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ABSTRACT

Recent large vision language models (VLMs) have gained significant attention
for their superior performance in various visual understanding tasks using textual
instructions, also known as prompts. However, existing research shows that VLMs
are vulnerable to adversarial examples, where imperceptible perturbations added
to images can lead to malicious outputs, posing security risks during deployment.
Unlike single-modal models, VLMs process both images and text simultaneously,
making the creation of visual adversarial examples dependent on specific prompts.
Consequently, the same adversarial example may become ineffective when differ-
ent prompts are used, which is common as users often input diverse prompts. Our
experiments reveal severe non-stationarity when directly optimizing adversarial
example generation using multiple prompts, resulting in examples specific to a
single prompt with poor transferability. To address this issue, we propose the Gra-
dient Regularized-based Cross-Prompt Attack (GrCPA), which leverages gradient
regularization to generate more robust adversarial attacks, thereby improving the
assessment of model robustness. By exploiting the structural characteristics of
the Transformer, GrCPA reduces the variance of back-propagated gradients in the
Attention and MLP components, utilizing regularized gradients to produce more
effective adversarial examples. Extensive experiments on models such as Flamingo,
BLIP-2, LLaVA and InstructBLIP demonstrate the effectiveness of GrCPA in
enhancing the transferability of adversarial attacks across different prompts.

1 INTRODUCTION

Large Vision Language Models (VLMs), such as GPT-4 (OpenAI, 2023b), have recently garnered
substantial interest from the AI research community. Unlike Large Language Models (LLMs), which
are limited to processing plain text (OpenAI, 2023a), VLMs can interpret image inputs and perform a
range of visual understanding tasks guided by textual instructions, or prompts. These tasks include
image captioning (Li et al., 2023a; Zhang et al., 2020; Sheng et al., 2021), information extraction (Liu
et al., 2024; Li et al., 2023b), complex counting (Bavishi et al., 2023), and visual grounding (Wang
et al., 2023a; Bai et al., 2023), among others. This powerful multimodal perception capability has
facilitated the deployment of more models in real-world production environments.

Recent studies have revealed that VLMs are susceptible to attacks from adversarial examples (Gu
et al., 2023; Madry et al., 2018; Szegedy et al., 2014; Li et al., 2024a; Mahmood et al., 2021; Mao
et al., 2023; Yu et al., 2023; Wang et al., 2023b; Shayegani et al., 2023). These attacks involve
the addition of imperceptible disturbances to clean images, which can induce the models to output
malicious content. Such adversarial attacks can circumvent the security constraints of LLMs or
even embed advertising information into images (Niu et al., 2024; Qi et al., 2023; Bailey et al.,
2023; Lu et al., 2024; Yuan et al., 2023). Therefore, designing effective attack methods to identify
potential vulnerabilities before deploying VLMs in security-related applications is of paramount
importance (Li et al., 2024b; Gao et al., 2024b; Wang et al., 2023c).

Adversarial attacks can be broadly categorized into white-box attacks and black-box attacks (Gao
et al., 2024a; Cheng et al., 2019). A white-box attack refers to an attacker who has access to all
the structural and weight information of the model (Ebrahimi et al., 2018). Conversely, a black-box
attack refers to an attacker who can only access the model’s external usage interface (Guo et al.,
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Source: A living area with a television and a table Target: A close up picture of a brown bear's face

Step 1
A woman is standing in a kitchen

Step 50
A man is standing in a kitchen

Step 200
A room with a bear on the wall

Step 300
A man is making a funny 

face in the mirror

Step 400
A bear is on the wall

Step 500
A man is sitting in a chair 

in front of a window

Figure 1: Illustration of the attack iteration process. Green represents the clean image description,
while red represents the attack target. Adversarial attacks are unstable during the iteration process,
causing fluctuations around the attack target.

2019). Given their expanded operational scope and potential to transition into black-box attacks,
white-box attacks are consequently receiving heightened attention (Weng et al., 2024).

In contrast to widely studied classification models, adversarial attacks on VLMs present a more
complex challenge. These attacks can stem from two perspectives: visual input and textual input.
However, visual attacks are often imperceptible to users and occupy a continuum of disturbance space,
making them more commonly utilized. The generation of visual adversarial examples for VLMs
requires coordination with specific prompts. In other words, the same visual adversarial sample may
not be effective when encountering diverse prompts (Cui et al., 2023). This phenomenon is prevalent
during the model deployment phase, as users tend to input prompts based on their individual language
preferences. Therefore, this paper focuses on cross-prompt visual adversarial attacks.

An intuitive method to enhance across-prompts transferability is to utilize multiple prompts in the
iterative generation of adversarial examples (Moosavi-Dezfooli et al., 2017). However, in our experi-
ments, we identified three issues with this approach: (a) A serious non-stationary phenomenon is
observed, characterized by large fluctuations in the success rate of the attack during the iteration of
adversarial samples, as shown in Figure 1. We attribute this to overfitting during optimization, since
adversarial attacks on VLMs usually require a large number of iterations, such as 10,000, to succeed,
causing adversarial examples to become specific to their conditions (model and prompt) (Schlarmann
& Hein, 2023). (b) The calculation of text loss is extremely sensitive. Initially, we inadvertently com-
puted the loss for the entire sequence using teacher forcing, but found the results largely unsuccessful.
Subsequently, we recognized the need to focus solely on the loss pertaining to the model’s output
section. (c) Methods based on image classification for enhancing transferability are not adaptable
to VLMs. We tested methods like MI-FGSM (Dong et al., 2018), Input Diversity (Xie et al., 2019),
Variance Tuning (Wang & He, 2021), and found that the transferability across prompts did not
increase, but even decreased. A more detailed analysis can be seen in the Appendix A.1.

