley value of each data
point. We estimate the SV of training samples in SPAM
and MNIST by ModelPred with LR as the base model
(i.e., ModelPred-SV). The label of 10% training samples

9

TABLE V: A summary of ModelPred results and baseline comparison results in SV prediction with LR on IRIS, SPAM, and HIGGS with permutation
number T ∈ {50, 100, 500, 1000}. Mean and standard deviation reported over 10 experimental trials. The best result is highlighted in bold.

Permutation 50 100 500 1000

Shapley value Time (sec) Shapley value Time (sec) Shapley value Time (sec) Shapley value Time (sec)
Dataset Algorithm NRMSE Spearman NRMSE Spearman NRMSE Spearman NRMSE Spearman

Iris
ModelPred 8.52% 0.9265 1.05E+01 7.69% 0.9463 2.22E+01 6.82% 0.9747 7.84E+01 6.22% 0.9585 2.27E+02

UtlLearn 25.97% -0.2526 1.08E+01 28.46% -0.1118 2.21E+01 36.14% 0.0388 7.87E+01 42.79% -0.0480 2.22E+02
solver – – 4.05E+01 – – 8.64E+01 – – 2.70E+02 – – 8.57E+02

SPAM
ModelPred 13.46% 0.3774 1.00E+02 18.16% 0.3686 1.23E+02 15.57% 0.7069 1.43E+02 18.51% 0.7772 2.86E+02

UtlLearn 15.21% -0.2081 1.14E+02 20.76% -0.2091 1.26E+02 18.72% -0.1187 1.42E+02 22.96% -0.0600 2.75E+02
solver – – 3.07E+02 – – 6.50E+02 – – 8.96E+02 – – 4.73E+03

HIGGS
ModelPred 12.15% 0.5249 1.37E+01 15.60% 0.4463 2.42E+01 17.54% 0.6655 8.30E+01 17.45% 0.7066 1.69E+02

UtlLearn 43.12% -0.2494 1.27E+01 61.82% -0.3029 2.15E+01 86.85% -0.5729 1.02E+02 90.52% -0.6742 1.75E+02
solver – – 9.17E+01 – – 1.70E+02 – – 6.39E+02 – – 1.27E+03

is flipped in the experiment. Then, the samples are removed
from the training set according to their SV from the smallest
to the largest. The base model is retrained on the shrunk
training set to obtain classification accuracy on the testing
set. Shapley value estimated by Permutation Sampling with
L-BFGS-B solver (i.e., Perm-SV), and randomly selecting
the sample to be removed (i.e., Random) are compared with
ModelPred as baselines. To maintain similar computation
time by ModelPred-SV and Perm-SV, 1000 and 50 permu-
tations are performed to calculate SV, respectively. Figure 5
shows that after removing the sample number of samples,
ModelPred maintains a higher testing accuracy than the
baselines while Perm-SV outperforms Random in most cases.
This indicates that SV can effectively identify the quality of
a data point, and ModelPred-SV can estimate the SV more
accurately with a larger number of permutations. Figure 5
also shows that there is an increasing trend of the testing
accuracy on both SPAM and MNIST in the initial phase
by ModelPred-SV, which indicates that the mislabeled low-
quality data are removed effectively to improve the model’s
learning performance.

Fig. 5: Testing accuracy with LR retrained on the remaining training samples
for SPAM (left) and MNIST dataset (right).

Is a training data point memorized by the model?
Memorization and Influence Score Estimation. One

of the most important features of ML algorithms is their
capability for generalization. Label memorization score has
been proposed to identify and understand the utility of
typical, atypical samples and outliers for a model in order
to understand the generalization [33]. For a model f(x; θ)
trained on a dataset D by a learning algorithm A, the label
memorization score on sample (xi, yi) ∈ D is defined as:

mem(A, D, i) := Prf←A(D) [f (xi) = yi]− (9)
Prf←A(D\i) [f (xi) = yi] ,

where D\i denotes the subset D with (xi, yi) removed.
Following [33], we adopt the subsampling-based estima-

tion algorithm to estimate the memorization score. Specifi-
cally, we sample m subsets of equal size |Si| = 0.7|D| and
the memorization score can be estimated as the following:

m̂em(A, D, i) =

1

|{j : xi ∈ Sj}|
∑

j:xi∈Sj

I[f (A (Sj) , xi) = yi]

− 1

|{j : xi ̸∈ Sj}|
∑

j:xi ̸∈Sj

I[f (A (Sj) , xi) = yi].

However, with a large dataset D, the number of subsets
m is substantially large to accurately estimate the label
memorization of each sample [33]. This computation con-
straint can be partially overcome by the ModelPred since it
can efficiently estimate the trained model on a subset, thus
capable of accelerating the memorization score estimation.

In the experiment, two base models (NN and LR) with
two datasets (Hymenoptera and MNIST) are employed for
memorization estimation. As mentioned in Section IV-B, the
NN is pre-trained on CIFAR-10 and the last layer is trained
to adjust to Hymenoptera. In order to maintain comparable
computational time for the comparison between ModelPred
and the SGD solver, 1000 subsets are randomly generated
for each sample with a size of 280 for ModelPred, and 50
subsets are generated for the SGD solver to estimate the
memorization of 208 training samples in Hymenoptera. In
order to demonstrate and compare the estimation accuracy
of memorization scores, we depict the effect of removing
memorized samples on test accuracy. Specifically, in the left
panel of Figure 6, we show the model test accuracy when
data points whose memorization scores are higher than a
certain threshold are excluded from the training set. As we
can see, memorization scores estimated by ModelPred result
in higher test accuracy compared with the baseline estimator,
which means that ModelPred can improve memorization
score estimation and thus better identify outliers.

