
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MULTI-AGENT DESIGN: OPTIMIZING AGENTS WITH
BETTER PROMPTS AND TOPOLOGIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models, employed as multiple agents that interact and collaborate
with each other, have excelled at solving complex tasks. The agents are pro-
grammed with prompts that declare their functionality, along with the topologies
that orchestrate interactions across agents. Designing prompts and topologies for
multi-agent systems (MAS) is inherently complex. To automate the entire design
process, we first conduct an in-depth analysis of the design space aiming to under-
stand the factors behind building effective MAS. We reveal that prompts together
with topologies play critical roles in enabling more effective MAS design. Based on
the insights, we propose Multi-Agent System Search (MASS), a MAS optimization
framework that efficiently exploits the complex MAS design space by interleaving
its optimization stages, from local to global, from prompts to topologies, over
three stages: 1) block-level (local) prompt optimization; 2) workflow topology
optimization; 3) workflow-level (global) prompt optimization, where each stage is
conditioned on the iteratively optimized prompts/topologies from former stages.
We show that MASS-optimized multi-agent systems outperform a spectrum of
existing alternatives by a substantial margin. Based on the MASS-found systems,
we finally propose design principles behind building effective multi-agent systems.

1 INTRODUCTION

Prompt Optimization Space

Instruction Exemplar

Topology Optimizer

debate

aggregate

reflect

Multi-Agent Design Space

custom

MASS

summarize

tool-use

Optimized topology

<ex_1>

<ex_2>

...

<ins>

<ex_1>

<ex_2>

...

<ins>

<ex_1>

<ex_2>

...

<ins>

Optimized prompt

for each agent type

Optimized

MAS design

Figure 1: Proposed Multi-Agent System Search
(MASS) framework discovers effective multi-
agent system designs (with both optimized topol-
ogy and optimized prompts, right) via inter-
leaved prompt optimization and topology opti-
mization in a customizable multi-agent design
space (key components illustrated on the left).

Large language models (LLMs) have showcased
extraordinary capabilities in understanding, rea-
soning, and generating coherent responses based
on user prompts, revolutionizing a wide range of
applications (Ouyang et al., 2022; Kojima et al.,
2022). LLM-based agents enhance usability by au-
tonomously handling complex tasks across diverse
domains, including code generation and debug-
ging (Jimenez et al., 2023), retrieval-augmented
generation (Singh et al., 2025; Wang et al., 2024a),
data analysis (Hu et al., 2024b; Guo et al., 2024),
and interactive decision-making (Su et al., 2025;
Li et al., 2025). These agents are typically pro-
grammed with prompts that reinforce them to in-
teract with the environment, utilizing available
tools, and approach their objectives over multi-
ple turns (Yao et al., 2023). Beyond individual
agents, LLMs can be orchestrated within complex
topologies that coordinate multiple agents toward
a shared objective. This type of multi-agent system (MAS) typically outperforms its single-agent
counterpart by involving more diverse agentic perspectives or role profiles, such as agents as verifiers
(Shinn et al., 2024) and multi-agent debate (Wang et al., 2024b; Qian et al., 2024).

However, designing effective MAS for new domains often proves to be challenging. First, the single
agent might suffer from prompt sensitivity (Verma et al., 2024), where simple modifications in the
prompt can already exert significant but unexpected degradation of performance (Zhou et al., 2024b;
Liu et al., 2024a). In MAS, when sensitive agents are cascaded, the compounding effect due to

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

prompt sensitivity may be amplified. Together with the prompt design, crafting an effective topology
might demand a substantial amount of manual experimentation, based on trial and error. The problem
complexity is exacerbated by the overall combinatorial search space, over not only the unbounded
space of prompt design but also the design decisions of what agent to integrate into the topology.

Although recent research has explored automating various aspects of agentic designs, there is still
a gap in understanding of what matters most regarding improved MAS performance. For example,
DSPy (Khattab et al., 2024) automates the process of designing exemplars for improved prompt
programming. Li et al. (2024a) propose to optimize MAS by scaling up the number of agents
in majority voting. ADAS (Hu et al., 2024a) programs new topologies expressed in code via an
LLM-based meta-agent. AFlow (Zhang et al., 2024b) searches better topologies using Monte Carlo
Tree Search within a set of predefined operators. However, the interplay between multiple design
spaces, including prompts and topologies, remains unclear.

In this paper, we first conduct in-depth analyses of common design spaces in MAS, examining the
impact of aspects such as optimizing the prompts, scaling the number of agents, and involving different
types of topologies. Our analyses reveal that prompts frequently form an influential design component
that yields strong-performing MAS, and influential topologies only represent a small fraction of
the full search space. Based on these insights, we aim to distill the essence of influential MAS
components into a pruned search space, thereby lowering the complexity of the overall search process.
We propose Multi-Agent System Search (MASS), a novel multi-stage optimization framework that
automates the optimization for MAS over an efficient search space. MASS integrates a plug-and-play
prompt optimizer and workflow optimizer over a configurable topology space. It overcomes the
complexity of joint optimization on MAS by interleaving the optimization stages, from local to
global, from prompts to topologies, over three stages: 1) block-level (local) prompt ‘warm-up’
for each topology block; 2) workflow topology optimization in a pruned set of topology space; 3)
workflow-level (global) prompt optimization given the best-found topology.

By optimizing over the identified influential components, MASS yields optimized MAS that
achieves state-of-the-art performance, outperforming existing manually-crafted MAS baselines
and automatically-generated alternatives, by a substantial margin, demonstrated across an extensive
selection of tasks, including reasoning, multi-hop understanding, and code generation. Based on the
strongest MAS found by MASS, we provide further insights and guidelines behind building effective
MAS. Overall, our contributions can be summarized as follows: 1) we provide an in-depth analysis
of the design factors that influence the performance of LLM-based MAS, highlighting the importance
of prompts and identifying the influential topologies; 2) we propose MASS, a novel multi-stage
optimizer that automates the MAS design by interleaving the optimization of prompts and topologies
in an influential search space; 3) MASS shows significant performance improvement on various
evaluation benchmarks, delivering guidelines for building effective multi-agent systems for the future.

2 DESIGNING MULTI-AGENT SYSTEMS

In this section, we provide a formulation for designing MAS, followed by analyzing the influence
of prompt and topology designs. We refer to the structural arrangements of agents as the topology
of agents and define workflow as the logical sequence across different topologies that builds the
MAS. The design of a MAS can thus be broadly divided into two levels: block-level design and
workflow-level orchestration. At the block level, a building block infers a group of agents that work
together for a certain function (e.g., debate), and we aim to design effective individual agents
that best perform their intended role with better prompt design. On the other hand, at the workflow
level, the optimization involves determining the types and quantities of agents to include and how to
arrange them in the most effective way, referred to as the topology optimization. Formally, given a
search space A that defines all valid configurations a over the building blocks (see Fig. 3), workflow
topology optimization can be expressed as the following optimization problem with an objective
function f(·, ·) on a target input and output set (x, y) ∼ D:

W∗(a) = arg max
a∼A

E(x,y)∼D[f(W(a(x)), y)]. (1)

In the rest of this section, we provide an in-depth analysis of each component of MAS design.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.1 BLOCK-LEVEL ANALYSIS: PROMPT DESIGN FOR AGENTS

At the block level, the primary “optimizable component” that significantly influences downstream
performance is the prompt, which defines the role of the agent (e.g., “You are an expert in reflecting
on errors...”), provides additional instructions to shape its behavior (e.g., “You should think step
by step...”) and optionally, contains few-shot demonstrations (in-context examples) to guide the
agent’s responses (Wan et al., 2024). For instance, a state-of-the-art prompt optimizer searches both
instructions and few-shot demonstrations, where demonstrations are bootstrapped from the model’s
own, correct predictions on the validation set based on a validation metric. Conditioned on the
demonstrations, the prompt optimizer then proposes a few candidates for the instruction with a dataset
summary or various hints to improve candidate diversity (Opsahl-Ong et al., 2024). The instructions
and demonstrations are then jointly optimized.

Although it is well known that LLMs are sensitive to prompts (Zhou et al., 2024a; Verma et al.,
2024), applying automatic prompt optimization (APO) techniques to MAS is not straightforward.
In single-turn tasks, APO can be easily performed by treating prompts as optimizable variables
and performance over a validation set as the target. However, in MAS, APO becomes more
complex due to the interdependence across agents (e.g., the output of one agent may be the
input of another agent in a cascade with ground-truth responses for intermediate outputs not
being available) and exponentially increasing complexity for combinatorial optimization with
more number of agents n involved; The reward signals also become more sparse when n in-
creases, preventing us for implementing APO directly on MAS in any manageable budget; as
such, many prior works (Zhang et al., 2024f; Xia et al., 2024) in MAS still primarily use hand-
crafted prompts instead of including the prompts as optimizable components in the MAS design.

103

Tokens

74

76

78

80

82

84

Ac
cu

ra
cy

 (%
)

SC
Reflect
Debate
Prompting
Prompt->SC

Figure 2: Accuracy vs. total token counts
for prompt-optimized agents per question on
MATH by Gemini 1.5 Pro compared to scal-
ing agents with self-consistency (SC), self-refine
(reflect), and multi-agent debate (debate)
only. The error bar indicates 1 standard devia-
tion. We show that by utilizing more compute,
better accuracy can be obtained via more effec-
tive prompting.

To systematically understand the influence of
prompt design in MAS, we specifically and quanti-
tatively analyze the effect of prompt optimization
and compare its effectiveness to other operations
common in MAS literature, such as scaling with
more agents but with default prompts. We con-
duct APO on a chain-of-thought (Kojima et al.,
2022) agent via a state-of-the art prompt optimizer
MIPRO (Opsahl-Ong et al., 2024) that is capable
of joint instruction and (1-shot) exemplar opti-
mization, and fairly compare the total inference
token cost with self-consistency (Kojima et al.,
2022), self-refine (Madaan et al., 2024), and multi-
agent debate (Du et al., 2024), where the specifica-
tions are provided in App. §C. In Fig. 2, prompt-
ing, which equips agents with more informative in-
structions and exemplars, demonstrates significant
advantages in its token-effectiveness over other
building blocks. Furthermore, by applying self-
consistency on top of the prompt-optimized agent,
we observe an improved scaling performance on
the token cost, whereas standard approaches in
scaling the number of agents (e.g. SC, or Reflect) saturate much earlier. This empirical obser-
vation sheds light on the importance of prompting while providing early evidence for designing
effective MAS – optimize agents locally before scaling their topology.

2.2 WORKFLOW-LEVEL SEARCH SPACE DESIGN

At the workflow level, the primary focus is on orchestrating agents to achieve the best performance
effectively, and topology optimization has recently garnered significant attention (Li et al., 2024c;
Zhang et al., 2024b). However, while much of the existing research emphasizes search methods—such
as discovering the most efficient and effective way to identify the optimal configuration—there has
been less focus on the design of search spaces, which determines the perimeter and the scope of any
search algorithm. This imbalance draws a parallel to the historical development of neural architecture

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

P

A

</>

P

P

</>

</>

Predictor

Aggregate

PS

Summarize
</> </>

Long inputs

P R

</> </>

Self-reflect

1 Block-level Prompt Optimization

Evaluate on

validation task / split

(, 75%)

, 63%)
(

. . .

Proposed candidate

Optimizer: Store evaluations and

propose new workflow

Validation metric

2 Workflow Topology Optimization

</> </> </> </> </>

</> </> </> </> </>

Best topology from Step 2

</> </> </> </> </>

Instruction

optimization

Demo

optimization

Workflow-level Prompt Optimization3

Let's think step by
step → (Example
new prompt)

<example_1>
<example_2>
...