Based on these observations, we contend that the design of visual adversarial examples for VLMs
should take into account both image and text inputs comprehensively, with a particular focus on
mitigating overfitting in the textual domain. VLMs often integrate substantial language models, which
consist of numerous Transformer blocks, potentially leading to learned features that are specific
to the prompts or the model itself (Wang & He, 2021). In this paper, we introduce a Gradient
Regularization-based Cross-Prompt Attack (GrCPA) method designed to alleviate overfitting of both
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visual and textual features within the LLM’ Transformer blocks, thereby enhancing the transferability
of visual adversarial examples. Specifically, we implement gradient clipping on both visual and
textual features during the loss back-propagation phase to counter overfitting. Note that we modify
only a very small number of gradients, which does not affect the overall convergence of the chain
rule (Zhang et al., 2023a; Wei et al., 2022).

To verify the effectiveness of GrCPA, we employ prompts from three distinct vision-language tasks:
image classification, image captioning, and visual question answering (VQA). We evaluate our
method’s efficacy on well-known VLMs, including Flamingo (Alayrac et al., 2022), BLIP-2 (Li et al.,
2023a), LLaVA-1.5 (Liu et al., 2023) and InstructBLIP (Dai et al., 2023). The experimental results
indicate that GrCPA exhibits superior attack performance and enhanced transferability.

Overall, the main contributions of this paper include:

1. To the best of our knowledge, we first identify the non-stationary phenomenon in adversarial
attacks against vision language models, and argue that its essence is overfitting in the
optimization process. We also attempt previous enhancement methods for single-modal
models and find them to be ineffective.

2. We propose a gradient regularization method to enhance the transferability of visual adver-
sarial examples, thus effectively alleviating overfitting issues in the deep Transformer blocks
of visual and textual features.

3. We validate the effectiveness of our method through detailed experiments and provide a new
perspective for future attacks against VLMs.

2 RELATED WORK

Adversarial Transferability. Szegedy et al. (2014) first proposed the concept of adversarial examples,
revealing the vulnerability of neural networks. The transferable attacks, which have widespread
impacts in the real world, have triggered a large number of subsequent studies Cheng et al. (2020);
Wu et al. (2022); Zhang et al. (2023b); Chakraborty et al. (2021); Madry et al. (2018); Xu et al.
(2022). Previous work has primarily focused on classification models, with an emphasis on enhancing
transferability through gradient optimization, input augmentation. Gradient optimization methods,
led by the Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2015), along with its derivatives
such as Iterative FGSM (I-FGSM) (Kurakin et al., 2017), Projected Gradient Descent (PGD) (Madry
et al., 2018), Momentum Iterative FGSM (MI-FGSM) (Dong et al., 2018), among others, have
emerged as prominent techniques in the literature. On another front, input augmentation primarily
involves applying various transformations to the input image at each iteration, such as random
resizing and padding, as seen in methods like DIM Xie et al. (2019), SIM Lin et al. (2020), and
TIM Dong et al. (2019). We endeavor to improve the transferability of attacks on VLMs utilizing
traditional methods, but observe no substantial enhancement in their effectiveness. This highlights
the complexity and inherent challenges of multimodal tasks, prompting a reevaluation of our previous
research methodologies.

Adversarial Robustness of Vision Language Models. Alongside the proliferation of large VLMs,
the associated security research has garnered significant attention Gao et al. (2024a); Sun et al. (2024);
Ni et al. (2024); Zhang et al. (2024); Guo et al. (2024); Luo et al. (2024b); Zhou et al. (2024); Cheng
et al. (2024); Wang et al. (2024). For example, Zhao et al. (2023) induce misinterpretation of image
content in models such as BLIP-2 through black-box attacks. There is also a body of work utilizing
adversarial attacks to circumvent security alignment of LLM components (Bagdasaryan et al., 2023;
Carlini et al., 2023; Niu et al., 2024; Qi et al., 2024), posing security risks to VLMs. The work closest
to ours is CroPA Luo et al. (2024a), which turns the generation of visual adversarial examples into a
max-min process, achieving significant improvements. Our method from the perspective of reverse
gradient is orthogonal to it, with more flexible and simpler operational methods.

3 METHOD

In this section, we first introduce adversarial attack setup against VLMs. Then, we formally present
baseline methods for generating visual adversarial examples using a single prompt and multiple
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(a) Illustration of gradient regularization.
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(b) Relationships among various
methods.

Figure 2: Overview of our proposed method. (a) The process of gradient regularization involves
performing clipping during back-propagation in the Transformer blocks of the LLM for both visual
embeddings and text embeddings, specifically by attenuating the extreme values of gradients in each
token. (b) By adjusting different parameter values, various methods can be transformed.

prompts. Finally, we introduce our proposed GrCPA method, which enhances cross-prompt transfer-
ability through gradient regularization during backpropagation.

3.1 THREAT MODEL

Without loss of generality, VLMs complete a series of downstream tasks through visual question
answering (VQA). The model is provided with an image v and question q (i.e., prompts), and in
response, it generates an answer a. We denote a VLM with the function fθ, where θ represents its
parameters, such that a = fθ(v, q).

Thus, the threat model for adversarial attacks on vision language models can be represented as:

Adversarial knowledge refers to the information an attacker has about the target model. In this
paper, we focus on white-box attacks, where we have full access to all details of the victim’s model,
including its architecture and weights. This access allows us to leverage the gradients obtained
through backpropagation to generate adversarial examples effectively.

Adversarial goals describe the malicious objectives that an attacker aims to achieve, typically
categorized into targeted and untargeted attacks. For VLMs, targeted attacks seek to induce the model
to output specific content, including bypassing alignment constraints. In contrast, untargeted attacks
aim to provoke the model into producing incongruous responses. Since untargeted attacks can often
be achieved through targeted attacks, this paper places greater emphasis on targeted attacks.

Adversary capabilities refer to the resources and constraints available to the attacker. To ensure that
adversarial examples remain imperceptible to humans, the image perturbation δ is constrained by
||δ||p ≤ ϵ, where ϵ represents the magnitude of the perturbation and ∥·∥p denotes the Lp norm. This
paper primarily employs the L∞ norm to align with previous work (Luo et al., 2024a).