When adopting LR as the base model and MNIST as the
dataset, memorization scores of the first 200 samples are
estimated by L-BFGS-B (i.e., the solver for LR) and Mod-
elPred on 500 testing samples. Since the learning algorithm,

10

in this case, is deterministic, we modify the definition of
memorization score as the following:

mem(A, D, i) (10)
:= conf(finclude(xi), yi)− conf(fexclude(xi), yi),

where finclude = A(D) and fexclude = A(D \ i), and
conf(f, y) denote the confidence score of f on class y.

Fig. 6: Testing accuracy after removing samples larger than the memoriza-
tion value threshold (i.e., ground-truth and estimated by ModelPred) on
Hymenoptera with pre-trained NN (left) and on MNIST with LR (right).
Mean and standard deviation reported over 10 experimental trials.

The right panel of Figure 6 demonstrates the effect of
removing samples with the memorization values estimated
by ModelPred and the solver, which can be treated as the
ground-truth memorization value, on the test accuracy of
MNIST dataset. As shown by Figure 6, the trend of the
removal effect estimated by ModelPred is very close to the
ground-truth trend. Compared to the solver, it takes 1.84% of
the time to estimate the value by ModelPred, which greatly
reduces the computation workload.

Fig. 7: Examples of memorization values estimated by ModelPred from the
first 200 samples of MNIST class 0, 2, 3, 5, 6, 7, 8.

Figure 7 visualizes samples with memorization values
estimated by ModelPred around 0, 0.5, and 1, respectively,
which shows the effectiveness of ModelPred in identifying
memorized examples. Intuitively, samples with an estimated
memorization value of 0 are relatively normal, whereas
those with a value of 1 are atypical (e.g., highly unclear
or incorrectly categorized). Therefore, samples with high
memorization values should be carefully validated to be
included in the training dataset.

Furthermore, we present pairs of examples with influence
estimated by ModelPred from high to low in Hymenoptera
as shown in Figure 8. The reuslts on MNIST is included in
the Appendix. The influence of a training sample (xi, yi) on
a testing sample z = (x, y) is measured as:

infl(A, D, i, z) : = Prf←A(D)[f(x) = y]− (11)
Prf←A(D\i)[f(x) = y].

As shown in Figure 8, high-influence pairs correspond to
similar (or even near-duplicated) images.These samples in
the test set benefit mostly from the high-memorized training

Fig. 8: Examples of selected influence pairs in Hymenoptera. The left
column shows the examples with memorization from high to low in the
training set. For each training example, examples with high and low
estimates are presented in the testing set.

samples due to the long-tail distribution. In contrast, exam-
ples in pairs with lower influences are more regular. This val-
idates the effectiveness of the influence memorization value
estimated by the proposed ModelPred, which helps to better
interpret the influence of samples and the generalization of
ML algorithms.

How to produce accurate estimates of uncertainty on
model predictions?

Model Calibration. Classification models’ confidence
calibration performance is crucial in mission-critical tasks
[34], and a well-calibrated model should have a confidence
(i.e., probability associated with the predicted class label)
matching with its ground truth accuracy. Expected Cali-
bration Error (ECE) [35] is the primary metric of model
calibration performance, which is calculated by partitioning
predictions (with range [0, 1]) into M equally-spaced bins
and calculating the weighted average of differences between
bins’ accuracy and confidence:

ECE =

M∑
m=1

|Bm|
n

|acc (Bm)− conf (Bm)| ,

where n is the number of training samples, Bm is the set of
indices of samples whose prediction confidence falls into the
interval Im = (m−1M , m

M) for m ∈ {1,. . . , M}. Accuracy and
confidence are calculated below:

acc(Bm) =
1

|Bm|
∑
i∈Bm

1[ŷi = yi], (12)

conf(Bm) =
1

|Bm|
∑
i∈Bm

p̂i, (13)

where ŷi and yi are the predicted and true class labels of
sample i, respectively, and p̂i is the confidence for sample
i on label yi. A model with better calibration performance
should have a lower ECE.

One way to improve a model’s calibration performance
is bagging [36], which generates an ensemble of models
on subsampled datasets and aggregates over each prediction
to obtain final prediction results. However, training a large

11

TABLE VI: Expected Calibration Error (ECE). ‘Regular’ refers to an
ensemble of LR models obtained during the training of Â; ‘ModelPred’
refers to an ensemble of a combination of these models and 5000 models
generated by the trained Â.

Dataset Regular ModelPred

Iris 0.0562 0.0508 ± 0.0002
SPAM 0.2693 0.1661 ± 0.0054
MNIST 0.5492 0.5227 ± 0.0014

number of models can be time-consuming. We show here that
ModelPred provides an efficient way to perform bagging,
which effectively reduces the ECE. Specifically, we use LR
base models as a baseline of the ensemble. Further, we
combine these models with models predicted by the trained
DNN, Â, to get a larger ensemble. To generate models using
Â, each time we randomly sample a subset of instances with
a ratio 0.6 from the training set with replacement and obtain
estimated models predicted by Â. As shown in Table VI,
combining more models generated by Â effectively lower
the ECE on Iris, SPAM, and MNIST dataset. Additionally,
temperature scaling [34] might further improve the model’s
calibration performance and we consider investigating the
combination of temperature scaling and our method with
model ensemble as the future work.