Evaluate on

validation task / split

Validation metric

</>: Optimizable prompts

P

T

</>: Optimizable prompts

Tool-use

D

D

D

P

P

P

A

</>

</>

</> </>

</>

</>

Multi-agent debate

</>

Figure 3: Illustration of the MASS framework with its search space and the optimization. The search
space combines both prompts (Instruction, Demo) and configurable agentic building blocks
(Aggregate, Reflect, Debate, Summarize, and Tool-use). [1PO: Block-level Prompt
Optimization]: we conduct block-level prompt optimization for each agentic module individually
(denoted by </>); [2TO: Workflow Topology Optimization]: conditioned on the best prompts found
in Stage 1 on each agent block, MASS samples valid configurations from an influence-weighted
design space while fusing the prompts of each building block from Stage 1; [3PO: Workflow-level
Prompt Optimization]: conditioned on the best workflow found, we again conduct workflow-level
prompt optimization on the best-found MAS (topologies visualized for illustration only).

search (NAS) (White et al., 2023). Initially, the field concentrated on sophisticated search methods,
such as Bayesian optimization (Kandasamy et al., 2018; Ru et al., 2021) and differentiable search (Liu
et al., 2018). Follow-up works have highlighted the often-overlooked importance of search space
design, arguing that it can be equally, if not more, critical (Wan et al., 2022; Zhou et al., 2023a).

Inspired by this insight, we hypothesize that manually crafted topologies might be sub-optimal, and
automatic topology optimization (potentially framed as a rigorous optimization problem) can play
a similarly pivotal role via judiciously designing search space for MAS. To achieve so, we first
define an expressive search space, similar to prior works, that consists of the connections between the
following building blocks, which form a unified search space for MASS:

• Aggregate: Agents can collaborate in parallel with diversified predictions, which is then followed by
an aggregation operator that obtains the most consistent prediction. The aggregate block can be
parameterized by Na agents and also defines the number of agent chains acting in parallel. Majority
vote (Li et al., 2024a) and self-consistency (Chen et al., 2024c) sits within this topology.

• Reflect: Agents can act as verifiers, providing critics and improvement suggestions based on
former predictions. The feedback is then fed into the predictor or the reflector itself for an iterative
improvement. Similarly, reflect can be parameterized by Nr that defines the number of rounds
for self-reflection. The self-refine (Madaan et al., 2024) and Reflexion (Shinn et al., 2024) represent
this block, and Nr can be interpreted as a parameter that contributes to the depth of the MAS network.

• Debate: Agents in debate can elicit more truthful predictions than a single agent (Du et al., 2024;
Liang et al., 2024), where each debating agent would collect opinions from all other agents and
provide an updated response. This topology involves a mixture of agents, and Nd defines the number
of rounds for debating (i.e., number of fully-connected agent layers in the topology space).

• Custom Agents: While the former three forms of agents represent the vast majority of agent
topologies constructed as multiple parallel, serial, and a mixture of agents, more versatile definitions
of agents can be inserted into the MAS design space. For example, for task-specific use cases, we
introduce an agent as summarize to improve the long-context capability in the customizable design
space, where Ns defines the rounds of abstraction of information.

• Tool-use: Building towards an effective MAS, enabling agents to leverage tools to access external
information is critical for system performance, such as using a retriever for RAG (Lewis et al.,
2020) and executor with test cases in coding (Chen et al., 2024d). We introduce tool-use (e.g., code
execute) as an optimizable binary ‘insertion’ decision NT ∈ {0, 1} with the predictor.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3 MASS: MULTI-AGENT SYSTEM SEARCH

Our analyses in Sec. 2 underscore the importance of well-designed prompts for individual agents and
the careful definition of the search space to achieve effective MAS performance. Building on these,
we propose a multistage optimization algorithm, Multi-Agent System Search (MASS), that surpasses
prior arts that focused solely on optimizing workflow topology without appropriate prompt designs.
Instead, our approach demonstrates the greater effectiveness of MAS design with properly optimized
prompts and thoughtfully designed search spaces. MASS framework is illustrated in Algorithm 1 and
Fig. 3, following an intuition from local to global, from block-level to workflow-level, that conquers
the complexity of combinatorial optimization with effective per-stage optimization detailed below.

1) Block-level prompt optimization. Before composing agents, we first ensure that individual agents
are thoroughly optimized at the block level, as highlighted in Sec. 2.1 and Fig. 2 – this step ensures
that each agent is primed for its role with the most effective instructions in the most manageable
computation budget. To further overcome the complexity of joint optimization on a large MAS
space, we first warm up the initial predictor with single-agent APO, a∗0 ← OD(a0), where both
instruction and exemplars are jointly optimized with the modular prompt optimizer O. Followed
by conditioning on the warmed predictor, we continue optimizing each topology with a minimum
number of agents, a∗i ← OD(ai|a∗0), such that, 2 predictors paired with 1 debator form the minimum
building block as the debate topology, thereby lowering the complexity for optimization, and this
topology can be scaled up later with more predictors and debators but all equipped with optimized
prompts. To measure the influence of each building block, we store the validation performance once
the optimization is completed. It is important that though Stage (1) serves as the warm-up stage
per building block, it is still a critical stage that guarantees the follow-up topology optimization is
searching in an effective space, composing well-performing agents instead of suffering from the
compounding impact from any ill-formed agents with manual prompts.

CoT SC Ref. Deb. Sum.
Method

62

64

66

68

70

Pe
rfo

rm
an

ce
 (%

)

Base
+1%

-0%

+3%

-2%

HotpotQA

CoT SC Ref. Deb. Exe.
Method

60

70

80
Base

+7%

-15%

+6%
+10%

LiveCodeBench

Figure 4: The performance of different topolo-
gies with Gemini 1.5 Pro compared to the base
agent with each topology being optimized with
APO, where Sum. (Summarize) and Exe. (Ex-
ecutor) are task-specific topologies as illustrated
in Fig. 3. We observe that not all topologies have
a positive influence on the MAS design.

2) Workflow topology optimization. In this stage,
we focus on optimizing the overall MAS struc-
ture, determining the most effective arrangement
and connectivity between agents. To understand
the influence of individual blocks, we report the
performance of various topologies in Fig. 4. It
is noticeable that not all topologies are benefi-
cial to MAS design, whereas positively influenced
topologies only represent a small fraction of the
overall set, such that, in HotpotQA (Yang et al.,
2018), only debate brings 3% gain while others
fail to improve or even degrade systematic perfor-
mance. We again observe similar trends in the
test-output-prediction subtask of LiveCodeBench
(Jain et al., 2024). It highlights the importance of
searching in the influential set of the search space,
whereas including decremental building blocks
may not only result in higher search complexity but also degrade the performance. The analysis
in Fig. 4 shows that beneficial topologies only represent a small fraction of the full design space.
Therefore, we aim to distill the essence of strong-performing topologies into a pruned space, thereby
making the workflow-level topology search more efficient. Here, we propose to measure the incre-
mental influence Iai = E(a∗i)/E(a∗0) that quantifies the relative gain for integrating the topology
ai over the initial agent a0. Following the intuition that influential dimension comes with higher
selection probability, we reject the corresponding topology dimension a if u > pa to form a pruned
search space, given u ∼ Uniform(0, 1) and pa = Softmax(Ia, t), where t is the temperature for the
softmax function. Therefore, the workflow can be randomly sampled from a pruned configuration
space within a maximum budget, such that a ∼ Ap s.t. N(a) < B, where N(a) caps the overall
number of agents and B is the maximum budget; For instance, given A = {ai} as the original
configuration space with the topology building block ai parameterized by its property Nai

as defined
in Sec. 2.2, each search dimension ai will be weighted by the influence of that dimension pai

, and
rejected to form Ap if u ∼ Uniform(0, 1) > pai

. Followed by sampling valid configurations from
Ap, the workflowW(a) = (ai, ai + 1, . . .) is then constructed in a predefined rule to arrange the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 MASS: Multi-Agent System Search
1: Input: Agentic modules in the search space ai ∈ A, workflow of agents W(a), prompt optimizer O,

evaluator E , validation set D, temperature t, number of candidates N , budget B.
2: Output: Optimized multi-agent systemW∗.
3: [1PO: Block-level Prompt Optimization]
4: Prompt optimization for the initial agent: a∗

0 ← OD(a0).
5: for ai in A \ {a0} do
6: Local prompt optimization for each building block in the design space: a∗

i ← OD(ai|a∗
0).

7: Obtain incremental Influence: Iai ← E(a∗
i)/E(a∗

0).
8: end for
9: [2TO: Workflow Topology Optimization]

10: Obtain the selection probability pa ← Softmax(Ia, t).
11: while n < N do
12: Search space pruning: Ap = {ai} for ai in A if u < pai , where u ∼ Uniform(0, 1).
13: Reject sampling for agentic configurations in budget: a ∼ Ap s.t. N(a) < B.
14: Build the workflowWc ← (a∗

i (·), a∗
i+1(·), . . .) in a rule-base order with optimized prompts.

15: Evaluate and record the score ED(Wc).
16: end while
17: Obtain the best-performing workflowW∗

c ← argmaxc∈C ED(Wc).
18: [3PO: Workflow-level Prompt Optimization]
19: Workflow-level prompt optimization for the best-performing topology: W∗ ← OD(W∗

c).
20: Return optimized multi-agent systemW∗.

flow of agents, where the rule-based flow removes redundancy in various orders in design and reduce
the optimization complexity. The rule follows a simple predefined sequence that aligns with the
practice of agent designs, such that [summarize, reflect, debate, aggregate]. We refer to
App. §C for the detailed construction rule, MAS visualizations, and search space per task.

3) Workflow-level prompt optimization. As a final step, we treat the entire MAS design as an
integrated entity and conduct a round of joint prompt optimization over all agents simultaneously,
conditioned on the best topology discovered in Stage (2),W∗ = OD(W∗

c). Although prompts were
optimized at the individual level in Stage (1), this stage acts as an adaptation or fine-tuning process,
ensuring that prompts are tailored for orchestration within the MAS and that the interdependence
between agents is optimized appropriately. Our experiments (Fig. 5 & 6) demonstrate that this stage
often yields practical benefits with a converged performance as shown in Table 6.

4 RELATED WORK

Forms of LLM-based agentic systems. The simplest form of an LLM-based agentic system involves
a single agent that can dynamically interact and respond to the environment (Yao et al., 2023). Recent
advances endow agents with diverse roles and tools (Wu et al., 2023), orchestrating multiple agents to
cooperate with each other (Chen et al., 2024b). Standard forms of agent cooperation (i.e., topology)
often involve parallel and serial flows of information. The parallel form usually diversifies the
exploration among many agents in parallel (Li et al., 2024a), and self-consistency (SC) (Wang et al.,
2023) is a representative way for scaling agents in parallel. The serial form aims to advance the
exploitation of a task via a chain of agents, where LLMs can serve as reflective agents to self-justify
and refine former predictions (Madaan et al., 2024; Shinn et al., 2024). Later, the opinions from
multiple agents can be summarized to retrieve the most consistent answer by an aggregation agent
(Chen et al., 2024c; Lin et al., 2024). Moreover, multi-agent debate consists of a more complex flow
of information (Chen et al., 2024a; Wang et al., 2024c; Zhang et al., 2024c), and recent research
shows that debating can elicit more truthful predictions (Khan et al., 2024; Du et al., 2024). Recent
agent topology extends beyond the above connections (Wang et al., 2024b; Qian et al., 2024), and
MASS can automatically search the best topology among the aforementioned spaces.

Automatic optimization for MAS. Recent research starts automating agent design by interpreting
agent functions as learnable policies (Zhang et al., 2024d;e) and synthesizing trajectories for agent
fine-tuning (Qiao et al., 2024). Going further from a single agent, automatic multi-agent optimization
faces a higher level of complexity, thereby requiring a more sophisticated design of the search space
and algorithms. Among all recent advances in multi-agent optimization, the optimization space has

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Results on the evaluation set with Gemini 1.5 Pro and Gemini 1.5 Flash. We report the
mean and standard deviation for all results with 3 runs of evaluations. We report the accuracy (%)
for MATH and the test-output-prediction subtask of LiveCodeBench (LCB), F1 score for DROP,
HotpotQA, MuSiQue, and 2WikiMQA, and pass@1 for MBPP and HumanEval. We note that the
meta-prompt of AFlow* only works properly with Claude 3.5 Sonnet. Therefore, we reproduce
AFlow with Gemini 1.5 Pro as the executor and Claude 3.5 Sonnet as the optimizer, where * indicates
the results are only for reference. The inference cost is controlled comparably as shown in Table 7.