3.2 BASELINE METHODS

To induce the model to output specific content, given a query q and a target answer a , we optimize
the loss of the language model with respect to the (q, a) pair and backpropagate it to the image, thus
generating adversarial examples. We denote this method as Single-P. However, the activation of
adversarial examples generated by this method also depends on the optimization of q used during
the process. In other words, if replaced with another prompt q′, the model may fail to produce a in
response (Cui et al., 2023).

To enhance the cross-prompt transferability of visual adversarial samples, a straightforward approach
is to use multiple prompts during optimization (Moosavi-Dezfooli et al., 2017). Given a set of textual
prompts Q = {q1, q2, q3, . . . , qM}, we induce the model to output the predetermined target answer a
under the query of each item in Q in the presence of adversarial noise δ. Specifically, we minimize
the following language modeling loss:

min
δυ

K∑
i=1

L(f(v + δ, qi), a) (1)
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Where L is typically the cross-entropy loss. Note that we compute the loss for only the part
corresponding to answer a rather than the entire (q, a) sequence. We refer to this method as Multi-P.

It is evident that the improvement in cross-prompt transferability is directly proportional to the
increase in the number of textual prompts, denoted by K. However, exhaustively exploring all
potential prompts is often impractical due to the significantly increased computational complexity.
Therefore, it is essential to enhance transferability with a limited number of prompts. To address this,
CroPA Luo et al. (2024a) proposes using a set of learnable prompts to update the visual adversarial
perturbation, aiming to counteract the misleading effects of adversarial images:

min
δv

max
δt

L(f(v + δv, qi + δt), a) (2)

where δv represents the perturbation added to the image, while δt represents the perturbation added
to the text. To smooth the optimization process, a text perturbation update frequency T is introduced.
This means that for every T updates of the visual perturbation, the text perturbation is updated once.

3.3 GRCPA

Orthogonal to CroPA, we introduce GrCPA, which focuses on gradient regularization during the
backpropagation process. Visual adversarial attacks fundamentally involve optimizing images using
gradient descent. Consequently, large gradients can lead to local optima and trigger overfitting
issues (Wang & He, 2021). This motivates us to clip the gradients of both visual and text features,
thereby enhancing cross-prompt transferability.

Existing large VLMs typically consist of three components: a visual encoder, a projection layer, and
an LLM. The image passes through the visual encoder to obtain a set of features, which are then
aligned to the input space of the LLM by the projection layer to form visual tokens. These visual
tokens are concatenated with textual tokens and fed into the LLM for autoregressive generation. The
LLM is composed of multiple stacked Transformer blocks, with each block consisting of Attention
and MLP components (Vaswani et al., 2017).

Given the gradient vector G ∈ Rd with respect to visual or textual tokens, where d is the embedding
length, we compute the language modeling loss (Equation 2) and propagate this loss backward through
the Transformer blocks of the LLM. As shown in Figure 2a, we perform Gradient Regularization
(GR) by identifying the k largest and smallest gradient (Grad) values and setting them to 0, as follows.

imax,imin = argmax
k

G, argmin
k

G

G[imax] = G[imin] = 0
(3)

This clipping will be performed on each token in both the Attention block and the MLP block of the
Transformer blocks.

Preserving low-level features. LLMs typically consist of multiple stacked Transformer blocks,
which enable the learned features to be specific to the model itself. Inspired by Deng et al. (2023),
which suggests that preserving more low-level features in convolutional networks can improve
cross-model transferability, we hypothesize that regularizing only the gradients of certain high-level
features in LLMs can better balance the strength and transferability of attacks. Assuming that the
LLM consists of N Transformer blocks, we set n = λ · N and apply regularization only to the
features of the last n layers. The complete algorithm is presented in Algorithm 1.

Relationships among various methods. Our method builds upon previous work Moosavi-Dezfooli
et al. (2017); Luo et al. (2024a); Zhang et al. (2023a); Wei et al. (2022), where correlations between
them can be transformed by adjusting the values of hyperparameters, as illustrated in Figure 2b.

4 EXPERIMENTS

In this section, we validate the effectiveness of our method through extensive experiments and conduct
an in-depth analysis of the factors influencing GrCPA.
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Table 1: The results of targeted attacks against Flamingo. We investigate four types of tasks and
report attack success rates for each task category. The last column represents the average performance
across these four task types. To demonstrate the generalization of our method, we set multiple target
answers. The best results are represented in bold.

Target Answer Method VQAgeneral VQAspecific Classification Captioning Average

unknown

Single-P 0.24 0.39 0.21 0.05 0.22

Multi-P 0.67 0.86 0.64 0.31 0.62

CroPA 0.92 0.98 0.70 0.34 0.74

GrCPA 0.95 0.99 0.75 0.43 0.78

I am sorry

Single-P 0.21 0.43 0.47 0.34 0.36

Multi-P 0.60 0.85 0.71 0.60 0.69

CroPA 0.90 0.96 0.75 0.72 0.83

GrCPA 0.94 0.96 0.83 0.82 0.88

not sure

Single-P 0.25 0.36 0.09 0.00 0.17

Multi-P 0.55 0.55 0.11 0.02 0.31

CroPA 0.88 0.86 0.30 0.17 0.55

GrCPA 0.93 0.89 0.46 0.26 0.63

very good

Single-P 0.35 0.52 0.15 0.05 0.27

Multi-P 0.81 0.93 0.40 0.20 0.59

CroPA 0.95 0.97 0.64 0.27 0.71

GrCPA 0.99 0.97 0.81 0.44 0.80

too late

Single-P 0.21 0.38 0.21 0.04 0.21

Multi-P 0.78 0.90 0.54 0.17 0.60

CroPA 0.90 0.95 0.73 0.20 0.70

GrCPA 0.93 0.97 0.79 0.39 0.77

metaphor

Single-P 0.26 0.56 0.50 0.14 0.37

Multi-P 0.83 0.92 0.81 0.42 0.75

CroPA 0.96 0.99 0.92 0.62 0.87

GrCPA 0.99 0.99 0.95 0.73 0.91

4.1 EXPERIMENTAL SETTINGS

Datasets. Given that VLMs tackle downstream tasks through visual question answering, it is
imperative that the dataset encompasses both images and corresponding prompts. The images are
sourced from the MS-COCO validation set (Lin et al., 2014). The VQA prompts are comprised of
questions that are either general or specific to the image content, respectively referred to as VQAgeneral
and VQAspecific. The image-specific questions are derived from the VQA-v2 dataset (Goyal et al.,
2017). Agnostic questions were constructed for VQA, with a focus on image classification and image
captioning, ensuring a diverse range of lengths and semantic content.