V. RELATED WORK

Rapid Model Parameter Approximation. Machine un-
learning and incremental model maintenance provide post-
hoc techniques to estimate model parameters without re-
training from scratch. Ginart et al. [37], Nguyen et al.
[38], Brophy and Lowd [39] have investigated unlearning
strategies on specific types of learning algorithms, whereas
Bourtoule et al. [40] provides generally applicable strate-
gies. For simple linear models, Cauwenberghs and Poggio
[41], Schelter [42], Wu et al. [43] introduce incremental
model maintenance techniques for efficient updating a model
for both data deletion and addition. In DNNs, Influence Func-
tion [6] is proposed to measure the effect of a manipulated
data point by using Taylor expansion to approximate model
parameters. DeltaGrad [8] saves optimizer’s update steps in
order to more accurately approximate the removal of multiple
sample points. Golatkar et al. [44] used the approximation of
the Fisher Information Matrix for the remaining data sample
to measure the update step to modify the model parameters.
Although all techniques are capable of efficient model pa-
rameter approximation for a change with a small number of
samples [45, 46], they are not scalable for situations when a
large number of training points are altered.

Learning to Optimize. L2O focuses on learning the
optimization algorithm (i.e., optimizer). An early approach
was provided in Andrychowicz et al. [47] to use Recurrent
Neural Networks (RNN) to learn the optimizer. For larger
model training, it requires the RNN model to iterate through
more time steps. Unfortunately, that will create a vanishing
gradient or an exploding gradient of the RNN optimization,
which in turn will render unstable training of L2O. Due to

these barriers, more works [48, 49, 50, 51, 52, 53] focus
on overcoming those problems by improving the LSTM
structure. Even though, those works focus mainly on specific
optimizers’ family, such as SGD, Adam, or RMSProp. As
another branch, Li and Malik [54] proposed a reinforcement
learning (RL) technique, in which the RL policy is the update
step of the optimizer and the reward is the loss for the
optimizer. However, RL methods are not scalable. Therefore,
Almeida et al. [55] proposed to update the optimizer’s
hyperparameters instead of learning to update parameters,
which helps to improve the generalization ability of L2O
models. Despite the advantages of fast optimization and po-
tential generalizability, L2O learns to learn and optimize the
optimizer, which is computationally intensive to be applied
to repeated model training on a large number of subsets.

Learning Optimization by DNNs. A line of research
studies using deep learning to solve convex optimization
problems by encoding constraints and dependencies into
network structure to find the optimal end-to-end mapping.
Agrawal et al. [56] embedded disciplined convex optimiza-
tion problems as differentiable layers within DNN architec-
tures as a new solver. Amos and Kolter [57] introduced a
network architecture to solve differentiable optimization by
end-to-end deep learning training. Similar to L2o, repeated
training is still computationally demanding with these ap-
proaches. Moreover, they also suffer from poor generalization
performances, as they are limited to linear programs (LP),
and quadratic programs, and are difficult to be applied to
other settings. Chen et al. [58] proposed to use DNN to
predict the optimal set of active constraints to improve the
generalizability, but only for the form of the linear program.
Carlini et al. [59] trained a set of models on the subset of
the training dataset to perform the membership inference
attack on a target model. However, they did not use such
a technique to understand the input-output behavior of a
learning algorithm, which is the focus of our work.

VI. CONCLUSION

We propose ModelPred, as a framework to analyze the
dependence of the trained models on training data via su-
pervised learning. We introduce two novel regularization
techniques to prevent overfitting the context of predicting
models from training data. We show that the expressiveness
of DNNs makes them suitable for approximating the input-
output behavior of a learning algorithm. We showcase the
applications of ModelPred to build trust in ML.

For future work, it is intriguing to rigorously study the
learnability of the mapping from data to the trained model
using neural networks. Moreover, while providing promising
results, our current design simply examines the ℓ2 distance
between the ground-truth and the predicted model parame-
ters. It is interesting to explore more sophisticated ways to
measure parameter distance that accounts for the difference
in predictive behaviors of the two models.

12

REFERENCES
[1] A. Ilyas, S. M. Park, L. Engstrom, G. Leclerc, and A. Madry,

“Datamodels: Predicting predictions from training data,” arXiv preprint
arXiv:2202.00622, 2022.

[2] R. Jia, D. Dao, B. Wang, F. A. Hubis, N. Hynes, N. M. Gürel, B. Li,
C. Zhang, D. Song, and C. J. Spanos, “Towards efficient data valuation
based on the shapley value,” in The 22nd International Conference on
Artificial Intelligence and Statistics. PMLR, 2019, pp. 1167–1176.

[3] A. Ghorbani and J. Zou, “Data shapley: Equitable valuation of data for
machine learning,” in International Conference on Machine Learning.
PMLR, 2019, pp. 2242–2251.

[4] C. Zhang, D. Ippolito, K. Lee, M. Jagielski, F. Tramèr, and N. Car-
lini, “Counterfactual memorization in neural language models,” arXiv
preprint arXiv:2112.12938, 2021.

[5] B. Efron, “Bootstrap methods: another look at the jackknife,” in
Breakthroughs in statistics. Springer, 1992, pp. 569–593.

[6] P. W. Koh and P. Liang, “Understanding black-box predictions via in-
fluence functions,” in International Conference on Machine Learning.
PMLR, 2017, pp. 1885–1894.

[7] A. Schioppa, P. Zablotskaia, D. Vilar, and A. Sokolov, “Scaling
up influence functions,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 36, no. 8, 2022, pp. 8179–8186.

