
Under review as a conference paper at ICLR 2024

QUANTEASE : OPTIMIZATION-BASED QUANTIZATION
FOR LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

With the rising popularity of Large Language Models (LLMs), there has been an
increasing interest in compression techniques that enable their efficient deploy-
ment. This study focuses on the Post-Training Quantization (PTQ) of LLMs.
Drawing from recent advances, our work introduces QuantEase, a layer-wise
quantization framework where individual layers undergo separate quantization.
The problem is framed as a discrete-structured non-convex optimization, prompt-
ing the development of algorithms rooted in Coordinate Descent (CD) techniques.
These CD-based methods provide high-quality solutions to the complex non-
convex layer-wise quantization problems. Notably, our CD-based approach fea-
tures straightforward updates, relying solely on matrix and vector operations, cir-
cumventing the need for matrix inversion or decomposition. We also explore an
outlier-aware variant of our approach, allowing for retaining significant weights
(outliers) with complete precision. Our proposal attains state-of-the-art perfor-
mance regarding perplexity and zero-shot accuracy in empirical evaluations across
various LLMs and datasets, with relative improvements of up to 15% over meth-
ods such as GPTQ. Particularly noteworthy is our outlier-aware algorithm’s capa-
bility to achieve near or sub-3-bit quantization of LLMs with an acceptable drop
in accuracy, obviating the need for non-uniform quantization or grouping tech-
niques, improving upon methods such as SpQR by up to two times in terms of
perplexity.

1 INTRODUCTION

Recent years have witnessed an explosive emergence of Large Language Models (LLMs) (Devlin
et al., 2018; Radford et al., 2019; Brown et al., 2020; Zhang et al., 2022; Laurençon et al., 2022;
Touvron et al., 2023a;b) and their ability to solve complex language modelling tasks for settings like
zero-shot or instruction fine-tuning (OpenAI, 2023; Wei et al., 2022a). Consequently, there has been
increased interest to utilize LLMs for real-world use cases. The success of LLMs can be attributed to
an increase in training data size and the number of model parameters (Kaplan et al., 2020). As a re-
sult, modern LLMs have ballooned to hundreds of billions of parameters in size (Brown et al., 2020;
Zhang et al., 2022). While the ability of these models to solve tasks is remarkable, efficiently serving
them remains a formidable challenge due to their memory footprint. Another notable challenge is
increased inference latency, which proves detrimental in practice (Frantar et al., 2023).

Model compression has emerged as a viable approach to tackle the critical challenges of storage
footprint and inference speed for LLMs (Hoefler et al., 2021). Within the modern landscape of deep
learning research, numerous techniques exist that leverage weight sparsification or quantization to
compress large models (Rastegari et al., 2016; Bulat and Tzimiropoulos, 2019; Agustsson et al.,
2017; Benbaki et al., 2023). Since modern LLMs take significant compute resources, time, and po-
tentially millions of dollars to train, compression-aware re-training is generally not practicable. This
makes post-training quantization (PTQ) an attractive proposition. While numerous practical PTQ
algorithms have already been developed (Frantar and Alistarh, 2022; Hubara et al., 2021; Nagel
et al., 2020), it is only in the most recent past that algorithms capable of effectively and efficiently
quantizing and/or sparsifying extremely large LLMs have become available. Among such meth-
ods, prominent techniques include GPTQ (Frantar et al., 2023), SpQR (Dettmers et al., 2023) and
AWQ (Lin et al., 2023), among others. These methods aim to compress a 16-bit model into 3 or

1

Under review as a conference paper at ICLR 2024

4 bits while striving to maintain predictive accuracy. Despite promising progress in this realm, a
discernible drop in the performance of quantized models persists compared to their unquantized
counterparts. In this paper, we focus on developing a new algorithm for PTQ of LLMs.

0.35 1.3 2.7 6.7 13

0.2

0.4

0.6

Model Size (billions of params)

Z
er

o-
sh

ot
ac

cu
ra

cy
on

O
PT

FP16
QuantEase

GPTQ
AWQ

0.56 1.1 1.7 3 7.1

0.2

0.3

0.4

0.5

0.6

Model Size (billions of params)

Z
er

o-
sh

ot
ac

cu
ra

cy
on

B
L

O
O

M

FP16
QuantEase

GPTQ

Figure 1: Zero-Shot accuracy on the LAMBADA (Paperno et al., 2016) benchmark for 3-bit quan-
tization. See Section 4 for more details on experimental setup. QuantEase consistently outper-
forms methods like GPTQ and AWQ, sometimes by 15% in terms of relative improvement.