Models. Without loss of generality, we evaluate the OpenFlamingo-9B (Alayrac et al., 2022; Awadalla
et al., 2023), BLIP-2 (OPT-2.7B) (Li et al., 2023a; Zhang et al., 2022), LLaVA-1.5-7B(Liu et al.,
2023) and InstructBLIP (Dai et al., 2023), which are influential models in the multimodal community.

Parameters. In alignment with previous research (Luo et al., 2024a), the image perturbation is
configured to 16/255, with α1 = 1/255, α2 = 0.01, and the number of iterations set to 1000. A
maximum of 100 prompts are utilized for each individual sample. The proportion of Transformer
blocks λ is set to 1/4; the update frequency T is set to 1; and the number of extrema k is also set to 1.

Evaluation Metric. In this paper, we report the Attack Success Rate (ASR) and facilitate the analysis
by inducing the model to output specific text.
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Table 2: Quantitative evaluation of attack stability. We assess the stability of different methods by
determining whether the outputs at the 900th, 925th, 950th, 975th, and 1000th steps are consistent.

Method VQAgeneral VQAspecific Classification Captioning Average

Multi-P 0.57 0.59 0.46 0.43 0.51
CroPA 0.61 0.65 0.53 0.49 0.57
GrCPA 0.67 0.71 0.57 0.53 0.62

4.2 COMPARISON WITH PREVIOUS METHODS

To comprehensively demonstrate the efficacy of our proposed GrCPA, we conducted a series of
experiments using Flamingo (Awadalla et al., 2023), evaluating it against a range of target responses.
The target text consists of statements such as unknown, not sure, and I am sorry, which
indicate a deficiency in interpreting visual content, and unknown is the default setting for subsequent
experiments unless otherwise specified. It also features phrases like very good, too late, and
metaphor, which are irrelevant to the context.

Table 1 summarizes the evaluation results of targeted attacks. GrCPA outperforms previous SOTA
methods across various experimental settings. Both the baseline methods and our method achieve
higher attack success rates on the VQA task, likely due to the closer relationship between prompts
and images in the VQA framework, where prompts more closely related to the image are more
likely to enhance the effectiveness of the attack. This also indirectly demonstrates the sensitivity of
adversarial samples to prompts in vision-language models, where adversarial samples may become
ineffective when encountering different prompts. Furthermore, varying target answers can affect
attack results. The experimental findings suggest that even rare and illogical responses, like metaphors,
can still achieve high success rates. We also evaluate longer target answers, such as I need a
new phone, in Appendix A.3. The results show that our method still outperforms the baseline
methods. Additionally, we demonstrate the stability of our method through qualitative case studies in
Appendix A.4.

To further validate the generalizability of our method, we also conduct experiments on LLaVA-1.5
and InstructBLIP, as detailed in Appendix A.5. These models are similarly susceptible to adversarial
attacks, exhibiting serious security vulnerabilities. We also evaluate their cross-model transferability
in Appendix A.7, but find weak transferability..

Besides showcasing the attack results, we also perform a quantitative analysis of the variations in
attack stability across different methods. We further evaluate the stability of various attack methods
by examining whether the model’s outputs at the 900th, 925th, 950th, 975th, and 1000th iterations
are consistent. As shown in Table 2, our method significantly enhances the stability of adversarial
attacks across multiple tasks, which greatly aids in the large-scale evaluation of VLMs’ robustness.

4.3 IMPACT OF PROMPT NUMBER

In this section, our focus is on examining the influence of the quantity of prompts utilized in the
attack process on its effectiveness. We conduct attacks under various configurations, employing 1,
5, 10, 50, and 100 prompts against the BLIP-2 model with the objective of eliciting an unknown
response.

As shown in Table 3, augmenting the quantity of prompts in the optimization phase substantially
augments the cross-prompt transferability of visual adversarial samples. For example, escalating the
number of prompts from one to ten results in a pronounced increment in the ASR of the baseline
method, from 0.34 to 0.71, which corresponds to a more than twofold enhancement. The experimental
outcomes clearly indicate that our methodology consistently outperforms the baseline approach across
all configurations, thereby showcasing our method’s superiority.

Nevertheless, augmenting the number of prompts directly leads to a substantial increase in the
computational demands of adversarial attacks, presenting a significant impediment to the large-scale
generation of visual adversarial samples. Additionally, there is a pronounced effect of diminishing
marginal returns associated with increasing the number of prompts; beyond a threshold of 10 prompts,
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Table 3: The results of the adversarial attack against BLIP-2. Different numbers of prompts are
employed, and it is found that increasing the number of prompts improves the performance. The best
performance values for each task are highlighted in bold.

No. of Prompts Method VQAgeneral VQAspecific Classification Captioning Average
Single-P 0.24 0.34 0.45 0.32 0.34

1 CroPA 0.52 0.63 0.65 0.58 0.60
GrCPA 0.55 0.65 0.69 0.60 0.62
Multi-P 0.51 0.59 0.62 0.58 0.58

5 CroPA 0.81 0.83 0.80 0.84 0.82
GrCPA 0.85 0.87 0.83 0.89 0.86
Multi-P 0.68 0.81 0.68 0.67 0.71

10 CroPA 0.86 0.90 0.82 0.84 0.86
GrCPA 0.88 0.93 0.84 0.85 0.87
Multi-P 0.67 0.74 0.67 0.72 0.70

50 CroPA 0.90 0.93 0.87 0.91 0.90
GrCPA 0.95 0.96 0.89 0.92 0.93
Multi-P 0.67 0.76 0.68 0.66 0.69

100 CroPA 0.95 0.95 0.87 0.92 0.92
GrCPA 0.99 0.99 0.93 0.95 0.96

400 600 800 1000 1200 1400 1600 1800
Number of Iterations

0.2

0.3

0.4

0.5

0.6

0.7

0.8

AS
R

Single-P
Multi-P
CroPA
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Figure 3: The impact of the number of iterations on attack success rate. Compared with the baseline
algorithms, our method shows a certain degree of improvement across different numbers of iterations.

the enhancement in transferability becomes exceedingly constrained. Consequently, it is imperative
to improve cross-prompt transferability using a finite set of prompts.