[8] Y. Wu, E. Dobriban, and S. Davidson, “Deltagrad: Rapid retraining
of machine learning models,” in International Conference on Machine
Learning. PMLR, 2020, pp. 10 355–10 366.

[9] G. Pruthi, F. Liu, S. Kale, and M. Sundararajan, “Estimating train-
ing data influence by tracing gradient descent,” Advances in Neural
Information Processing Systems, vol. 33, pp. 19 920–19 930, 2020.

[10] P. W. W. Koh, K.-S. Ang, H. Teo, and P. S. Liang, “On the accuracy of
influence functions for measuring group effects,” Advances in neural
information processing systems, vol. 32, 2019.

[11] D. P. Bertsekas, “Nonlinear programming,” Journal of the Operational
Research Society, vol. 48, no. 3, pp. 334–334, 1997.

[12] D. Yarotsky, “Error bounds for approximations with deep relu net-
works,” Neural Networks, vol. 94, pp. 103–114, 2017.

[13] Q. Sun, Y. Liu, T.-S. Chua, and B. Schiele, “Meta-transfer learning
for few-shot learning,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2019, pp. 403–412.

[14] L. Yuan, D. Chen, Y.-L. Chen, N. Codella, X. Dai, J. Gao, H. Hu,
X. Huang, B. Li, C. Li et al., “Florence: A new foundation model for
computer vision,” arXiv preprint arXiv:2111.11432, 2021.

[15] G. Leclerc, A. Ilyas, L. Engstrom, S. M. Park, H. Salman, and
A. Madry, “ffcv,” https://github.com/libffcv/ffcv/, 2022.

[16] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, “Algorithm 778: L-bfgs-
b: Fortran subroutines for large-scale bound-constrained optimization,”
ACM Transactions on mathematical software (TOMS), vol. 23, no. 4,
pp. 550–560, 1997.

[17] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin,
“Liblinear: A library for large linear classification,” the Journal of
machine Learning research, vol. 9, pp. 1871–1874, 2008.

[18] R. Fisher and T. Creator, “Iris,” UCI Machine Learning Repository,
1988.

[19] M. Hopkins, E. Reeber, G. Forman, and J. Suermondt, “Spambase,”
UCI Machine Learning Repository, 1999.

[20] P. Baldi, P. Sadowski, and D. Whiteson, “Searching for exotic particles
in high-energy physics with deep learning,” Nature communications,
vol. 5, no. 1, pp. 1–9, 2014.

[21] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[22] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[23] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances
in neural information processing systems, vol. 32, 2019.

[24] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. Salakhutdinov,
and A. Smola, “Deep sets,” arXiv preprint arXiv:1703.06114, 2017.

[25] L. Myers and M. J. Sirois, Spearman Correlation Coefficients, Differ-
ences between. American Cancer Society, 2006.

[26] A. Akhbardeh, H. Sagreiya, A. El Kaffas, J. K. Willmann, and D. L.
Rubin, “A multi-model framework to estimate perfusion parameters
using contrast-enhanced ultrasound imaging,” Medical physics, vol. 46,
no. 2, pp. 590–600, 2019.

[27] R. Tibshirani, “Regression shrinkage and selection via the lasso,”
Journal of the Royal Statistical Society: Series B (Methodological),
vol. 58, no. 1, pp. 267–288, 1996.

[28] R. Jia, D. Dao, B. Wang, F. A. Hubis, N. M. Gurel, B. Li, C. Zhang,
C. J. Spanos, and D. Song, “Efficient task-specific data valuation for
nearest neighbor algorithms,” arXiv preprint arXiv:1908.08619, 2019.

[29] T. Wang, J. Rausch, C. Zhang, R. Jia, and D. Song, “A principled ap-
proach to data valuation for federated learning,” in Federated Learning.
Springer, 2020, pp. 153–167.

[30] R. Jia, F. Wu, X. Sun, J. Xu, D. Dao, B. Kailkhura, C. Zhang, B. Li,
and D. Song, “Scalability vs. utility: Do we have to sacrifice one for
the other in data importance quantification?” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 8239–8247.

[31] S. Maleki, “Addressing the computational issues of the shapley value
with applications in the smart grid,” Ph.D. dissertation, University of
Southampton, 2015.

[32] A. Jain, H. Patel, L. Nagalapatti, N. Gupta, S. Mehta, S. Guttula,
S. Mujumdar, S. Afzal, R. Sharma Mittal, and V. Munigala, “Overview
and importance of data quality for machine learning tasks,” in Pro-
ceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2020, pp. 3561–3562.

[33] V. Feldman and C. Zhang, “What neural networks memorize and why:
Discovering the long tail via influence estimation,” Advances in Neural
Information Processing Systems, vol. 33, pp. 2881–2891, 2020.

[34] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration
of modern neural networks,” in International Conference on Machine
Learning. PMLR, 2017, pp. 1321–1330.

[35] M. P. Naeini, G. Cooper, and M. Hauskrecht, “Obtaining well cal-
ibrated probabilities using bayesian binning,” in Twenty-Ninth AAAI
Conference on Artificial Intelligence, 2015.

[36] L. Breiman, “Bagging predictors,” Machine learning, vol. 24, no. 2,
pp. 123–140, 1996.

[37] A. Ginart, M. Y. Guan, G. Valiant, and J. Zou, “Making ai forget you:
Data deletion in machine learning,” arXiv preprint arXiv:1907.05012,
2019.

[38] Q. P. Nguyen, B. K. H. Low, and P. Jaillet, “Variational bayesian
unlearning,” Advances in Neural Information Processing Systems,
vol. 33, 2020.