Gemini-1.5-pro-002

Task Reasoning Multi-hop Long-context Coding
Method MATH DROP HotpotQA MuSiQue 2WikiMQA MBPP HumanEval LCB Avg.

CoT 71.673.30 70.591.67 57.430.52 37.811.43 63.391.12 68.330.47 86.670.94 66.330.62 65.28
Self-Consistency 77.331.25 74.060.90 58.602.19 41.811.00 67.791.19 69.500.71 86.000.82 70.330.94 68.18
Self-Refine 79.672.36 71.031.31 60.623.33 42.151.34 66.742.43 63.670.24 84.001.63 67.331.31 66.90
Multi-Agent Debate 78.670.94 71.780.71 64.870.23 46.000.80 71.780.63 68.670.85 86.671.25 73.671.65 70.26
ADAS 80.000.82 72.960.90 65.881.29 41.951.24 71.140.66 73.001.08 87.671.70 65.171.25 69.72
AFlow* 76.000.82 88.920.63 68.620.47 32.051.29 76.511.05 - 88.000.00 - -

MASS (Ours) 84.670.47 90.520.64 69.911.11 51.400.42 73.340.67 86.500.41 91.670.47 82.330.85 78.79

Gemini-1.5-flash-002

CoT 66.672.36 71.790.69 57.821.10 37.101.35 63.400.68 63.331.25 75.671.89 51.170.24 60.87
Self-Consistency 69.331.25 73.420.19 60.191.01 41.940.93 67.980.72 63.670.62 77.671.89 53.831.18 63.50
Self-Refine 71.330.94 73.711.09 58.843.04 41.211.99 65.561.57 63.331.25 81.671.89 52.001.41 63.46
Multi-Agent Debate 71.670.94 74.790.87 64.171.69 46.271.33 72.190.54 63.000.71 79.671.25 55.500.41 65.91
ADAS 68.001.41 75.951.18 61.362.89 48.811.03 66.901.00 65.830.24 80.672.49 50.501.63 64.75

MASS (Ours) 81.002.45 91.680.14 66.530.38 43.671.21 76.690.50 78.000.82 84.670.47 72.170.85 74.30

spanned prompts (Khattab et al., 2024; Wang et al., 2024d), tools (Zhou et al., 2024c), workflows
(Li et al., 2024c), and thinking strategies (Shang et al., 2024). Aligning closer to our topology
search space, DyLAN (Liu et al., 2024b) dynamically activates the composition of agents, and
Archon (Saad-Falcon et al., 2024) frames MAS as a hyperparameter optimization problem. Neither
of them has taken the important prompt space into account, where we demonstrated the importance of
prompt optimization in Sec. 3. In addition, GPTSwarm (Zhuge et al., 2024) optimizes the connections
between agentic nodes using a policy gradient algorithm. State-of-the-art automatic agent design
methods, ADAS (Hu et al., 2024a) and AFlow (Zhang et al., 2024b), also attempt to optimize agentic
workflows with advanced search algorithms and LLM as optimizers. Concurrently with us, MaAS
(Zhang et al., 2025) optimizes an agentic supernet for query-dependent MAS. However, we observe
that the importance of prompt designs has been relatively under-studied in these prior works.

5 EXPERIMENTS

Models and evaluation data. Aside from the common benchmarks used for automating MAS
(Hu et al., 2024a; Zhang et al., 2024b), we conduct experiments on an extensive collection of
tasks: 1) Hendryck’s MATH (Hendrycks et al., 2021) and DROP (Dua et al., 2019) for rea-
soning; HotpotQA (Yang et al., 2018), MuSiQue (Trivedi et al., 2022), 2WikiMultiHopQA (Ho
et al., 2020) from LongBench (Bai et al., 2024) for long-context understanding; 3) MBPP (Austin
et al., 2021), HumanEval (Chen et al., 2021), and LiveCodeBench (LCB) ‘test output predic-
tion’ (Jain et al., 2024) for coding. We refer to App. §C & §E for details on data splits
and prompt templates. We conduct all main experiments primarily on two Gemini 1.5 model
sizes (Reid et al., 2024) (gemini-1.5-{pro,flash}-002) and further validate key findings
on Claude 3.5 Sonnet (claude-3-5-sonnet@20240620) (Anthropic, 2024) and Mistral Nemo
(mistral-nemo-12b) (Mistral, 2024) in App. §D.

Baselines. We consider the following baselines: 1) CoT (Kojima et al., 2022): direct chain-of-thought
reasoning via zero-shot prompting; 2) CoT-SC (Wang et al., 2023) (@9 agents): with self-consistency
to find the most consistent answers from diversified reasoning traces; 3) Self-Refine (Madaan et al.,
2024; Shinn et al., 2024) (2 agents @5 rounds): reflective agents to verify and self-refine predictions;
4) Multi-Agent Debate (Du et al., 2024; Liang et al., 2024) (3 agents @3 rounds + 1 judger): with
agents justifying answers and aggregating information from other agents in multi-round debate;
5) ADAS (Hu et al., 2024a): an automatic agent design framework, where an LLM-based meta-
agent iteratively proposes new agents based on former evaluations; 6) AFlow (Zhang et al., 2024b):

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

CoT APO 1PO 2TO 3PO
Stage

55

60

65

70

75

80

Pe
rfo

rm
an

ce
 (%

)
63.5

68.0

74.2
77.3 78.8

w/o PO w/o Prune PO TO
Ablation

62

64

66

68

Figure 5: Left: average performance per opti-
mization stage of MASS over 8 evaluation tasks
on Gemini 1.5 Pro. We compare MASS with
a single agent (CoT) starting point as the refer-
ence and an APO baseline that optimizes over
the single agent by MIPROv2 (Opsahl-Ong et al.,
2024). Refer to App. §D for the detailed ablation
per task. Right: a comparative ablation study
on topology optimization (2TO) without pruning
and without the former stage of prompt optimiza-
tion (1PO) evaluated on HotpotQA.

0 10 20 30 40 50 60 70 80
Round

65

70

75

80

85

90

95

F1
 (%

) Better Prompt

1PO: Aggregate
1PO: Debate

2TO: More parallel agents involved
3PO: Workflow-level POADAS

AFlow
MASS (Ours)

Figure 6: The optimization trajectories of
MASS compared to agent design baselines per
validation round on DROP. We note that, as a dis-
tinct advantage of MASS, the optimization within
stages (1) & (2) of MASS can be completely par-
allelized, whereas ADAS and AFlow are itera-
tive algorithms that have to wait to propose new
agents until finishing earlier trajectories.

automatic workflow design via Monte-Carlo Tree Search over a set of pre-defined operators. We fairly
compare all baselines with a comparable inference cost per query and a maximum number of agents
of 10. We refer to Table 7 for the detailed token consumption and App. §C for all specifications.

Setup. MASS is plug-and-play with arbitrary prompt optimizers. We integrate MIPRO (Opsahl-Ong
et al., 2024) for a joint instruction and exemplar optimization, and we ablate other prompt optimizers
implemented with MASS in Table 9. We limit the number of bootstrapped demonstrations to 3 and
instruction candidates to 10, per agent in 10 rounds. In topology optimization for all tasks, we search
for 10 different topologies via rejection sampling. Along with topology optimization, each topology
is evaluated on the validation set 3 times to stabilize the prediction. The optimized MAS is then
reported on the held-out test set over three runs. We set model temperature T at 0.7, maximum output
tokens at 4096, and the t in Softmax at 0.05 for sharpening the selection probability pa for each
search dimension. We implement the same LLM backbone as both evaluator and optimizer.

Main results. We present the main results of MASS compared to the baselines on the evaluation set
in Table 1. MASS yields substantial gains over common forms of multi-agent systems, (e.g. self-
consistency, self-refine, and multi-agent debate), that scale up without optimizing prompts for agents
in collaboration. MASS leads to high-performing MAS: 78.8% and 74.3% on average on Gemini
1.5 Pro and Flash, respectively, where we observe consistent improvements on Claude 3.5 Sonnet
and Mistral Nemo as reported in Table 4 & 5. By comparing MASS with state-of-the-art automatic
agent design baselines, ADAS and AFlow, we first notice that ADAS only brings subtle gains even by
already conditioning its meta-agent generation based on the common forms of agents. The meta-agent
keeps proposing complex topologies but without optimizing the prompt design. AFlow, on the other
hand, demonstrates a competitive performance to MASS, especially on 2WikiMQA and HumanEval.

We attribute the performance of AFlow to: 1) its ‘expansion’ phase that generates new nodes based
on an error log that contrasts the predictions with the ground truth, which provides implicit textual
gradients (Pryzant et al., 2023) to reflect on any formatting errors in prompt design; 2) a more refined
search space within a pre-defined set of operators. Though AFlow draws similar inspirations on
the importance of search space design as MASS, it still lacks a phase of prompt optimization to
optimize its pre-defined operators properly, resulting in under-performance for MAS search results
at MATH and MuSiQue. Different from these baselines, the consistent improvements brought by
MASS highlight the importance of searching in both prompt and topology design space.

Ablating optimization stages. To understand the incremental gain per MASS optimization stage, we
provide a stage-by-stage ablation study in Fig. 5. We list the average performance of MASS from
block-level to workflow-level optimization and compare it with a single agent APO baseline
(MIPROv2), where the block-level optimization performance indicates the best-performing building
block a ∈ A after APO. First, we notice that there is a large gain, 6% on average, between block-level
optimization and single-agent APO, showing that MAS benefits substantially from having its agents
optimized inside the building block, outperforming APO alone significantly. In addition, going from

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Predictor:

Let's think step by step to solve the
given problem. Clearly explain your
reasoning process, showing all

intermediate calculations and
justifications. Express your final

answer as a single numerical value or
simplified expression enclosed within
<answer></answer> tags. Avoid

extraneous text or explanations outside
of the core reasoning and final answer.
<Task Demo: Exemplar_1>

Debator:

You are a seasoned math professor specializing in clear and concise
explanations. You are reviewing student solutions to math problems.
Below, you will find the problem, followed by solutions from several

students. Carefully examine each student's solution, identifying any
errors in their logic or calculations. Provide a comprehensive

rationale explaining your analysis of each student's work, clearly
stating whether their final answer is correct or incorrect and why.
Finally, provide your own definitive and simplified solution to the

problem, ensuring its accuracy and clarity. Present your final answer
bracketed between <answer> and </answer> at the end.

Question: Compute $17^{-1}\\pmod{83}$.
Solutions: Agent 0: 44\nAgent 1: 74

Rationale: <Rationale>
Answer: 44

<Task Demo: Exemplar_2>
<Task Demo: Examplar_3>

1 Block-level Prompt Optimization (62% → 79%)

Workflow-level Prompt Optimization (83% → 85%)3

2 Workflow Topology Optimization (79% → 83%)

P

P

D() A

P

P

D

P

D

D

()P()

P

A

. . .

P

)(

Figure 7: A demonstration of the optimization trajectory of MASS on MATH. In (1) block-level
optimization: multi-agent debate serves as the best-performing topology. In (2) workflow topology
optimization, aggregating with more parallel agents outweighs the performance of agents in debate.
Lastly, (3) workflow-level optimization discovers the optimal prompt conditioned on the best topology.

Stage (1) to (2), another 3% gain can be achieved by composing influential topologies while searching
for the optimal configurations. Here, we provide an ablation on conducting Stage (2) without prompt
optimization beforehand or without search space pruning. Fig. 5 (right) shows that both of them
are critical for effective search space exploration. Lastly, MASS obtains further gains (∼2%) by
conducting workflow-level prompt optimization on the best-found topology, which indicates that
optimizing the prompts towards modeling the interdependence of agents is beneficial in MAS.