4.4 CONVERGENCE OF GRCPA

In this section, we explore the impact of the number of iterations during the optimization process on
the attack success rate. All attacks are conducted using 10 prompts.

As shown in Figure 3, it can be observed that all methods show a corresponding increase in attack
success rate with the number of iterations. This improvement is particularly evident in scenarios
using multiple prompts, as more prompts necessitate learning more content.

Our method’s performance gradually stabilizes after 1000 iterations. Compared to adversarial attacks
on classification tasks, which typically require around 100 iterations, adversarial attacks on VLMs
demand significantly more computational effort. However, our method can achieve better performance
with fewer steps and demonstrates higher computational efficiency.

4.5 ABLATION STUDIES

In this section, we thoroughly analyze the effectiveness of GrCPA through ablation experiments.
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Table 4: Ablation studies of gradient regularization.

Method VQAgeneral VQAspecific Classification Captioning Average

Single-P 0.24 0.39 0.21 0.05 0.22
Single-P(GR) 0.29 0.45 0.24 0.11 0.27

Multi-P 0.67 0.86 0.64 0.31 0.62
Multi-P(GR) 0.77 0.91 0.71 0.35 0.78

Table 5: Ablation studies on single-modality regularization.

Method VQAgeneral VQAspecific Classification Captioning Average

GrCPA 0.99 0.99 0.93 0.95 0.96
GrCPA(Image) 0.94 0.95 0.90 0.89 0.92

GrCPA(text) 0.92 0.93 0.86 0.87 0.89

Table 6: Ablation experiments on the impact of the layer proportion λ.

λ 1 1/2 1/3 1/4 1/5 1/6

ASR 0.863 0.863 0.864 0.875 0.873 0.869

The impact of gradient regularization. Although GrCPAbuilds on previous work, this gradient
regularization method is actually a general approach to reducing overfitting. As shown in Table 4, our
experiments on Single-P and Multi-P demonstrate that it can provide cross-prompt transferability.

The impact of regularizing different modalities. In our method, we apply gradient regularization
to both visual modality features and textual modality features in the LLM. In practice, it is feasible
to regularize the feature gradients of a single modality. We conduct such experiments as shown
in Table 5, but find that the attack success rate significantly decreased. Therefore, we believe that
enhancing attacks on VLMs should consider both modalities whenever possible.

The impact of proportion λ of Transformer blocks. We primarily test the effectiveness of gradient
regularization on Transformer Blocks with LLMs at different proportions λ. The experimental results,
as shown in Table 6, revealed that trimming only the last 1/4 layers achieved the best performance.
However, in terms of absolute performance, the differences among them were relatively minor.

5 CONCLUSION

In this paper, we investigate the adversarial robustness of large vision language models (VLMs).
During our experiments, we first found that existing adversarial attacks on visual language models
exhibit significant instability, with the optimization process for adversarial samples oscillating
between success and failure. We believe that the root cause of this issue is overfitting during the
optimization process, which poses a challenge to the large-scale generation of adversarial samples
for visual language models. Furthermore, we experimentally investigated the effectiveness of
adversarial attack enhancement methods that target only the visual modality within VLMs and found
that these methods reduce attack performance. Based on these observations, we propose Gradient
Regularized-based Cross-Prompt Attack (GrCPA), which clips the gradients of visual and textual
features during error backpropagation, eliminating extreme gradients to prevent falling into local
optima. Our regularization operation modifies only a small portion of the gradients and does not
affect the convergence of the chain rule. Experiments on models such as BLIP-2 demonstrate that our
method significantly improves the transferability of adversarial samples and confirms that current
VLMs are sensitive to visual inputs and can be easily attacked. Therefore, we call on researchers
to thoroughly evaluate the adversarial robustness of visual language models before deployment,
especially in life-critical scenarios.

Reproducibility. In the experiments, we thoroughly report on the datasets, models, and parameter
settings designed for this study, with all data being open-source and publicly available to ensure
reproducibility.
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A APPENDIX

A.1 ATTEMPTS AT EMPLOYING UNIMODAL METHODS
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Figure 4: The impact of the number of iterations on attack success rate. Compared with the
comparative algorithms, the method we propose shows a certain degree of improvement across
different numbers of iterations.

In Figure 1, we employ a specific instance to elucidate the non-stationary nature of adversarial attacks
on vision language models. We posit that the underlying cause of this non-stationary behavior is the
overfitting that occurs during the optimization process. As depicted in Figure 4, we illustrate the
variation in the loss during the optimization of adversarial samples. It can be observed that as the
number of iterations increases, the loss diminishes progressively. However, the overall curve exhibits
irregularities, particularly abrupt fluctuations, which may be attributed to the complexity of VLMs.
Even minor alterations at the feature level can lead to significant variations in the output results.

Table 7: Comparison of different methods

Method Baseline MI-FGSM VMI-FGSM DIM

ASR 0.71 0.69 0.65 0.43

To enhance the transferability of adversarial examples, a series of methods targeting visual models
have been proposed, which we have attempted to apply to VLMs. Our primary experiments were
conducted on MI-FGSM Dong et al. (2018), VMI-FGSM Wang & He (2021), and DIM Xie et al.
(2019), with the first two methods focusing on enhancing adversarial attacks by correcting gradients
to reduce overfitting, while the third approach emphasizes data augmentation techniques, such as
padding and cropping. The experimental results are shown in Table 7.
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Table 8: Evaluation of longer target answers.