[39] J. Brophy and D. Lowd, “Machine unlearning for random forests,” in
International Conference on Machine Learning. PMLR, 2021, pp.
1092–1104.

[40] L. Bourtoule, V. Chandrasekaran, C. A. Choquette-Choo, H. Jia,
A. Travers, B. Zhang, D. Lie, and N. Papernot, “Machine unlearning,”
in 2021 IEEE Symposium on Security and Privacy (SP). IEEE, 2021,
pp. 141–159.

[41] G. Cauwenberghs and T. Poggio, “Incremental and decremental sup-
port vector machine learning,” Advances in neural information pro-
cessing systems, pp. 409–415, 2001.

[42] S. Schelter, “amnesia–towards machine learning models that can forget
user data very fast,” in 1st International Workshop on Applied AI for
Database Systems and Applications (AIDB19), 2019.

[43] Y. Wu, V. Tannen, and S. B. Davidson, “Priu: A provenance-based ap-
proach for incrementally updating regression models,” in Proceedings
of the 2020 ACM SIGMOD International Conference on Management
of Data, 2020, pp. 447–462.

[44] A. Golatkar, A. Achille, and S. Soatto, “Eternal sunshine of the spotless
net: Selective forgetting in deep networks,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 9304–9312.

[45] S. Basu, P. Pope, and S. Feizi, “Influence functions in deep learning
are fragile,” arXiv preprint arXiv:2006.14651, 2020.

[46] A. Mahadevan and M. Mathioudakis, “Certifiable machine unlearning
for linear models,” arXiv preprint arXiv:2106.15093, 2021.

[47] M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau,
T. Schaul, B. Shillingford, and N. De Freitas, “Learning to learn
by gradient descent by gradient descent,” in Advances in neural
information processing systems, 2016, pp. 3981–3989.

[48] Y. Chen, M. W. Hoffman, S. G. Colmenarejo, M. Denil, T. P. Lillicrap,
M. Botvinick, and N. Freitas, “Learning to learn without gradient
descent by gradient descent,” in International Conference on Machine
Learning. PMLR, 2017, pp. 748–756.

[49] K. Lv, S. Jiang, and J. Li, “Learning gradient descent: Better general-
ization and longer horizons,” in International Conference on Machine

13

https://github.com/libffcv/ffcv/

Learning. PMLR, 2017, pp. 2247–2255.
[50] O. Wichrowska, N. Maheswaranathan, M. W. Hoffman, S. G. Col-

menarejo, M. Denil, N. Freitas, and J. Sohl-Dickstein, “Learned
optimizers that scale and generalize,” in International Conference on
Machine Learning. PMLR, 2017, pp. 3751–3760.

[51] L. Metz, N. Maheswaranathan, J. Nixon, D. Freeman, and J. Sohl-
Dickstein, “Understanding and correcting pathologies in the training of
learned optimizers,” in International Conference on Machine Learning.
PMLR, 2019, pp. 4556–4565.

[52] Y. Cao, T. Chen, Z. Wang, and Y. Shen, “Learning to optimize in
swarms,” Advances in neural information processing systems, vol. 32,
p. 15044, 2019.

[53] X. Chen, Y. Li, R. Umarov, X. Gao, and L. Song, “Rna secondary
structure prediction by learning unrolled algorithms,” arXiv preprint
arXiv:2002.05810, 2020.

[54] K. Li and J. Malik, “Learning to optimize,” arXiv preprint
arXiv:1606.01885, 2016.

[55] D. Almeida, C. Winter, J. Tang, and W. Zaremba, “A generalizable
approach to learning optimizers,” arXiv preprint arXiv:2106.00958,
2021.

[56] A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and
Z. Kolter, “Differentiable convex optimization layers,” arXiv preprint
arXiv:1910.12430, 2019.

[57] B. Amos and J. Z. Kolter, “Optnet: Differentiable optimization as a
layer in neural networks,” in International Conference on Machine
Learning. PMLR, 2017, pp. 136–145.

[58] X. Chen, H. Dai, Y. Li, X. Gao, and L. Song, “Learning to stop while
learning to predict,” in International Conference on Machine Learning.
PMLR, 2020, pp. 1520–1530.

[59] N. Carlini, S. Chien, M. Nasr, S. Song, A. Terzis, and F. Tramer,
“Membership inference attacks from first principles,” in 2022 IEEE
Symposium on Security and Privacy (SP). IEEE, 2022, pp. 1897–
1914.

[60] D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

APPENDIX

A. Proof of Theorem 1

Theorem 1 (Restated). If for all z ∈ [0, 1]d, the loss function
ℓ(θ; z) is α-strongly convex in θ, and

∥∥∥ ∂
∂θ∂zi

ℓ(θ, z)
∥∥∥ ≤ B1

for i ∈ [d], then for θk(D) = [argminθ L(θ;D)]k, where
L(θ;D) = 1

n

∑n
i=1 ℓ(θ; (xi, yi)) +

λ
2 ∥θ∥22 and [·]k means

the kth element in the vector, then we have∥∥∥∥∂θk∂D

∥∥∥∥ ≤ B1

√
dparam(d+ 1)√
n(α+ λ)

. (14)

Proof. Given a loss function L(θ;D) =
1
n

∑n
i=1 ℓ(θ; (xi, yi)) +

λ
2 ∥θ∥22, the unique local minimum

θ̂(D) is characterized by the implicit function

∇L(θ̂, D) =
1

n

n∑
i=1

∇θℓ(θ̂, (xi, yi)) + λθ̂ = 0. (15)