Cost-effectiveness of MASS. We conduct analysis on the cost-effectiveness of MASS. In particular,
we visualize the optimization trajectory of MASS as shown in Fig. 6. MASS’s trajectory demonstrates
a steady trend of optimization that gradually improves the validation performance via interleaving the
search towards better prompts and topologies. However, when it comes to automatic design baselines
without explicit prompt optimization stages, AFlow is exposed to a larger variance in its optimization
due to the nature of MCTS, whereas ADAS gets trapped in discovering over-complex topologies
that appear to be less effective than the prompt design space. Overall, the optimization trajectory
of MASS highlights the importance of optimizing in an effective design space, where interleaved
optimization further resolves the complexity with more consecutive rewards within the same amount
of training costs compared to baselines. Following Sec. 2.1, MASS also demonstrated advanced
inference token-effectiveness and a comparable training cost, which we refer to Fig. 9 and Table 7.

Best-found MAS architectures & Design principles. We further inspect an example of optimized
prompts and the trajectory of MASS in discovering more effective topologies in Fig. 7. The optimiza-
tion starts from a zero-shot CoT agent, and soon MASS in Stage (1) identifies the high-performing
topology in debate with its optimized prompt. However, as found in Stage (2), aggregating with more
parallel agents actually outweighs the multi-agent debate. Workflow-level prompt optimization then
leads to the best-performing predictor for aggregation. The overall optimization flow sheds light on
our guidelines for building effective MAS: 1) Optimizing individual agents properly is important
before composing them into an MAS; 2) A more effective MAS can be built by composing influential
topologies; and 3) Modeling the interdependence between agents is beneficial, and can be achieved
via workflow-level joint optimization.

6 CONCLUSION

We approach designing effective MAS by first conducting a thorough analysis of the massive
design space, revealing the crucial role of prompts, and identifying the redundancy in MAS search
space design. Building on these findings, we introduce MASS, a novel multi-stage optimization
framework that searches within a pruned design space, interleaving prompt and topology optimization
to efficiently generate high-performing MAS. MASS is agnostic to customized prompt optimizers
and topology design space. Our experiments demonstrate that MASS-optimized MAS significantly
outperforms existing manual and automated approaches across an extensive set of tasks. Finally,
based on the optimized systems discovered by MASS, we extract valuable design principles to guide
the development of future MAS, and we expect future prospective prompt and topology designs
integrated with MASS towards building more efficient and effective LLM-based agents.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We include detailed implementation details with hyperparameter settings in Sec. 5 and Appendix. C.
The specification of datasets is listed in Table 2. We list the MASS search space in Table 3 and the
multi-agent construction rules in Appendix. C.3. In addition, we provide the visualization of both the
minimum building blocks and the optimized topology in Fig. 8. Furthermore, we provide the full
prompt templates to each agent to fully reproduce the main experiments in Appendix. E.

REFERENCES

Anthropic. The claude 3 model family: Opus, sonnet, haiku. 2024.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. LongBench: A bilin-
gual, multitask benchmark for long context understanding. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 3119–3137, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.172. URL
https://aclanthology.org/2024.acl-long.172/.

Justin Chen, Swarnadeep Saha, and Mohit Bansal. ReConcile: Round-table conference im-
proves reasoning via consensus among diverse LLMs. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 7066–7085, Bangkok, Thailand, August
2024a. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.381. URL
https://aclanthology.org/2024.acl-long.381/.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chi-Min Chan, Heyang Yu,
Yaxi Lu, Yi-Hsin Hung, Chen Qian, Yujia Qin, Xin Cong, Ruobing Xie, Zhiyuan Liu, Maosong
Sun, and Jie Zhou. Agentverse: Facilitating multi-agent collaboration and exploring emergent
behaviors. In The Twelfth International Conference on Learning Representations, 2024b. URL
https://openreview.net/forum?id=EHg5GDnyq1.

Xinyun Chen, Renat Aksitov, Uri Alon, Jie Ren, Kefan Xiao, Pengcheng Yin, Sushant Prakash,
Charles Sutton, Xuezhi Wang, and Denny Zhou. Universal self-consistency for large language
models. In ICML 2024 Workshop on In-Context Learning, 2024c. URL https://openreview.
net/forum?id=LjsjHF7nAN.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models to
self-debug. In The Twelfth International Conference on Learning Representations, 2024d. URL
https://openreview.net/forum?id=KuPixIqPiq.

Ching-An Cheng, Allen Nie, and Adith Swaminathan. Trace is the next autodiff: Generative
optimization with rich feedback, execution traces, and LLMs. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024. URL https://openreview.
net/forum?id=rYs2Dmn9tD.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improving
factuality and reasoning in language models through multiagent debate. In Forty-first International
Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net,
2024. URL https://openreview.net/forum?id=zj7YuTE4t8.

10

https://aclanthology.org/2024.acl-long.172/
https://aclanthology.org/2024.acl-long.381/
https://openreview.net/forum?id=EHg5GDnyq1
https://openreview.net/forum?id=LjsjHF7nAN
https://openreview.net/forum?id=LjsjHF7nAN
https://openreview.net/forum?id=KuPixIqPiq
https://openreview.net/forum?id=rYs2Dmn9tD
https://openreview.net/forum?id=rYs2Dmn9tD
https://openreview.net/forum?id=zj7YuTE4t8

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner.
DROP: A reading comprehension benchmark requiring discrete reasoning over paragraphs. In
Jill Burstein, Christy Doran, and Thamar Solorio (eds.), Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 2368–2378, Minneapolis, Minnesota, June
2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1246. URL https:
//aclanthology.org/N19-1246/.

Siyuan Guo, Cheng Deng, Ying Wen, Hechang Chen, Yi Chang, and Jun Wang. Ds-agent: Automated
data science by empowering large language models with case-based reasoning, 2024. URL
https://arxiv.org/abs/2402.17453.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021. URL https://openreview.net/forum?id=7Bywt2mQsCe.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-
hop QA dataset for comprehensive evaluation of reasoning steps. In Donia Scott, Nuria Bel,
and Chengqing Zong (eds.), Proceedings of the 28th International Conference on Computa-
tional Linguistics, pp. 6609–6625, Barcelona, Spain (Online), December 2020. International
Committee on Computational Linguistics. doi: 10.18653/v1/2020.coling-main.580. URL
https://aclanthology.org/2020.coling-main.580/.

Shengran Hu, Cong Lu, and Jeff Clune. Automated design of agentic systems. arXiv preprint
arXiv:2408.08435, 2024a.

Xueyu Hu, Ziyu Zhao, Shuang Wei, Ziwei Chai, Qianli Ma, Guoyin Wang, Xuwu Wang, Jing Su,
Jingjing Xu, Ming Zhu, Yao Cheng, Jianbo Yuan, Jiwei Li, Kun Kuang, Yang Yang, Hongxia
Yang, and Fei Wu. Infiagent-dabench: Evaluating agents on data analysis tasks, 2024b. URL
https://arxiv.org/abs/2401.05507.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabas Poczos, and Eric P Xing.
Neural architecture search with bayesian optimisation and optimal transport. Advances in neural
information processing systems, 31, 2018.

Akbir Khan, John Hughes, Dan Valentine, Laura Ruis, Kshitij Sachan, Ansh Radhakrishnan, Edward
Grefenstette, Samuel R. Bowman, Tim Rocktäschel, and Ethan Perez. Debating with more
persuasive LLMs leads to more truthful answers. In Forty-first International Conference on
Machine Learning, 2024. URL https://openreview.net/forum?id=iLCZtl7FTa.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
hamanan A, Saiful Haq, Ashutosh Sharma, Thomas T. Joshi, Hanna Moazam, Heather Miller,
Matei Zaharia, and Christopher Potts. DSPy: Compiling declarative language model calls into
state-of-the-art pipelines. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=sY5N0zY5Od.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems, 35:
22199–22213, 2022.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459–9474, 2020.

11

https://aclanthology.org/N19-1246/
https://aclanthology.org/N19-1246/
https://arxiv.org/abs/2402.17453
https://openreview.net/forum?id=7Bywt2mQsCe
https://aclanthology.org/2020.coling-main.580/
https://arxiv.org/abs/2401.05507
https://openreview.net/forum?id=iLCZtl7FTa
https://openreview.net/forum?id=sY5N0zY5Od

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Junyou Li, Qin Zhang, Yangbin Yu, QIANG FU, and Deheng Ye. More agents is all you
need. Transactions on Machine Learning Research, 2024a. ISSN 2835-8856. URL https:
//openreview.net/forum?id=bgzUSZ8aeg.

Manling Li, Shiyu Zhao, Qineng Wang, Kangrui Wang, Yu Zhou, Sanjana Srivastava, Cem Gokmen,
Tony Lee, Li Erran Li, Ruohan Zhang, Weiyu Liu, Percy Liang, Li Fei-Fei, Jiayuan Mao, and
Jiajun Wu. Embodied agent interface: Benchmarking llms for embodied decision making, 2025.
URL https://arxiv.org/abs/2410.07166.

Yunxuan Li, Yibing Du, Jiageng Zhang, Le Hou, Peter Grabowski, Yeqing Li, and Eugene Ie.
Improving multi-agent debate with sparse communication topology. In Yaser Al-Onaizan,
Mohit Bansal, and Yun-Nung Chen (eds.), Findings of the Association for Computational
Linguistics: EMNLP 2024, pp. 7281–7294, Miami, Florida, USA, November 2024b. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.427. URL
https://aclanthology.org/2024.findings-emnlp.427/.

Zelong Li, Shuyuan Xu, Kai Mei, Wenyue Hua, Balaji Rama, Om Raheja, Hao Wang, He Zhu, and
Yongfeng Zhang. Autoflow: Automated workflow generation for large language model agents.
arXiv preprint arXiv:2407.12821, 2024c.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang, Shuming Shi,
and Zhaopeng Tu. Encouraging divergent thinking in large language models through multi-agent
debate. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024
Conference on Empirical Methods in Natural Language Processing, pp. 17889–17904, Miami,
Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/
2024.emnlp-main.992. URL https://aclanthology.org/2024.emnlp-main.992/.

Lei Lin, Jiayi Fu, Pengli Liu, Qingyang Li, Yan Gong, Junchen Wan, Fuzheng Zhang, Zhongyuan
Wang, Di Zhang, and Kun Gai. Just ask one more time! self-agreement improves reasoning of
language models in (almost) all scenarios. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar
(eds.), Findings of the Association for Computational Linguistics: ACL 2024, pp. 3829–3852,
Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/
v1/2024.findings-acl.230. URL https://aclanthology.org/2024.findings-acl.
230/.

Fengyuan Liu, Nouar AlDahoul, Gregory Eady, Yasir Zaki, Bedoor AlShebli, and Talal Rahwan.
Self-reflection outcome is sensitive to prompt construction. arXiv preprint arXiv:2406.10400,
2024a.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018.

Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi Yang. A dynamic LLM-powered agent
network for task-oriented agent collaboration. In First Conference on Language Modeling, 2024b.
URL https://openreview.net/forum?id=XII0Wp1XA9.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36, 2024.

Mistral. Mistral nemo. 2024. URL https://mistral.ai/news/mistral-nemo.

Krista Opsahl-Ong, Michael J Ryan, Josh Purtell, David Broman, Christopher Potts, Matei Zaharia,
and Omar Khattab. Optimizing instructions and demonstrations for multi-stage language model
programs. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the
2024 Conference on Empirical Methods in Natural Language Processing, pp. 9340–9366, Miami,
Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/
2024.emnlp-main.525. URL https://aclanthology.org/2024.emnlp-main.525/.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

12

https://openreview.net/forum?id=bgzUSZ8aeg
https://openreview.net/forum?id=bgzUSZ8aeg
https://arxiv.org/abs/2410.07166
https://aclanthology.org/2024.findings-emnlp.427/
https://aclanthology.org/2024.emnlp-main.992/
https://aclanthology.org/2024.findings-acl.230/
https://aclanthology.org/2024.findings-acl.230/
https://openreview.net/forum?id=XII0Wp1XA9
https://mistral.ai/news/mistral-nemo
https://aclanthology.org/2024.emnlp-main.525/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Reid Pryzant, Dan Iter, Jerry Li, Yin Lee, Chenguang Zhu, and Michael Zeng. Automatic prompt
optimization with “gradient descent” and beam search. In Houda Bouamor, Juan Pino, and Kalika
Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, pp. 7957–7968, Singapore, December 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.emnlp-main.494. URL https://aclanthology.org/2023.
emnlp-main.494/.