Target Answer Method VQAgeneral VQAspecific Classification Captioning Average

I do not know
Multi-P 0.67 0.75 0.41 0.03 0.46
CroPA 0.70 0.80 0.43 0.04 0.49
GrCPA 0.73 0.81 0.55 0.11 0.55

I need buy a new phone
Multi-P 0.68 0.86 0.85 0.53 0.73
CroPA 0.83 0.85 0.77 0.70 0.78
GrCPA 0.85 0.86 0.78 0.73 0.80

A.2 GRCPA PIPELINE

Algorithm 1 Gradient Regularization-based Cross-Prompt Attacks
Require: Model fθ , Target Text a, vision input v, prompt set Q, perturbation size ϵ, step size of perturbation

updating α1 and α2, number of iteration steps I , adversarial prompt update interval T , number of LLM’s
Transformer blocks N ,proportion of Transformer blocks λ

Ensure: Adversarial example v′

1: Initialise v′ = v
2: for step =1 to I do
3: Uniformally sample the prompt qi from QM

4: if qi′ is not initialised then
5: Initialise qi

′ = qi
6: end if
7: Compute gradient for adversarial image : gv = ∇vL(fθ(v′, qi), a):
8: gv = GR(gv)
9: Update with gradient descent: v′ = v′ − α1 · sign(gv)

10: if mod(step, T) == 0 then
11: Compute gradient for adversarial prompt: gq = ∇qL(fθ(v′, qi), a):
12: gq = GR(gq)
13: Update with gradient ascent: qi′ = qi

′ + α2 · sign(gq)
14: end if
15: Project v′ to be within the ϵ-ball of v: v′ = Clipv,ϵ(v

′)
16: end for
17: return v′

A.3 EVALUATION OF LONG SEQUENCES

In the experimental results in Table 1, we report the effectiveness of attacks with varying word counts
(e.g., 1 word, 2 words, 3 words). The results show that our method consistently produces effective
attacks. To demonstrate that our method can handle different sequence lengths, we have included
additional experiments with two other target sequences (e.g., I do not know and I need a
new phone). Table 8 indicates that our attack method remains highly effective even with longer
sequences. Of course, the effectiveness of the attack can vary significantly depending on the prompt
for different tasks, which remains a promising direction for future research in cross-prompt studies.
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Figure 5: Qualitative evaluation of cross-prompt attacks on the BLIP-2 model.

A.4 QUALITATIVE ANALYSIS

From the qualitative analysis of specific cases as shown in Figure 5, it can be observed that when
encountering relatively blurry images, the success rate of all attacks decreases. The lack of high-
frequency details in blurry images makes them less sensitive to the small local perturbations typically
used in adversarial attacks. In such situations, CroPA can cause the model to produce nonsensical
output (e.g., 3d anaglyph 3d stereo 3d stereo 3d stereo 3d stereo), whereas
our GrCPA does not cause the model to generate off-target outputs.

A.5 SUPPLEMENTARY EXPERIMENTS ON LLAVA AND INSTRUCTBLIP

Considering that BLIP-2 and OpenFlamingo have been released for some time, we also conduct
evaluations on the latest LLaVA-1.5-7B (Liu et al., 2023) and InstructBLIP-Vicuna-7b (Dai et al.,
2023) to further validate the effectiveness of our method.

Table 9: Additional experiments on LLaVA
and InstructBLIP.

Method LLaVA-1.5 InstructBLIP

Single-P 0.34 0.31
Multi-P 0.89 0.90
CroPA 0.94 0.93
GrCPA 0.98 0.97

As shown in Table 9, the results on LLaVA 1.5 and
InstructBLIP demonstrate that various attack methods
can achieve high success rates, indicating a common
weakness in vision-language models. Coupled with the
experiments discussed in the main text, our proposed
attack method proves to be highly effective across dif-
ferent architectures and parameter scales, further high-
lighting its generalization capability.

A.6 ANALYSIS OF REGULARIZATION METHODS

In our proposed method, we utilize a regularization
technique by setting the gradient extremes to zero dur-
ing backpropagation to reduce overfitting and enhance transferability, a strategy validated in some
related works (Zhang et al., 2023a). However, we also thoroughly explore additional regularization
techniques in this section, such as L2 regularization.

Table 10: Additional experiments on more regularization methods.

Method VQAgeneral VQAspecific Classification Captioning Average

L2 Regularization 0.84 0.83 0.81 0.83 0.83
GrCPA 0.88 0.93 0.84 0.85 0.88

Table 10 summarizes our experimental results. L2 regularization dot not appear to provide the desired
performance improvement in our experiments, possibly due to its excessive influence on the overall
gradient updates.

A.7 ANALYSIS OF CROSS-MODEL TRANSFERABILITY.

We argue that there is a severe overfitting issue in vision-language models when faced with adversarial
attacks, as they often require a high number of iterations, which makes the generated adversarial
samples specific to their conditions (model and prompt). In Section 4, we provided a detailed
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explanation of how GrCPA enhances cross-prompt transferability, and in this section, we discuss its
impact on cross-model transferability.

Table 11: Evaluation of cross-model transferability from BLIP2-OPT2.7B to InstructBLIP-Vicuna-
7B.

Method VQAgeneral VQAspecific Classification Captioning Average

Multi-P 0.00 0.01 0.04 0.03 0.02
CroPA 0.00 0.04 0.15 0.11 0.07
GrCPA 0.01 0.05 0.19 0.11 0.09

We evaluate the transferability from BLIP2-OPT-2.7B to InstructBLIP-Vicuna-7B, as shown in
Table 11. Both our method and the baselines exhibited weak adversarial transferability, likely because
of the large architectural and parameter differences between these two models. Therefore, cross-model
transferability warrants further investigation.

A.8 ANALYSIS OF DEFENSES AGAINST GRCPA

Table 12: Evaluation of random rotation as a defense strategy.