Denote σ(j) = ⌈j/(d + 1)⌉ to be the index of the data
point (and hence the loss function ℓ) jth dimension of D
corresponds to. By the implicit function theorem and the
chain rule, we have(n∑

i=1

∂ℓi
∂θT∂θ

+ nλI

)
∂θ

∂Dj
+

∂ℓσ(j)

∂θ∂Dj
= 0, (16)

where ℓi = ℓ(·; (xi, yi)) and, therefore, we obtain

∂θ

∂Dj
= −[H−1]

∂ℓσ(j)

∂θ∂Dj
, (17)

where H =
∑n

i=1
∂ℓi

∂θT ∂θ
+ nλI is the Hessian matrix. We

use [H−1]k to denote the kth row of the Hessian inverse,
and, hence,

∂θ

∂Dj
=

[
∂θ1
∂Dj

, . . . ,
∂θdparam

∂Dj

]
(18)

=

[
−[H−1]1

∂ℓσ(j)

∂θ∂Dj
, . . . ,−[H−1]dparam

∂ℓσ(j)

∂θ∂Dj

]
. (19)

Therefore, we have∥∥∥∥ ∂θ

∂Dj

∥∥∥∥2
2

=

dparam∑
k=1

(
[H−1]k

∂ℓσ(j)

∂θ∂Dj

)2

(20)

≤
dparam∑
k=1

∥∥[H−1]k∥∥2 ∥∥∥∥ ∂ℓσ(j)

∂θ∂Dj

∥∥∥∥2 (21)

=

∥∥∥∥ ∂ℓσ(j)

∂θ∂Dj

∥∥∥∥2 ∥∥H−1∥∥2F (22)

≤ B2
1

∥∥H−1∥∥2
F
, (23)

where the inequality is due to the Cauchy–Schwarz inequal-
ity.

The remaining work is to bound
∥∥H−1∥∥

F
. Denote

λ1, . . . , λdparam
as the eigenvalues of H . Observe that

14

http://archive.ics.uci.edu/ml

∥∥H−1∥∥
F
=
√
tr((H−1)TH−1) (24)

=
√
tr(H−1H−1) (25)

=

√√√√dparam∑
i=1

1

λ2
i

, (26)

where the second equality holds due to H being symmetric,
hence H−1 is also symmetric. Further, the last equality holds,
because the eigenvalues for H−1 are 1

λ1
, . . . , 1

λdparam
. Since

each ℓ is α-strongly convex, we know that the minimum
eigenvalue of the Hessian matrix H is at least nα + nλ.
Therefore, we obtain∥∥H−1∥∥

F
≤
√
dparam

nα+ nλ
.

Then, it follows that∥∥∥∥ ∂θ

∂Dj

∥∥∥∥
2

≤ B1

√
dparam

n(α+ λ)
, (27)

which implies ∣∣∣∣ ∂θk∂Dj

∣∣∣∣ ≤ B1

√
dparam

n(α+ λ)
, (28)

and, finally, we have∣∣∣∣∂θk∂D

∣∣∣∣ ≤ B1

√
dparam(d+ 1)
√
n(α+ λ)

. (29)

B. Proof of Theorem 2

Theorem 2. If for all z ∈ [0, 1]d, the loss function ℓ(θ; z)

is β-smooth in θ, and
∥∥∥ ∂
∂θ∂zi

ℓ(θ, z)
∥∥∥ ≤ B1 for i ∈ [d],

then for θ
(t)
k (D) defined by the kth entry of θ(t), which

is iteratively computed by θ(t) = θ(t−1) − η∇L(θ(t−1);D)
and θ(0) = 0 with a learning rate η > 0, and L(θ;D) =
1
n

∑n
i=1 ℓ(θ; (xi, yi)) +

λ
2 ∥θ∥22, we have∥∥∥∥∥∂θ(t)k

∂D

∥∥∥∥∥ ≤
(
1− (1− ηλ− ηdparamβ)

t
) B1

√
(d+ 1)√

n(λ+ dparamβ)
.

Proof. Consider an iteration θ
(t)
k = θ

(t−1)
k −η∇L(θ(t−1);D).

Taking a derivative with respect to Dj for both sides, we have

∂θ
(t)
k

∂Dj
=

∂θ
(t−1)
k

∂Dj
(30)

− η

[
λ
∂θ

(t−1)
k

∂Dj
+

1

n

n∑
i=1

∂2ℓi
∂θ2k

∂θ
(t−1)
k

∂Dj
+

1

n

∂ℓσ(j)

∂θk∂Dj

]
(31)

=

(
1− ηλ− η

n

n∑
i=1

∂2ℓi
∂θ2k

)
∂θ

(t−1)
k

∂Dj
− η

n

∂ℓσ(j)

∂θk∂Dj

(32)

≤ (1− ηλ− ηdparamβ)
∂θ

(t−1)
k

∂Dj
− η

n
B1, (33)

where the inequality follows due to
∣∣∣ ∂ℓσ(j)

∂θk∂Dj

∣∣∣ ≤ B1 and
∂2ℓi
∂θ2

k
≤ dparamβ.