Chen Qian, Zihao Xie, Yifei Wang, Wei Liu, Yufan Dang, Zhuoyun Du, Weize Chen, Cheng Yang,
Zhiyuan Liu, and Maosong Sun. Scaling large-language-model-based multi-agent collaboration.
arXiv preprint arXiv:2406.07155, 2024.

Shuofei Qiao, Ningyu Zhang, Runnan Fang, Yujie Luo, Wangchunshu Zhou, Yuchen Jiang, Chengfei
Lv, and Huajun Chen. AutoAct: Automatic agent learning from scratch for QA via self-planning.
In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 3003–
3021, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/
v1/2024.acl-long.165. URL https://aclanthology.org/2024.acl-long.165/.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy P. Lillicrap, Jean-
Baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, Ioannis
Antonoglou, Rohan Anil, Sebastian Borgeaud, Andrew M. Dai, Katie Millican, Ethan Dyer,
Mia Glaese, Thibault Sottiaux, Benjamin Lee, Fabio Viola, Malcolm Reynolds, Yuanzhong Xu,
James Molloy, Jilin Chen, Michael Isard, Paul Barham, Tom Hennigan, Ross McIlroy, Melvin
Johnson, Johan Schalkwyk, Eli Collins, Eliza Rutherford, Erica Moreira, Kareem Ayoub, Megha
Goel, Clemens Meyer, Gregory Thornton, Zhen Yang, Henryk Michalewski, Zaheer Abbas,
Nathan Schucher, Ankesh Anand, Richard Ives, James Keeling, Karel Lenc, Salem Haykal,
Siamak Shakeri, Pranav Shyam, Aakanksha Chowdhery, Roman Ring, Stephen Spencer, Eren
Sezener, and et al. Gemini 1.5: Unlocking multimodal understanding across millions of tokens
of context. CoRR, abs/2403.05530, 2024. doi: 10.48550/ARXIV.2403.05530. URL https:
//doi.org/10.48550/arXiv.2403.05530.

Binxin Ru, Xingchen Wan, Xiaowen Dong, and Michael Osborne. Interpretable neural architecture
search via bayesian optimisation with weisfeiler-lehman kernels. International Conference on
Learning Representations (ICLR), 2021.

Jon Saad-Falcon, Adrian Gamarra Lafuente, Shlok Natarajan, Nahum Maru, Hristo Todorov, Etash
Guha, E Kelly Buchanan, Mayee Chen, Neel Guha, Christopher Ré, et al. Archon: An architecture
search framework for inference-time techniques. arXiv preprint arXiv:2409.15254, 2024.

Yu Shang, Yu Li, Keyu Zhao, Likai Ma, Jiahe Liu, Fengli Xu, and Yong Li. Agentsquare: Automatic
llm agent search in modular design space. arXiv preprint arXiv:2410.06153, 2024.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

Aditi Singh, Abul Ehtesham, Saket Kumar, and Tala Talaei Khoei. Agentic retrieval-augmented
generation: A survey on agentic rag. arXiv preprint arXiv:2501.09136, 2025.

Hongjin Su, Ruoxi Sun, Jinsung Yoon, Pengcheng Yin, Tao Yu, and Sercan Ö Arık. Learn-by-
interact: A data-centric framework for self-adaptive agents in realistic environments. arXiv
preprint arXiv:2501.10893, 2025.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. MuSiQue: Multihop
questions via single-hop question composition. Transactions of the Association for Computational
Linguistics, 10:539–554, 2022. doi: 10.1162/tacl a 00475. URL https://aclanthology.
org/2022.tacl-1.31/.

Mudit Verma, Siddhant Bhambri, and Subbarao Kambhampati. On the brittle foundations of react
prompting for agentic large language models. arXiv preprint arXiv:2405.13966, 2024.

13

https://aclanthology.org/2023.emnlp-main.494/
https://aclanthology.org/2023.emnlp-main.494/
https://aclanthology.org/2024.acl-long.165/
https://doi.org/10.48550/arXiv.2403.05530
https://doi.org/10.48550/arXiv.2403.05530
https://aclanthology.org/2022.tacl-1.31/
https://aclanthology.org/2022.tacl-1.31/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Xingchen Wan, Binxin Ru, Pedro M Esperança, and Zhenguo Li. On redundancy and diversity in
cell-based neural architecture search. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=rFJWoYoxrDB.

Xingchen Wan, Ruoxi Sun, Hootan Nakhost, and Sercan O Arik. Teach better or show smarter?
on instructions and exemplars in automatic prompt optimization. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024. URL https://openreview.
net/forum?id=IdtoJVWVnX.

Fei Wang, Xingchen Wan, Ruoxi Sun, Jiefeng Chen, and Sercan Ö Arık. Astute rag: Overcoming
imperfect retrieval augmentation and knowledge conflicts for large language models. arXiv preprint
arXiv:2410.07176, 2024a.

Junlin Wang, Jue Wang, Ben Athiwaratkun, Ce Zhang, and James Zou. Mixture-of-agents enhances
large language model capabilities. arXiv preprint arXiv:2406.04692, 2024b.

Qineng Wang, Zihao Wang, Ying Su, Hanghang Tong, and Yangqiu Song. Rethinking the bounds
of LLM reasoning: Are multi-agent discussions the key? In Lun-Wei Ku, Andre Martins,
and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 6106–6131, Bangkok, Thailand, August
2024c. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.331. URL
https://aclanthology.org/2024.acl-long.331/.

Wenyi Wang, Hisham A Alyahya, Dylan R Ashley, Oleg Serikov, Dmitrii Khizbullin, Francesco
Faccio, and Jürgen Schmidhuber. How to correctly do semantic backpropagation on language-based
agentic systems. arXiv preprint arXiv:2412.03624, 2024d.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=1PL1NIMMrw.

Colin White, Mahmoud Safari, Rhea Sukthanker, Binxin Ru, Thomas Elsken, Arber Zela, Debadeepta
Dey, and Frank Hutter. Neural architecture search: Insights from 1000 papers. arXiv preprint
arXiv:2301.08727, 2023.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li,
Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen llm applications via
multi-agent conversation framework. arXiv preprint arXiv:2308.08155, 2023.

Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Agentless: Demystifying
llm-based software engineering agents. arXiv preprint arXiv:2407.01489, 2024.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=Bb4VGOWELI.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov, and
Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question answer-
ing. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 2369–2380,
Brussels, Belgium, October-November 2018. Association for Computational Linguistics. doi:
10.18653/v1/D18-1259. URL https://aclanthology.org/D18-1259/.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=WE_vluYUL-X.

Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Pan Lu, Zhi Huang, Carlos Guestrin,
and James Zou. Optimizing generative ai by backpropagating language model feedback. Nature,
639:609–616, 2025.

14

https://openreview.net/forum?id=rFJWoYoxrDB
https://openreview.net/forum?id=IdtoJVWVnX
https://openreview.net/forum?id=IdtoJVWVnX
https://aclanthology.org/2024.acl-long.331/
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=Bb4VGOWELI
https://aclanthology.org/D18-1259/
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Guibin Zhang, Yanwei Yue, Zhixun Li, Sukwon Yun, Guancheng Wan, Kun Wang, Dawei Cheng,
Jeffrey Xu Yu, and Tianlong Chen. Cut the crap: An economical communication pipeline for
llm-based multi-agent systems. arXiv preprint arXiv:2410.02506, 2024a.

Guibin Zhang, Luyang Niu, Junfeng Fang, Kun Wang, Lei Bai, and Xiang Wang. Multi-agent
architecture search via agentic supernet. arXiv preprint arXiv:2502.04180, 2025.

Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xionghui Chen, Jiaqi Chen, Mingchen Zhuge,
Xin Cheng, Sirui Hong, Jinlin Wang, et al. Aflow: Automating agentic workflow generation. arXiv
preprint arXiv:2410.10762, 2024b.

Jintian Zhang, Xin Xu, Ningyu Zhang, Ruibo Liu, Bryan Hooi, and Shumin Deng. Exploring
collaboration mechanisms for LLM agents: A social psychology view. In Lun-Wei Ku, Andre
Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 14544–14607, Bangkok, Thailand,
August 2024c. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.782.
URL https://aclanthology.org/2024.acl-long.782/.

Shaokun Zhang, Jieyu Zhang, Jiale Liu, Linxin Song, Chi Wang, Ranjay Krishna, and Qingyun
Wu. Offline training of language model agents with functions as learnable weights. In Forty-first
International Conference on Machine Learning, 2024d. URL https://openreview.net/
forum?id=2xbkWiEuR1.

Wenqi Zhang, Ke Tang, Hai Wu, Mengna Wang, Yongliang Shen, Guiyang Hou, Zeqi Tan, Peng Li,
Yueting Zhuang, and Weiming Lu. Agent-pro: Learning to evolve via policy-level reflection and
optimization. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
5348–5375, Bangkok, Thailand, August 2024e. Association for Computational Linguistics. doi:
10.18653/v1/2024.acl-long.292. URL https://aclanthology.org/2024.acl-long.
292/.

Yusen Zhang, Ruoxi Sun, Yanfei Chen, Tomas Pfister, Rui Zhang, and Sercan O Arik. Chain of
agents: Large language models collaborating on long-context tasks. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024f. URL https://openreview.
net/forum?id=LuCLf4BJsr.

Han Zhou, Xingchen Wan, Ivan Vulić, and Anna Korhonen. Survival of the most influential prompts:
Efficient black-box prompt search via clustering and pruning. In Houda Bouamor, Juan Pino,
and Kalika Bali (eds.), Findings of the Association for Computational Linguistics: EMNLP
2023, pp. 13064–13077, Singapore, December 2023a. Association for Computational Linguistics.
doi: 10.18653/v1/2023.findings-emnlp.870. URL https://aclanthology.org/2023.
findings-emnlp.870/.

Han Zhou, Xingchen Wan, Yinhong Liu, Nigel Collier, Ivan Vulić, and Anna Korhonen. Fairer
preferences elicit improved human-aligned large language model judgments. In Yaser Al-Onaizan,
Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing, pp. 1241–1252, Miami, Florida, USA, November
2024a. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.72. URL
https://aclanthology.org/2024.emnlp-main.72/.

Han Zhou, Xingchen Wan, Lev Proleev, Diana Mincu, Jilin Chen, Katherine A Heller, and Subhrajit
Roy. Batch calibration: Rethinking calibration for in-context learning and prompt engineering.
In The Twelfth International Conference on Learning Representations, 2024b. URL https:
//openreview.net/forum?id=L3FHMoKZcS.

Wangchunshu Zhou, Yixin Ou, Shengwei Ding, Long Li, Jialong Wu, Tiannan Wang, Jiamin Chen,
Shuai Wang, Xiaohua Xu, Ningyu Zhang, et al. Symbolic learning enables self-evolving agents.
arXiv preprint arXiv:2406.18532, 2024c.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan,
and Jimmy Ba. Large language models are human-level prompt engineers. In The Eleventh
International Conference on Learning Representations, 2023b. URL https://openreview.
net/forum?id=92gvk82DE-.

15

https://aclanthology.org/2024.acl-long.782/
https://openreview.net/forum?id=2xbkWiEuR1
https://openreview.net/forum?id=2xbkWiEuR1
https://aclanthology.org/2024.acl-long.292/
https://aclanthology.org/2024.acl-long.292/
https://openreview.net/forum?id=LuCLf4BJsr
https://openreview.net/forum?id=LuCLf4BJsr
https://aclanthology.org/2023.findings-emnlp.870/
https://aclanthology.org/2023.findings-emnlp.870/
https://aclanthology.org/2024.emnlp-main.72/
https://openreview.net/forum?id=L3FHMoKZcS
https://openreview.net/forum?id=L3FHMoKZcS
https://openreview.net/forum?id=92gvk82DE-
https://openreview.net/forum?id=92gvk82DE-

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and Jürgen
Schmidhuber. GPTSwarm: Language agents as optimizable graphs. In Forty-first International
Conference on Machine Learning, 2024. URL https://openreview.net/forum?id=
uTC9AFXIhg.

16

https://openreview.net/forum?id=uTC9AFXIhg
https://openreview.net/forum?id=uTC9AFXIhg

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS

Large language models (LLMs) were used as general-purpose assist tools in this work. Specifically,
LLMs assisted in polishing the writing to improve clarity and readability.