Method VQAgeneral VQAspecific Classification Captioning Average

Multi-P 0.58 0.79 0.52 0.26 0.53
CroPA 0.89 0.95 0.61 0.34 0.70
GrCPA 0.91 0.95 0.62 0.37 0.71

In this section, we use random rotations to initially investigate defense strategies as shown Table 12.
It is evident that data preprocessing methods currently cannot effectively counter our adversarial
attacks. In the future, we will continue to explore relevant adversarial training methods.

A.9 PROMPTS FOR DIFFERENT TASKS

A.9.1 PROMPTS FOR VQA

Any cutlery items visible in the image?
Any bicycles visible in this image?
Any boats visible in the image?
Any bottles present in the image?
Are curtains noticeable in the image?
Are flags present in the image?
Are flowers present in the image?
Are fruits present in the image?
Are glasses discernible in the image?
Are hills visible in the image?
Are plates discernible in the image?
Are shoes visible in this image?
Are there any insects in the image?
Are there any ladders in the image?
Are there any man-made structures in the image?
Are there any signs or markings in the image?
Are there any street signs in the image?
Are there balloons in the image?
Are there bridges in the image?
Are there musical notes in the image?
Are there people sitting in the image?
Are there skyscrapers in the image?
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Are there toys in the image?
Are toys present in this image?
Are umbrellas discernible in the image?
Are windows visible in the image?
Can birds be seen in this image?
Can stars be seen in this image?
Can we find any bags in this image?
Can you find a crowd in the image?
Can you find a hat in the image?
Can you find any musical instruments in this image?
Can you identify a clock in this image?
Can you identify a computer in this image?
Can you see a beach in the image?
Can you see a bus in the image?
Can you see a mailbox in the image?
Can you see a mountain in the image?
Can you see a staircase in the image?
Can you see a stove or oven in the image?
Can you see a sunset in the image?
Can you see any cups or mugs in the image?
Can you see any jewelry in the image?
Can you see shadows in the image?
Can you see the sky in the image?
Can you spot a candle in this image?
Can you spot a farm in this image?
Can you spot a pair of shoes in the image?
Can you spot a rug or carpet in the image?
Can you spot any dogs in the image?
Can you spot any snow in the image?
Do you notice a bicycle in the image?
Does a ball feature in this image?
Does a bridge appear in the image?
Does a cat appear in the image?
Does a fence appear in the image?
Does a fire feature in this image?
Does a mirror feature in this image?
Does a table feature in this image?
Does it appear to be nighttime in the image?
Does it look like an outdoor image?
Does it seem to be countryside in the image?
Does the image appear to be a cartoon or comic strip?
Does the image contain any books?
Does the image contain any electronic devices?
Does the image depict a road?
Does the image display a river?
Does the image display any towers?
Does the image feature any art pieces?
Does the image have a lamp?
Does the image have any pillows?
Does the image have any vehicles?
Does the image have furniture?
Does the image primarily display natural elements?
Does the image seem like it was taken during the day?
Does the image seem to be taken indoors?
Does the image show any airplanes?
Does the image show any benches?
Does the image show any landscapes?
Does the image show any movement?
Does the image show any sculptures?
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Does the image show any signs?
Does the image show food?
Does the image showcase a building?
How many animals are present in the image?
How many bikes are present in the image?
How many birds are visible in the image?
How many buildings can be identified in the image?
How many cars can be seen in the image?
How many doors can you spot in the image?
How many flowers can be identified in the image?
How many trees feature in the image?
Is a chair noticeable in the image?
Is a computer visible in the image?
Is a forest noticeable in the image?
Is a painting visible in the image?
Is a path or trail visible in the image?
Is a phone discernible in the image?
Is a train noticeable in the image?
Is sand visible in the image?
Is the image displaying any clouds?
Is the image set in a city environment?
Is there a plant in the image?
Is there a source of light visible in the image?
Is there a television displayed in the image?
Is there grass in the image?
Is there text in the image?
Is water visible in the image, like a sea, lake, or river?
How many people are captured in the image?
How many windows can you count in the image?
How many animals, other than birds, are present?
How many statues or monuments stand prominently in the scene?
How many streetlights are visible?
How many items of clothing can you identify?
How many shoes can be seen in the image?
How many clouds appear in the sky?
How many pathways or trails are evident?
How many bridges can you spot?
How many boats are present, if it’s a waterscape?
How many pieces of fruit can you identify?
How many hats are being worn by people?
How many different textures can you discern?
How many signs or billboards are visible?
How many musical instruments can be seen?