Observe that

∂θ
(t)
k

∂Dj
+

ηB1

nα
≤ (1− α)

(
∂θ

(t−1)
k

∂Dj
+

ηB1

nα

)
(34)

≤ (1− α)t
ηB1

nα
. (35)

Therefore, we obtain∣∣∣∣∣∂θ(t)k

∂Dj

∣∣∣∣∣ ≤ (1− (1− ηλ− ηdparamβ)
t
) B1

n(λ+ dparamβ)
,

(36)

which results in∥∥∥∥∥∂θ(t)k

∂D

∥∥∥∥∥ ≤
(
1− (1− ηλ− ηdparamβ)

t
) B1

√
(d+ 1)√

n(λ+ dparamβ)
.

(37)

[12] shows that continuous differentiable functions with
a smaller upper bound of the gradient norm can be more
efficiently approximated by deep ReLU networks. For com-
pleteness, we present the result here.

Theorem 3. For any Lipschitz continuous function f :

[0, 1]d → R with range B and
∥∥∥∂f
∂x

∥∥∥ ≤ L for all

x ∈ [0, 1]d, there is a ReLU network that is capable of
expressing any such function within an arbitrary error ε and
has no more than c ln(2d+1Bd(d + 1)/ε) + 1 layers and
d
(
2d+1dL/ε+ 1

)d
(c ln(2d+1Bd(d + 1)/ε) + 1) computa-

tional units.

As we can see, if L is smaller, the upper bound of the
network size is smaller. The proof of this theorem is done
by simply plugging in constants for Theorem 3.1 in [12].

C. Additional Results

1) SVM As the Base Model
We summarize the results for dataset deletion and dataset

addition experiments with Support Vector Machine (SVM)

15

as base models in VIII.
The results in Table VII and VIII illustrate that the pro-

posed ModelPred achieves similar performance with differ-
ent base models (i.e., LR and SVM) in terms of the accuracy
of parameter prediction and strong correlation between the
predicted utility and the actual utility of subsets.

2) Transfer Learning in NN

Fig. 9: Results on Hymenoptera images with NN as the base model. a) and
b): the estimated loss by predicted parameters of each subset in the scenario
of dataset deletion and addition; c) and d): the Euclidean distance between
predicted parameters and optimal parameters in the same scenario.

Similar to Figure 2, Figure 9 visualizes the estimated loss
and the Euclidean distance between predicted parameters and
optimal parameters by Influence Function and ModelPred
with NN as the base model. It shows the estimation error
of the proposed method remains at a lower level after the
intersection point. This demonstrates the advantage of the
proposed method over linear approximation by Influence
Function, and it also quantifies the size of the subset after
addition or deletion where the proposed method dominates
the performance. In summary, ModelPred demonstrates its
superior performance in predicting the parameters for the
training of ML models with subsets of different sizes.

3) Larger Training Set
We increase the number of training data points to conduct

larger-scale experiments to validate our proposed method.
The setting are summarized in Table IX and the results are
summarized in Table X.

MNIST-2000 MNIST-2000 We increase the number of
training points to 2000 and 10000 for MNIST dataset and
conduct the dataset addition and deletion experiments. We
construct 15000 training samples to construct the training set
Φ for MNIST-2000 and 100,000 training samples for MNIST-
10000. Collecting 100,000 training samples takes roughly
3hrs. We find ModelPred achieves similar effective results
with very high Spearman correlation compared to the results
of a training set with 300 data points.

ADULT([60]) ADULT dataset (i.e., ‘Census Income’
dataset) is a collection of roughly 48000 records of personal
income with 14 attributes (d=14). The predefined prediction
task is to determine whether a person makes over 50K a year
as a binary classification problem. We first sample 10000 data

points with 9500 male records and 500 female records from
the dataset as our full training dataset. Another 1000 points
are selected for testing. Instead of studying the dependency of
the trained model on a randomly generated subset, we target
utilizing ModelPred to investigate the effect of data collected
from a subgroup (i.e. female). Therefore, we construct the
15000 training sample set Φ by removing a subset of these
500 points from the training set. In the dataset deletion
experiment, we also remove subsets randomly generated by
these 500 points from the training set. The results in Table X
show that ModelPred can accurately predict the trained
model as well as the utility. Therefore, it can be applied to
study the effect of a subgroup within a large dataset on the
training performance of a base model.

4) Memorization and Influence Score Estimation

Fig. 10: Examples of selected influence pairs in MNIST. The left column
shows examples of memorization score from high to low in the training
set. For each training example, examples with high and low estimates are
presented in the testing set.

5) Abaltion Study
In the phase of offline training, we approximate the learn-

ing algorithm by fine-tuning the last layer of a pre-trained
model. We further perform an ablation study to validate
the effectiveness of employing transfer learning in the large
base model retraining. A Resnet-18 model is pre-trained on
CIFAR-10 dataset and the weight of the last layer is fine-
tuned to a small subset (i.e., with 200 samples) randomly
selected from CIFAR-10. To compare with fix embedding
of feature extractors, we randomly initialize the weight of a
Resnet-18 model and only adjust the weight of the last layer.
These two approaches are used to retrain the subsets of 200
samples in the permutation sampling to estimate the SV of
these samples. We select the samples with the lowest and
highest SV estimated by these two approaches in Figure 11
and 12.

As shown in Figure 11, compared to samples in the same
class (i.e., deer, dog, and horse), those with lower SV (i.e.,
in the blue box) are vaguer and less representative. By
comparing Figure 11 and 12, we find that the same image
(the third row and third column of Figure 11) is estimated
to obtain a high SV by transfer learning, but a low SV by
random initialization. However, this image is representative
of the class of horse. Moreover, there is no significant
difference in representativeness between the images with high

16

TABLE VII: A summary of ModelPred results and baseline comparison results in the scenario of dataset deletion with SVM as the base model. The best
results are highlighted in bold.