B LIMITATIONS AND FUTURE WORK

MASS is a multi-agent design meta-framework also orthogonal to prompt and topology optimizers.
MASS has brought substantial improvements over a single agent design by searching in a customizable
topology space. Though our proposed topology space has covered the vast majority of effective MAS
designs, including serial, parallel, and mixture of connections, it is still likely that incorporating
other topologies may further improve the final performance of MASS, which is complementary
to the development of MASS. For instance, the debate topology proposed in MASS involves a
fully-connected topology across agents. Recent work has been identifying the sparsity of agent
communications (Li et al., 2024b; Zhang et al., 2024a), and pruning redundant communications may
further enhance the overall efficiency of the strongest MASS-found design. Though the topology
optimizer in MASS already traverses efficiently in the proposed topology space, incorporating more
advanced search algorithms, such as the Bayes optimizer (Kandasamy et al., 2018; Ru et al., 2021),
may further improve the sample efficiency of MASS when faces a more complex design space.
Similarly, the sample efficiency of the prompt optimizer may be further enhanced by conditioning on
textual feedback from error logs (Pryzant et al., 2023; Cheng et al., 2024), which we will endeavor to
explore in future work. These prospective future topology and prompt design methods will further
strengthen MASS, while MASS has been served as a generalizable guideline in identifying influential
agentic design components and a systematic framework for scalable MAS optimization.

C IMPLEMENTATION DETAILS

C.1 DATASETS

In this work, we included the following dataset: 1) Hendryck’s MATH (Hendrycks et al., 2021)
consisting competition-level mathematics problems, and DROP (Dua et al., 2019) requires discrete
and symbolic reasoning over paragraphs; 2) HotpotQA (Yang et al., 2018), MuSiQue (Trivedi
et al., 2022), and 2WikiMultiHopQA (Ho et al., 2020) to evaluate long-context reasoning with
agentic systems, which we report from standardized versions in LongBench (Bai et al., 2024); 3)
MBPP (Austin et al., 2021), HumanEval (Chen et al., 2021), and LiveCodeBench (Jain et al., 2024) as
well-established coding benchmarks. Regarding LiveCodeBench, we use the ‘test output prediction’
task as an agent cooperative task. In line with AFlow (Zhang et al., 2024b), we use the public test
cases of MBPP and HumanEval for the executor to retrieve reliable external feedback signals. To
save computation resources, we randomly sample a subset of the original validation and test splits to
conduct all the experiments, where the specifications are reported in Table 2.

Table 2: The specification of evaluation tasks: dataset split, topology search space, and the MASS-
optimized MAS (on Gemini 1.5 Pro).

Task Type |Val| |Test| Topology Search Space MASS

MATH Mathematical Reasoning 60 100 {Aggregate, Reflect, Debate} {9, 0, 0}
DROP Discrete Reasoning 60 200 {Aggregate, Reflect, Debate} {5, 0, 0}
HotpotQA Long-context Understanding 50 100 {Summarize, Aggregate, Reflect, Debate} {0, 5, 0, 1}
MuSiQue Long-context Understanding 50 100 {Summarize, Aggregate, Reflect, Debate} {0, 3, 0, 2}
2WikiMQA Long-context Understanding 50 100 {Summarize, Aggregate, Reflect, Debate} {0, 3, 0, 1}
MBPP Coding 60 200 {Aggregate, Reflect, Debate, Executor} {1, 4, 0, 1}
HumanEval Coding 50 100 {Aggregate, Reflect, Debate, Executor} {1, 3, 0, 1}
LiveCodeBench Coding: test output prediction 100 200 {Aggregate, Reflect, Debate, Executor} {3, 1, 1, 1}

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Summarize Aggregate Reflect Debate Executor

P

A

P

PS P RP

Topology Building Blocks

EP R

P

P

D

MASS-optimized Topology

MATH DROP HotpotQA MuSiQue MBPP HumanEval LiveCodeBench

P

A

. . .

P

P

A

. . .

P

P

P

D

D

A

. . .

. . .

P

P

P

D D

D D

D D

A

P

R

E

P

R

E

P

P

P

E

E

E

R

R

R

D

D

D

A

2WikiMQA

P

P

P

D

D

D

A

Figure 8: Visualization of the topology building blocks and best MASS-discovered topologies from
Gemini 1.5 Pro.

Table 3: The search dimension for each topology. The minimum topology defines the building block
that MASS Stage (1) optimized. We refer the definition of search space to Sec.2.2.

Topology Search Space Minimum Topology Building Block Definition

Summarize Ns ∈ {0, 1, 2, 3, 4} 1 Summarizer + 1 Predictor Rounds of summarization
Aggregate Na ∈ {1, 3, 5, 7, 9} 3 Predictor + 1 Aggregator Number of parallel agents
Reflect Nr ∈ {0, 1, 2, 3, 4} 1 Predictor + 1 Reflector Rounds of self-reflection
Debate Nd ∈ {0, 1, 2, 3, 4} 2 Predictor + 1 Debator Rounds of debating
Execute Nt ∈ {0, 1} 1 Predictor + 1 Executor + 1 Reflector} Use of code execution

C.2 BASELINES

In this section, we report the specifications of all our baselines. We note that for the baselines: CoT,
SC, Self-Refine, and Multi-Agent Debate, we follow the prompts given in ADAS (Hu et al., 2024a).

1) Chain-of-Thought (CoT) (Kojima et al., 2022). Direct chain-of-thought reasoning via zero-shot
prompting: “Please think step by step and then solve the task.”

2) Self-Consistency (SC) (Wang et al., 2023). In self-consistency, we generate diverse chain-of-
thought reasoning traces with a temperature of 0.8, followed by a rule-based majority vote that
collects the most consistent answer. In Table 1, we report SC@9 to provide a fair comparison across
baselines.

3) Self-Refine (Madaan et al., 2024): This baseline consists of one predictor that constantly takes
feedback and a self-reflector that provides criticism. It involves a stop criterion whenever the self-
reflector outputs “correct” in its prediction. We set the maximum number of rounds of reflections to
5, such that the worst case will involve 11 (1 + 2× 5) calls.

4) Multi-Agent Debate (Du et al., 2024; Liang et al., 2024). In this baseline, it involves 3 agents that
conduct reasoning and debating for 3 rounds. The opinions along the rounds of debating are finally
judged by an aggregator that makes the final prediction. Hence, it contains 10 (3× 3 + 1) agents.

5) Automated Design of Agentic Systems (ADAS) (Hu et al., 2024a). Consistent with our main
experimental setups. We use Gemini 1.5 as both LLM optimizer and evaluator for reproducing all
ADAS results. The generation of ADAS is conditioned on former evaluations of baselines, including
CoT, SC, Self-Refine, and Multi-Agent Debate. We report ADAS with 30 rounds of search, and each
round is evaluated on the validation set 3 times to stablize the prediction.

6) AFlow (Zhang et al., 2024b). Automatic workflow design via Monte-Carto Tree Search over a
set of pre-defined operators. Similar to ADAS, AFlow also relies on an LLM optimizer to generate
new nodes and topologies expressed in codes. However, we find the meta-prompt of AFlow does
not generalize to other LLM backbones. Consequently, we report AFlow with its original LLM
optimizer by Claude 3.5 Sonnet, and reproduce experiments with Gemini 1.5 Pro as the LLM executor.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Therefore, the comparison is not completely fair, and we treat the results from AFlow as a good
reference. We note that the ‘-’ in Table 1 refers to out-of-time errors, where the LLM executor has
been trapped in executing accidental scripts with infinite loops. We still endeavored to report most
results from AFlow as shown in Table 1 & Fig. 6 with the default experimental setup from AFlow:
20 rounds, 5 runs of validation per round, and k at 3.

C.3 MASS DETAILS AND CONSTRUCTION RULES

In this section, we provide additional details for MASS. The topology search space for each task is
defined in Table 2. In addition, for Stage (1) block-level prompt optimization, the specification of the
building block is defined in Table 3. MASS follows a simple and predefined rule for constructing
different topologies in sequence. Throughout our study, we find that the impact of different agentic
configurations outweighs the ordering substantially. Consequently, our rule follows the practice of
agent designs by constructing topology in a fixed order of [summarize, reflect, debate,
aggregate]. When multiple search dimensions are kept active, aggregate basically controls
the number of chain-of-agents in parallel, where the length of the chain is defined via the pre-defined
order. We provide the visualization of both the minimum building blocks and the optimized topology
in Fig. 8. We refer the reader to App. §E & §F for the prompt templates we used to define each type
of agent and the best prompts discovered.

D ADDITIONAL EXPERIMENTS

D.1 GENERALIZATION ACROSS LLM BACKBONES

Table 4: Results on the evaluation set with Claude 3.5 Sonnet. We keep the same experimental setup
as Table 1. Since Claude 3.5 Sonnet does not support the same context window as Gemini, we report
the standard HotpotQA instead of the LongBench. As we transfer the prompt template for each agent
from Gemini to Claude, it is noticeable that the basic topology on some tasks may result in severe
degradation of performance, and MASS successfully recovers the performance and brings significant
improvements over the initial agent.

Claude-3.5-Sonnet

Task Reasoning Multi-hop Coding
Method MATH DROP HotpotQA MBPP HumanEval LCB Avg.

CoT 57.330.94 55.520.42 23.561.52 67.501.47 88.671.70 72.672.39 60.21
Self-Consistency 61.671.89 57.860.45 25.690.44 69.170.62 90.000.82 72.672.39 62.84
Self-Refine 57.001.63 56.260.56 23.572.56 68.000.82 87.001.41 49.331.65 56.86
Multi-Agent Debate 45.003.74 26.620.11 31.413.30 00.000.00 84.333.30 72.821.84 43.36

MASS 63.000.00 68.930.38 66.980.99 68.830.62 93.000.82 73.731.43 72.43

Table 5: Results on the evaluation set with the open-source model, Mistral-Nemo-12B. We keep
the same experimental setup as Table 4 and evaluate a subset of representative coding tasks to save
resources. MASS demonstrate consistent improvements over the baselines on Mistral Nemo.

Mistral-Nemo-12B

Task Reasoning Multi-hop Coding
Method MATH DROP HotpotQA MBPP Avg.

CoT 13.3 49.0 55.9 43.5 40.4
Self-Consistency 22.0 57.6 58.9 46.5 46.3
Self-Refine 14.3 48.6 52.5 48.0 40.9
Multi-Agent Debate 26.0 61.4 59.5 40.5 46.9

MASS 43.7 68.4 62.6 48.7 55.9

D.2 DISCUSSION ON MASS-FOUND TOPOLOGIES

In Fig. 8, we find that the optimal MASS-found topologies indicate certain patterns per task family,
and there are topologies that demonstrate clear advantages over other topologies in particular tasks.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 6: The detailed ablation results per optimization stage of MASS. Practical gains can be obtained
by further conducting workflow-level prompt optimization (3PO) on the best-found topology.

Gemini-1.5-pro-002

Task Reasoning Multi-hop Long-context Coding
Method MATH DROP HotpotQA MuSiQue 2WikiMQA MBPP HumanEval LCB Avg.

Base Agent 62.330.94 71.650.61 56.961.26 43.320.13 49.200.61 68.830.85 89.331.70 66.332.09 63.54
+ APO 79.331.89 77.510.38 59.720.00 43.970.00 61.490.24 67.001.08 86.331.25 68.501.22 67.44
+ 1PO 80.000.00 86.450.90 62.521.86 48.860.61 67.400.58 80.331.25 91.671.25 76.000.00 74.56
+ 2TO 83.001.63 86.751.32 65.221.34 52.610.52 72.820.86 85.001.08 92.000.82 81.330.00 77.55
+ 3PO 84.670.47 90.520.64 69.911.11 51.400.42 73.340.67 86.500.41 91.670.47 82.330.85 78.40

Table 7: The training and inference cost for running MASS and baselines, where we show the training
cost and the actual run-time of MASS is comparable to the training cost of auto-agent baselines. We
note that the performance of self-consistency, self-refine, and multi-agent debate is already saturated,
and further scaling the inference cost of these baselines only brings marginal gains, whereas the
MASS-found MAS outperforms the baseline substantially at a comparable inference token cost.