A.9.2 PROMPTS FOR IMAGE CLASSIFICATION

Identify the primary theme of this image in one word.
How would you label this image with a single descriptor?
Determine the main category for this image.
Offer a one-word identifier for this picture.
If this image were a file on your computer, what would its name be?
Tag this image with its most relevant keyword.
Provide the primary classification for this photograph.
How would you succinctly categorize this image?
Offer the primary descriptor for the content of this image.
If this image were a product, what label would you place on its box?
Choose a single word that encapsulates the image’s content.
How would you classify this image in a database?
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In one word, describe the essence of this image.
Provide the most fitting category for this image.
What is the principal subject of this image?
If this image were in a store, which aisle would it belong to?
Provide a singular term that characterizes this picture.
How would you caption this image in a photo contest?
Select a label that fits the main theme of this image.
Offer the most appropriate tag for this image.
Which keyword best summarizes this image?
How would you title this image in an exhibition?
Provide a succinct identifier for the image’s content.
Choose a word that best groups this image with others like it.
If this image were in a museum, how would it be labeled?
Assign a central theme to this image in one word.
Tag this photograph with its primary descriptor.
What is the overriding theme of this picture?
Provide a classification term for this image.
How would you sort this image in a collection?
Identify the main subject of this image concisely.
If this image were a magazine cover, what would its title be?
What term would you use to catalog this image?
Classify this picture with a singular term.
If this image were a chapter in a book, what would its title be?
Select the most fitting classification for this image.
Define the essence of this image in one word.
How would you label this image for easy retrieval?
Determine the core theme of this photograph.
In a word, encapsulate the main subject of this image.
If this image were an art piece, how would it be labeled in a gallery?
Provide the most concise descriptor for this picture.
How would you name this image in a photo archive?
Choose a word that defines the image’s main content.
What would be the header for this image in a catalog?
Classify the primary essence of this picture.
What label would best fit this image in a slideshow?
Determine the dominant category for this photograph.
Offer the core descriptor for this image.
If this image were in a textbook, how would it be labeled in the index?
Select the keyword that best defines this image’s theme.
Provide a classification label for this image.
If this image were a song title, what would it be?
Identify the main genre of this picture.
Assign the most apt category to this image.
Describe the overarching theme of this image in one word.
What descriptor would you use for this image in a portfolio?
Summarize the image’s content with a single identifier.
Imagine you’re explaining this image to someone over the phone. Please describe the image in one
word?
Perform the image classification task on this image. Give the label in one word.
Imagine a child is trying to identify the image. What might they excitedly point to and name?
If this image were turned into a jigsaw puzzle, what would the box label say to describe the picture
inside?
Classify the content of this image.
If you were to label this image, what label would you give?
What category best describes this image?
Describe the central subject of this image in a single word.
Provide a classification for the object depicted in this image.
If this image were in a photo album, what would its label be?
Categorize the content of the image.
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If you were to sort this image into a category, which one would it be?
What keyword would you associate with this image?
Assign a relevant classification to this image.
If this image were in a gallery, under which section would it belong?
Describe the main theme of this image in one word.
Under which category would this image be cataloged in a library?
What classification tag fits this image the best?
Provide a one-word description of this image’s content.

A.9.3 PROMPTS FOR IMAGE CAPTIONING

Any cutlery items visible in the image?
Any bicycles visible in this image?
Any boats visible in the image?
Any bottles present in the image?
Are curtains noticeable in the image?
Are flags present in the image?
Are flowers present in the image?
Are fruits present in the image?
Are glasses discernible in the image?
Are hills visible in the image?
Are plates discernible in the image?
Are shoes visible in this image?
Are there any insects in the image?
Are there any ladders in the image?
Are there any man-made structures in the image?
Are there any signs or markings in the image?
Are there any street signs in the image?
Are there balloons in the image?
Are there bridges in the image?
Are there musical notes in the image?
Are there people sitting in the image?
Are there skyscrapers in the image?
Are there toys in the image?
Are toys present in this image?
Are umbrellas discernible in the image?
Are windows visible in the image?
Can birds be seen in this image?
Can stars be seen in this image?
Can we find any bags in this image?
Can you find a crowd in the image?
Can you find a hat in the image?
Can you find any musical instruments in this image?
Can you identify a clock in this image?
Can you identify a computer in this image?
Can you see a beach in the image?
Can you see a bus in the image?
Can you see a mailbox in the image?
Can you see a mountain in the image?
Can you see a staircase in the image?
Can you see a stove or oven in the image?
Can you see a sunset in the image?
Can you see any cups or mugs in the image?
Can you see any jewelry in the image?
Can you see shadows in the image?
Can you see the sky in the image?
Can you spot a candle in this image?
Can you spot a farm in this image?
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Can you spot a pair of shoes in the image?
Can you spot a rug or carpet in the image?
Can you spot any dogs in the image?
Can you spot any snow in the image?
Do you notice a bicycle in the image?
Does a ball feature in this image?
Does a bridge appear in the image?
Does a cat appear in the image?
Does a fence appear in the image?
Does a fire feature in this image?
Does a mirror feature in this image?
Does a table feature in this image?
Does it appear to be nighttime in the image?
Does it look like an outdoor image?
Does it seem to be countryside in the image?
Does the image appear to be a cartoon or comic strip?
Does the image contain any books?
Does the image contain any electronic devices?
Does the image depict a road?
Does the image display a river?
Does the image display any towers?
Does the image feature any art pieces?
Does the image have a lamp?
Does the image have any pillows?
Does the image have any vehicles?
Does the image have furniture?
Does the image primarily display natural elements?
Does the image seem like it was taken during the day?
Does the image seem to be taken indoors?
Does the image show any airplanes?
Does the image show any benches?
Does the image show any landscapes?
Does the image show any movement?
Does the image show any sculptures?
Does the image show any signs?
Does the image show food?
Does the image showcase a building?
How many animals are present in the image?
How many bikes are present in the image?
How many birds are visible in the image?
How many buildings can be identified in the image?
How many cars can be seen in the image?
How many doors can you spot in the image?
How many flowers can be identified in the image?
How many trees feature in the image?
Is a chair noticeable in the image?
Is a computer visible in the image?
Is a forest noticeable in the image?
Is a painting visible in the image?
Is a path or trail visible in the image?
Is a phone discernible in the image?
Is a train noticeable in the image?
Is sand visible in the image?
Is the image displaying any clouds?
Is the image set in a city environment?
Is there a plant in the image?
Is there a source of light visible in the image?
Is there a television displayed in the image?
Is there grass in the image?
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Is there text in the image?
Is water visible in the image, like a sea, lake, or river?
How many people are captured in the image?
How many windows can you count in the image?
How many animals, other than birds, are present?
How many statues or monuments stand prominently in the scene?
How many streetlights are visible?
How many items of clothing can you identify?
How many shoes can be seen in the image?
How many clouds appear in the sky?
How many pathways or trails are evident?
How many bridges can you spot?
How many boats are present, if it’s a waterscape?
How many pieces of fruit can you identify?
How many hats are being worn by people?
How many different textures can you discern?
How many signs or billboards are visible?
How many musical instruments can be seen?
How many flags are present in the image?
How many mountains or hills can you identify?
How many books are visible, if any?
How many bodies of water, like ponds or pools, are in the scene?
How many shadows can you spot?
How many handheld devices, like phones, are present?
How many pieces of jewelry can be identified?
How many reflections, perhaps in mirrors or water, are evident?
How many pieces of artwork or sculptures can you see?
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