Dataset Algorithm Parameter Utility∥∥∥θ̂ − θ∗
∥∥∥ Std NRMSE Std Spearman Corr Std

Iris
ModelPred 1.16E-01 1.53E-02 17.25% 7.70% 0.9214 0.0763

Influence function 4.63E-01 8.31E-03 54.10% 8.99% 0.0143 0.4427

SPAM
ModelPred 8.74E-01 1.58E-02 6.85% 0.55% 0.9826 0.0059

Influence Function 1.47E+00 7.78E-03 48.96% 3.23% 0.1395 0.2271

HIGGS
ModelPred 5.38E-01 2.72E-02 7.52% 1.16% 0.9048 0.0442

Influence Function 6.12E-01 6.61E-03 16.97% 2.78% 0.7274 0.1377

TABLE VIII: A summary of ModelPred results and baseline comparison results in the scenario of dataset addition with SVM as the base model. The best
results are highlighted in bold.

Dataset Algorithm Parameter Utility∥∥∥θ̂ − θ∗
∥∥∥ Std NRMSE Std Spearman Corr Std

Iris
ModelPred 1.68E-01 1.15E-02 40.82% 3.01% 0.9292 0.0379

Influence Function 1.50E-01 6.72E-04 63.29% 3.88% 0.1694 0.2300

SPAM
ModelPred 1.19E+00 1.77E-02 10.44% 1.04% 0.9848 0.0046

Influence Function 1.62E+00 3.27E-03 55.03% 2.01% 0.8080 0.0638

HIGGS
ModelPred 7.23E-01 2.07E-02 20.66% 2.55% 0.8467 0.0378

Influence Function 7.30E-01 7.37E-03 17.34% 2.41% 0.7095 0.0828

TABLE IX: Setting for Experiments with Larger Training Set.

Experiment
Total Training

Data Points
Total Testing
Data Points

Size of
Staring Subset

Size of
Intermediate Subsets

Size of
Ending Subset

Addition: MNIST-2000 2000 500 1000 [1000, 1050, 1100, . . .] 2000
Deletion: MNIST-2000 2000 500 2000 [1950, 1900, 1850, . . .] 1000

Deletion: MNIST-10000 10000 1000 5000 [5100, 5200, 5300, . . .] 10000
Deletion: ADULT 10000 1000 9250 [9250, 9255, 9230, ...] 10000

TABLE X: A summary of ModelPred results and baseline comparison results of experiments with larger training set. The best results are highlighted in bold.

Dataset Algorithm Parameter Utility∥∥∥θ̂ − θ∗
∥∥∥ Std NRMSE Std Spearman Corr Std

Addition: MNIST-2000
ModelPred 1.44E+00 5.00E-03 3.01% 0.12% 0.9993 0.0000

Influence function 1.41E-01 5.00E-03 60.10% 0.31% 0.9439 0.0060
ParaLearn 1.10E-01 2.00E-03 209.10% 1.13% N/A N/A

Deletion: MNIST-2000
ModelPred 2.53E+00 2.38E-03 3.18% 0.22% 0.9912 0.0012

Influence function 3.41E+00 1.83E-01 57.56% 0.32% 0.9439 0.0060
ParaLearn 1.87E+00 4.57E-03 125.32% 0.79% N/A N/A
Datamodel N/A N/A 311.20% 7.37% -0.5854 0.0271

Deletion: MNIST-10000
ModelPred 2.30E+00 7.85E-03 1.19% 0.08% 0.9998 0.0002

Influence function 3.08E+00 1.18E-02 56.57% 0.55% -0.0302 0.1309
ParaLearn 2.92E+01 6.36E-03 119.73% 1.30% N/A N/A
Datamodel N/A N/A 75.86% 7.11% -0.0473 0.1530

Deletion: ADULT
ModelPred 3.27E-02 1.11E-03 9.25% 1.78% 0.9287 0.0421

Influence function 9.70E-01 2.45E-02 8.86% 1.68% 0.9146 0.0420
ParaLearn 1.06E-01 1.24E-03 39.80% 7.71% N/A N/A
Datamodel N/A N/A 209.10% 1.13% 0.2454 0.1030

17

Fig. 11: Images with SV estimated by NN trained with transfer learning on
a small subset of CIFAR-10.

Fig. 12: Images with SV estimated by NN trained without transfer learning
on a small subset of CIFAR-10.

and low SV estimated by NN with random initialization as
shown in 12, which might be caused by the low learning
performance of NN during the subset retraining. This indi-
cates that retraining the large NN with transfer learning can
effectively maintain the utility of training samples, which
allows us to significantly reduce the model parameters to
learn. Therefore, ModelPred can be further utilized to learn
the parameters of the large DNN models by transfer learning.

18

	Introduction
	Approach
	Preliminaries
	Algorithm
	Problem Formulation.
	Instantiating
	Design of the Loss Function L
	Algorithm Details

	Characterization of Efficiently Approximatable Learning Algorithms
	Experiments
	Experimental setup
	Computational Considerations
	Base Model
	Dataset
	Sampling Distribution
	Proposed Network Structure
	Evaluation Metrics and Baseline
	Machine configuration

	Experimental results
	ModelPred can predict training outcomes

	Applications

	Related Work
	Conclusion
	Appendix
	Appendices
	Proof of Theorem 1
	Proof of Theorem 2
	Additional Results
	SVM As the Base Model
	Transfer Learning in NN
	Larger Training Set
	Memorization and Influence Score Estimation
	Abaltion Study