Training Inference (per query)
Method Input Token Output Token Cost ($) Input Token Output Token Cost ($) Acc (%)

Self-Consistency - - - 1538 3013 0.0010 69.3
Self-Refine - - - 2051 850 0.0004 71.3
Multi-Agent Debate - - - 6536 2483 0.0012 71.7
AFlow 11M 8 M 3.89 2523 1481 0.0006 64.3
ADAS 23 M 13 M 5.61 7850 3335 0.0016 72.7
MASS 24 M 11 M 5.09 6645 3263 0.0014 81.0

By inspecting Fig. 8, we notice that the “debating” topology brings significant gains to all multi-hop
tasks that require factual knowledge: HotpotQA, MuSiQue, and 2WikiMQA, which is aligned with
previous multi-agent debate work (Khan et al., 2024) that argues debating will elicit more truthful
answers. Reasoning tasks: MATH and DROP benefit from more exploration, where SC becomes more
effective. Lastly, the coding tasks share a common pattern of reflection with tool-using. However,
even the best configuration in the same task family still shows differentiations, indicating the necessity
of automatic optimization. Therefore, no matter the underlying complexity of the task-dependent
topology, the unique advantage of MASS is being able to identify the most influential topology
automatically for any customized search space.

D.3 COST ANALYSIS

In Table 7, we report the detailed token cost for both training MASS and the inference cost per query
with reference costs from baselines, where we show that the training cost of MASS is comparable
to the training cost of auto-agent baselines. It is worth noting that the performance of training-free
baselines (e.g., self-consistency@9) is already saturated, and further scaling the inference cost of
these baselines only brings marginal gains, whereas the MASS-found MAS outperforms baselines
substantially. In addition, we record the Pareto-front of MASS optimized designs in Fig. 9. Though
the primary objective of this work is a single-objective optimization that targets to maximize the task
performance within the same training budget, we show that MASS can generate a Pareto-front of
optimized MAS designs with stronger token-effectiveness than baselines, and the more cost-efficient
workflows can be selected from the pivotal points in the MASS Pareto-front.

D.4 GRAPH OPTIMIZATION BASELINE

We further compare MASS against a graph optimization baseline, GPTSwarm (Zhuge et al., 2024),
on the overlapped set of tasks from the original work. We observe that the graph optimization
is more effective in improving the inference efficiency from a fully-connected graph to a sparse
graph rather than enhancing the task performance, whereas the prompt optimization component of

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

0 1000 2000 3000 4000 5000 6000 7000 8000
Total Tokens

70

72

74

76

78

80

82

84

Ac
cu

ra
cy

 (%
)

CoT

CoT-SC@3
CoT-SC@5

Refine@5

Debate 1R@2A
Debate 2R@3A

Step-Back Quality-Diverse

Role Assign

ADAS-Tool

ADAS-T&S

MASS
MASS MASSMASS

MATH (gemini-1.5-pro-002)

Figure 9: The Pareto-front of MASS-optimized designs compared to multi-agent baselines. Total
tokens include both inference input tokens and output tokens. Additional multi-agent baselines from
ADAS (Hu et al., 2024a) and the two best-found ADAS designs are included.

Table 8: Comparison of MASS with graph optimization baselines. We reproduce GPTSwarm with
(Zhang et al., 2024a), and (Pro) & (Flash) indicate optimization results from Gemini 1.5 Pro and
Gemini 1.5 Flash, respectively.

Method MATH (%) HumanEval (%) Average (%)

GPTSwarm (Pro) 76.0 85.0 80.5
MASS (Pro) 84.7 91.7 88.2
GPTSwarm (Flash) 61.0 73.0 67.0
MASS (Flash) 81.0 84.7 82.9

Table 9: Ablation of MASS with different prompt optimizers on Gemini 1.5 Flash.

Method CoT MASS (APE) MASS (DSPy) MASS (MIPRO)

MATH (%) 66.7 73.3 78.2 81.0

MASS particularly led to more significant contributions. Overall, MASS brought a substantial gain
(8% and 6% over MATH & HumanEval, respectively) in representative reasoning and coding tasks
compared to graph optimization methods.

D.5 ABLATION ON PROMPT OPTIMIZERS

MASS is a plug-and-play framework with arbitrary prompt optimizers. We integrate MIPRO (Opsahl-
Ong et al., 2024) as a representative prompt optimizer due to the importance of simultaneous
instruction and exemplar optimization, which has been justified in both (Wan et al., 2024; Opsahl-
Ong et al., 2024) that show superior performance over OPRO-style (Yang et al., 2024) instruction-only
optimization methods. It is also worth noting that the MASS framework itself is agnostic to prompt
optimizer, and thus any prospective better methods can only enhance the overall performance of
MASS. In Table 9, we additionally provide an ablation of common prompt optimizers, APE (Zhou
et al., 2023b) & DSPy (Khattab et al., 2024), and we show MASS with exemplar optimization
(+DSPy) also led to significant gains. We consider extending the existing PO to feedback-based
optimizers (e.g., ProTeGi (Pryzant et al., 2023) or TextGrad (Yuksekgonul et al., 2025)) that may
come with better sample efficiency as a desirable future work.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

E PROMPT TEMPLATE

We provide all the prompt templates we used for defining the MASS search space. We use <> to
enclose texts that have been skipped for presentation purposes. We follow the DSPy (Khattab et al.,
2024) in constructing these agentic templates.

The general template for instruction, exemplar, and input/output fields:

<Instruction>

Follow the following format.

Input: ${Input}
...
Output: ${output}

<example_1>

Input: <Input>
...
Output: <output>

MATH:
Predictor:

Let’s think step by step.

Question: ${question}
Reasoning: Let’s think step by step in order to ${produce the answer}. We ...
Answer: ${answer}

Reflector:

Please review the answer above and criticize on where might be wrong. If you are absolutely
sure it is correct, output ’True’ in ’correctness’.

Question: ${question}
Text: ${text}
Reasoning: Let’s think step by step in order to ${produce the correctness}. We ...
Feedback: ${feedback}
Correctness: True/False indicating if answer is correct given the question.

Refiner:

Given previous attempts and feedback, carefully consider where you could go wrong in your
latest attempt. Using insights from previous attempts, try to solve the task better. Show
your final answer bracketed between <answer> and </answer> at the end.

Question: ${question}
Previous answer: ${previous_answer}
Reflection: ${reflection}
Correctness: ${correctness}
Thinking: ${thinking}
Answer: ${answer}

Debator:

These are the solutions to the question from other agents. Examine the solutions from other
agents in your rationale, finish by giving an updated answer. Show your final answer
bracketed between <answer> and </answer> at the end.

Question: ${question}
Solutions: the solutions to the question from other agents
Reasoning: Let’s think step by step in order to ${Examine the solutions from other agents}. We

...

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Answer: The updated answer for the question. Do not repeat Answer:

DROP:
Predictor:

Please think step by step and then solve the task. # Your Task:
Please answer the following question based on the given context.

Question: ${question}
Context: ${context}
Thinking: ${thinking}
Answer: Directly answer the question. Keep it very concise.

Reflector:

Verify that the answer is based on the provided context. Give your reflection in the rationale
.

Question: ${question}
Context: ${context}
Text: ${text}
Reasoning: Let’s think step by step in order to ${produce the correctness}. We ...
Correctness: True/False indicating if answer is correct given the observations and question.

Refiner:

Please think step by step and then solve the task. # Your Task:
Based on the reflection, correctness of the previous answer, and the context again, give an

updated answer.

Question: ${question}
Context: ${context}
Previous answer: ${previous_answer}
Reflection: ${reflection}
Correctness: ${correctness}
Thinking: ${thinking}
Answer: Directly answer the question. Keep it very concise.

Debator:

These are the solutions to the question from other agents. Based on the context, examine the
solutions from other agents in your rationale, finish by giving an updated answer.

Question: ${question}
Context: ${context}
Solutions: the solutions to the question from other agents
Reasoning: Let’s think step by step in order to ${Examine the solutions from other agents}. We

...
Answer: The updated answer for the question. Do not repeat Answer:

HotpotQA, MuSiQue, and 2WikiMQA:
Predictor:

Answer the question with information based on the context. Only return the answer as your
output.

Question: ${question}
Context: ${context}
Answer: Only give me the answer. Do not output any other words.

Summarizer:

Based on the question, retrieve relevant information from context that is ONLY helpful in
answering the question. Include all key information. Do not repeat context.

Question: ${question}
Context: ${context}
Summary: Only generate the summary. Start with Summary:

Reflector:

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Verify that the answer is based on the provided context.

Question: ${question}
Context: ${context}
Text: ${text}
Reasoning: Let’s think step by step in order to ${produce the correctness}. We ...
Correctness: True/False indicating if answer is correct given the observations and question.

Debator:

These are the solutions to the question from other agents. Based on the context, examine the
solutions from other agents in your rationale, finish by giving an updated answer.

Question: ${question}
Context: ${context}
Solutions: the solutions to the question from other agents
Reasoning: Let’s think step by step in order to ${Examine the solutions from other agents}. We

...
Answer: The updated answer for the question. Do not repeat Answer:

MBPP:
Predictor:

Let’s think step by step. Provide a complete and correct code implementation in python.

Question: ${question}
Thinking: ${thinking}
Answer: Only the code implementation. Do not include example usage or explainations.

Reflector:

Please determine the correctness of the solution in passing all test cases. If it fails, based
on the error message and trackback, think step by step, carefully propose an updated

solution in the answer output with a correct code implementation in python.

Question: ${question}
Previous solution: ${previous_solution}
Traceback: It contains the test cases, execution results, and ground truth. If there is an

error, the relevant traceback is given.
Correctness: ’True/False’ based on the correctness of executive feedback. If there is an error

message, output ’False’
Thinking: ${thinking}
Answer: ${answer}

Debator:

These are the solutions to the question from other agents. Examine the solutions from other
agents in your rationale, finish by giving an updated answer. Let’s think step by step.
Provide a complete and correct code implementation in python.

Question: ${question}
Solutions: the solutions to the question from other agents
Reasoning: Let’s think step by step in order to ${Examine the solutions from other agents}. We

...
Answer: ${answer}

HumanEval:
Predictor:

Let’s think step by step. Provide a complete and correct code implementation in python.

Question: ${question}
Thinking: ${thinking}
Answer: ${answer}

Reflector:

Please determine the correctness of the solution in passing all test cases. If it fails, based
on the error message and trackback, think step by step, carefully propose an updated

solution in the answer output with a correct code implementation in python.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Question: ${question}
Previous solution: ${previous_solution}
Traceback: ${traceback}
Thinking: ${thinking}
Answer: ${answer}

Debator:

These are the solutions to the question from other agents. Examine the solutions from other
agents in your rationale, finish by giving an updated answer. Let’s think step by step.
Provide a complete and correct code implementation in python.

Question: ${question}
Solutions: the solutions to the question from other agents
Reasoning: Let’s think step by step in order to ${Examine the solutions from other agents}. We

...
Answer: ${answer}

LiveCodeBench:
Predictor:

You are a helpful programming assistant and an expert Python programmer. The user has written
a input for the testcase. Think step by step. You will generate the code based on the
problem requirepement. You will calculate the output of the testcase and write the whole
assertion statement in the markdown code block with the correct output.

Question: ${question}
Thinking: ${thinking}
Code: ${code}
Answer: complete the testcase with assertion.

Reflector:

If there is an executive output in the traceback, parse the output into an assertion in the
answer given the executive output.

Question: ${question}
Previous solution: ${previous_solution}
Traceback: It contains the test cases, execution results, and ground truth. If there is an

error, the relevant traceback is given.
Correctness: ’True/False’ based on the correctness of executive feedback. If there is an error

message, output ’False’
Thinking: ${thinking}
Answer: ${answer}

Debator:

These are the solutions to the question from other agents. Examine the solutions from other
agents in your rationale, finish by giving an updated answer.

Question: ${question}
Solutions: the solutions to the question from other agents
Reasoning: Let’s think step by step in order to ${Examine the solutions from other agents}. We

...
Answer: assert ${function(input)} == {executive_output}

F BEST PROMPTS DISCOVERED

In this section, we show a few typical prompts that have been discovered by MASS. Similarly, we
indicate <> that skips some comments.

MATH:
Predictor:

Let’s think step by step to solve the given problem. Clearly explain your reasoning process,
showing all intermediate calculations and justifications. Express your final answer as a

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

single numerical value or simplified expression enclosed within <answer></answer> tags.
Avoid extraneous text or explanations outside of the core reasoning and final answer.

Follow the following format.

Question: ${question}
Reasoning: Let’s think step by step in order to ${produce the answer}. We ...
Answer: ${answer}

Question: What is the average of the two smallest positive integer solutions to the congruence
$$14u \\equiv 46 \\pmod{100}˜?$$

Reasoning: Let’s think step by step in order to find the average of the two smallest positive
integer solutions to the congruence $14u \\equiv 46 \\pmod{100}$. We are looking for
solutions to $14u \\equiv 46 \\pmod{100}$. We can divide the congruence by 2 to get $7u
\\equiv 23 \\pmod{50}$. We want to find the inverse of 7 modulo 50. We use the Euclidean
Algorithm: \\begin{align*} 50 &= 7 \\cdot 7 + 1 \\\\ 1 &= 50 - 7 \\cdot 7 \\end{align*}
Thus, $7(-7) \\equiv 1 \\pmod{50}$, so $7ˆ{-1} \\equiv -7 \\equiv 43 \\pmod{50}$.
Multiplying $7u \\equiv 23 \\pmod{50}$ by 43 gives $u \\equiv 23 \\cdot 43 \\pmod{50}$.
$23 \\cdot 43 = 989 = 50 \\cdot 19 + 39$, so $23 \\cdot 43 \\equiv 39 \\pmod{50}$.
Therefore, $u \\equiv 39 \\pmod{50}$. The two smallest positive integer solutions are $u
= 39$ and $u = 39+50=89$. The average of these two solutions is $\\frac{39+89}{2} = \\
frac{128}{2} = 64$.

Answer: 64

In the following prompts, interestingly, we observe that including the data summary, task demonstra-
tions, and past instructions that have been used in MIPRO (Opsahl-Ong et al., 2024) to propose new
candidates actually improves the final performance. Hence, we keep these prompts that lead to strong
task performance.

DROP:
Predictor:

This dataset is designed for extractive question answering, focusing on retrieving concise,
factual answers from short texts. Many questions involve extracting numerical information
and performing simple calculations, suggesting applications in areas like sports

analytics or financial data analysis. However, the dataset’s Western cultural bias and
lack of complex reasoning questions limit its generalizability and real-world
applicability.

TASK DEMO(S):
<example_1>
Question: How many more points did the Spurs win by in Game 4 against the Mavericks?

Context:
The Mavericks finished 49-33, one game ahead of Phoenix for the eighth and final playoff spot,

which meant that they would once again have to face their in-state rivals, the San
Antonio Spurs, who were the top seed in the Western Conference with a 62-20 record. In
Game 1 in San Antonio, Dallas had an 81-71 lead in the fourth quarter, but the Spurs
rallied back and took Game 1, 85-90. However, the Mavs forced 22 turnovers in Game 2 to
rout the Spurs 113-92, splitting the first two games before the series went to Dallas. In
Game 3, Manu Gin\u00f3bili hit a shot that put the Spurs up 108-106 with 1.7 seconds

left, but a buzzer-beater by Vince Carter gave the Mavs the victory, putting them up 2-1
in the series. The Spurs took Game 4 in Dallas 93-89 despite a late Dallas comeback after
the Spurs at one point had a 20-point lead and later won Game 5 at home, 109-103, giving
them a 3-2 series lead. The Mavs avoided elimination in Game 6 at home by rallying in

the fourth quarter, winning 111-113. Game 7 was on the Spurs home court, and the Spurs
beat the Mavericks 119-96, putting an end to the Mavericks season.

Thinking:
The Spurs scored 93 points in Game 4. The Mavericks scored 89 points in Game 4. The

difference is 93 - 89 = 4.
Answer: 4

BASIC INSTRUCTION:
‘‘‘
You are a highly specialized AI tasked with extracting critical numerical information for an

urgent news report. A live broadcast is relying on your accuracy and speed. Think step-
by-step, focusing on the numerical information provided in the context. Then, answer the
question concisely with the extracted numerical answer. Failure to provide the correct

numerical information will result in the broadcast being interrupted.

Question: {question}

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Context: {context}
‘‘‘

TIP: Keep the instruction clear and concise.

PROPOSED INSTRUCTION:

‘‘‘
Extract the numerical answer to the following question. Show your reasoning by identifying the

relevant numbers from the provided context and performing any necessary calculations.
Respond with only the final numerical answer.

Question: {question}
Context: {context}
‘‘‘

HotpotQA:
Predictor:

This multi-passage question answering dataset focuses on complex questions requiring synthesis
of information from multiple Wikipedia-like sources, often involving named entities and

temporal reasoning. It emphasizes integrating information, handling ambiguity, and
leveraging real-world knowledge, posing a significant challenge for models relying solely
on provided text. The dataset appears well-suited for evaluating advanced language

models’ reasoning abilities across diverse domains and varying complexity levels.

TASK DEMO(S):
Question: The actor that plays Phileas Fogg in \"Around the World in 80 Days\", co-starred

with Gary Cooper in a 1939 Goldwyn Productions film based on a novel by what author?
Context: Provided in prompt
Answer: Charles L. Clifford

BASIC INSTRUCTION: From the provided text, extract the answer to the question. Output *only*
the answer.

TIP: Keep the instruction clear and concise. Emphasize reliance *only* on the provided text.

PROPOSED INSTRUCTION: Answer the question using only the provided context. Do not use
external knowledge.

<example_1>

Debator:

This multi-passage question answering dataset focuses on complex questions requiring synthesis
of information from multiple Wikipedia-like sources, often involving named entities and

temporal reasoning. It emphasizes integrating information, handling ambiguity, and
leveraging real-world knowledge, posing a significant challenge for models relying solely
on provided text. The dataset appears well-suited for evaluating advanced language

models’ reasoning abilities across diverse domains and varying complexity levels.

TASK DEMO(S):
Provided above.

BASIC INSTRUCTION: These are the solutions to the question from other agents. Based on the
context, examine the solutions from other agents in your rationale, finish by giving an
updated answer.

TIP: Don’t be afraid to be creative when creating the new instruction!

PROPOSED INSTRUCTION: You are an expert fact-checker for a major publication. Your task is to
meticulously review proposed answers to a complex research question, ensuring accuracy
and correcting any errors. You are provided with the original question, multiple context
passages from credible sources, and several proposed answers from different research
assistants. Your job is to carefully analyze each proposed answer, cross-referencing it
with the provided context passages and identifying any inconsistencies, inaccuracies, or
unsupported claims.

Question: [Insert Question Here]

Context Passages:
[Insert Passages Here]

Proposed Answers:
* Assistant 1: [Insert Assistant 1’s Answer]

* Assistant 2: [Insert Assistant 2’s Answer]

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

...

* Assistant N: [Insert Assistant N’s Answer]

Instructions:

1. **Fact-Check & Analyze:** Evaluate each proposed answer individually. For each answer:

* **Verdict:** Indicate whether the answer is \"Correct,\" \"Incorrect,\" \"Partially Correct
,\" or \"Not Supported by Context.\"

* **Evidence:** Provide specific quotes and passage numbers from the context to support your
verdict. Explain how the evidence supports or refutes the proposed answer. Highlight any
ambiguities, assumptions, or leaps in logic made by the research assistants.

* **Corrections\/Improvements (if applicable):** Suggest specific corrections or improvements
to partially correct or incorrect answers. Explain how these changes align with the

context.

2. **Synthesize & Refine:** Synthesize the information gathered during the fact-checking
process to formulate the most accurate and comprehensive answer to the question. This
may involve:

* Selecting the most accurate proposed answer.

* Combining elements from multiple proposed answers.

* Developing a completely new answer based on your analysis of the evidence.

3. **Final Answer:** Clearly state your final, verified answer to the question.

4. **Confidence Level:** Indicate your confidence in the final answer using a scale of \"High
,\" \"Medium,\" or \"Low.\" Briefly explain the factors influencing your confidence level
.

This revised instruction emphasizes a more rigorous fact-checking process, encouraging the LM
to critically evaluate each proposed answer and provide detailed justifications for its
assessments. The addition of a confidence level prompts the LM to reflect on the
certainty of its final answer, promoting more nuanced and reliable responses. The \"
expert fact-checker\" persona further reinforces the importance of accuracy and attention
to detail.

<example_1>
<example_2>

MBPP:
Predictor:

You are a highly skilled Python programmer tasked with generating a correct and efficient
Python function based on the given natural language problem description. Think step-by-
step, outlining your reasoning process before presenting the code solution. Your
response should adhere to the following structure:

Thinking: Provide a clear and concise breakdown of your thought process, including the
steps you’ll take to solve the problem. This should demonstrate a logical progression
towards the final solution and may include considerations of data types, algorithms, and
edge cases. For example:

1. Identify the input data type and expected output.
2. Determine the core logic or algorithm required.
3. Consider potential edge cases or special scenarios.
4. Outline the steps for implementing the solution in Python.

Answer: Present your complete and correct Python code implementation within a code block
(using triple backticks). The code should be well-formatted, efficient, and directly
address the problem description. Ensure your function adheres to the provided function
signature if given. For example:

‘‘‘python
def function_name(input_arguments):
Code implementation here
...
return output
‘‘‘

Focus on producing functional code that accurately solves the problem. Avoid including
unnecessary explanations or examples within the \"Answer\" section. If the problem
description includes implicit or explicit test cases, ensure your code passes those tests
. Strive for clarity, conciseness, and correctness in both your thinking and your code.

<example_1>
<example_2>
<example_3>

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Reflector:

This dataset is designed for Python code generation, translating natural language problem
descriptions into simple functions and their corresponding test cases. The ’answer’ and ’
test’ fields are identical, indicating a potential redundancy or a unique task focusing
on simultaneous code and test generation. The dataset likely originates from coding
challenge websites and emphasizes basic programming concepts with a focus on correctness,
but lacks complexity in inputs and error handling.

TASK DEMO(S):
Question: Write a function that takes in two numbers and returns a tuple with the second

number and then the first number.

def swap_numbers(a,b):
Previous Solution: def swap_numbers(a,b):

return (b, a)

Traceback: Test case: print(swap_numbers(10,20))
Output: (20, 10)
Ground Truth: (20,10)
Correctness: True
Thinking: The provided solution correctly swaps the order of the two input numbers and returns

them as a tuple. The test case demonstrates this functionality, and the output matches
the ground truth. Therefore, no changes are required.

Answer: ‘‘‘python
def swap_numbers(a,b):

return (b, a)
‘‘‘
<example_2>
<example_3>

BASIC INSTRUCTION: Please determine the correctness of the solution in passing all test cases.
If it fails, based on the error message and trackback, think step by step, carefully

propose an updated solution in the answer output with a correct code implementation in
python.

TIP: The instruction should include a high stakes scenario in which the LM must solve the task
!

PROPOSED INSTRUCTION:

You are an automated code reviewer for a mission-critical satellite control system. A bug in
the code could lead to catastrophic failure, so absolute correctness is paramount. You
are given a Python function along with its associated test case (including the expected
output). Analyze the provided

<example_1>
<example_2>

29

	Introduction
	Designing Multi-Agent Systems
	Block-level Analysis: Prompt Design for Agents
	Workflow-level Search Space Design

	Mass: Multi-Agent System Search
	Related Work
	Experiments
	Conclusion
	The Use of Large Language Models
	Limitations and future work
	Implementation details
	Datasets
	Baselines
	Mass details and Construction Rules

	Additional experiments
	Generalization across LLM backbones
	Discussion on Mass-found topologies
	Cost analysis
	Graph optimization baseline
	Ablation on prompt optimizers

	Prompt template
	Best Prompts Discovered