Our Approach In this paper, we propose QuantEase - a new algorithm to obtain high-
quality feasible (i.e. quantized) solutions to layerwise post-training quantization of LLMs.
QuantEase leverages cyclic Coordinate Descent (CD) (Tseng, 2001), which has traditionally been
used to address statistical problems (Chang and Lin, 2011; Mazumder and Hastie, 2012; Friedman
et al., 2010; Hazimeh and Mazumder, 2020; Shevade and Keerthi, 2003; Behdin et al., 2023). We
show that QuantEase is a more principled optimization method when compared to methods like
GPTQ, guaranteeing a non-increasing sequence of the objective value under feasiblity of the initial
solution. QuantEase cycles through coordinates in each layer, updating each weight such that
it minimizes the objective while keeping other weights fixed. This allows for simple closed-form
updates for each weight. Empirically, this results in up to 30% improvement in relative quantization
error over GPTQ for 4-bit and 3-bit quantization (see Figure 2).

QuantEase’s simplicity allows it to have several advantages over other methods, while making it
extremely scalable and easy to use. Unlike other methods, QuantEase does not require expensive
matrix inversion or Cholesky factorization. This helps avoid numerical issues while also lowering
memory requirements. QuantEase is extremely easy to implement, making it a drop-in replace-
ment for most other methods. Remarkably, QuantEase can efficiently quantize a 66B parameter
model on a single Nvidia V100 GPU, whereas methods like GPTQ and AWQ run out of memory.
Our experiments also reveal that QuantEase can quantize extremely large models with tens of
billions of parameters in a matter of several hours to up to a day, making it a viable algorithm for
practical use.

QuantEase’s effectiveness in achieving lower quantization error also translates to improvements
on language modeling benchmarks. Experiments on several LLM model families (Laurençon et al.,
2022; Zhang et al., 2022) and language tasks show that QuantEase outperforms state-of-the-art
uniform quantization methods such as GPTQ and AWQ in terms of perplexity and zero-shot accu-
racy (Paperno et al., 2016), both in the 4-bit and 3-bit regimes (see Tables 1, 2 and Figures 1, 3).
For the 3-bit regime, QuantEase is especially effective for zero-shot accuracy, achieving strong
relative improvements (up to 15%) over GPTQ (see Figure 1).

We also propose a variant of QuantEase to handle weight outliers. This is achieved by dividing
the set of layer weights into a group of quantized weights and very few unquantized ones. We
propose a block coordinate descent method based on iterative hard thresholding (Blumensath and
Davies, 2009) for the outlier-aware version of our method. This version of QuantEase is able to
improve upon outlier-based methods such as SpQR. Particularly, we show this outlier-aware method
can achieve acceptable accuracy for sub-3 bit regimes, improving upon current available methods
such as SpQR by up to 2.5 times in terms of perplexity. We hope that the simplicity and effectiveness
of QuantEase inspires further research in this area.

2

Under review as a conference paper at ICLR 2024

Our contributions can be summarised as follows:

Optimization-based PTQ - We propose QuantEase, an optimization framework for post-training
quantization of LLMs based on minimizing a layerwise (least squares) reconstruction error. We pro-
pose a CD framework updating network weights one-at-a-time, avoiding memory-expensive matrix
inversions/factorizations. Particularly, we make the CD updates efficient by exploiting the problem
structure resulting in closed form updates for weights. Notably, QuantEase can quantize models
with up to 66B parameters on a single V100 GPU.
Outlier awareness - We also propose an outlier-aware version of our framework where a few (out-
lier) weights are kept unquantized. We discuss an algorithm for outlier-aware QuantEase based
on block coordinate descent and iterative hard thresholding.
Improved accuracy - Experiments on LLMs with billions of parameters show that QuantEase out-
performs recent PTQ methods such as GPTQ and AWQ in text generation and zero-shot tasks for 3
and 4-bit quantization, often by a large margin. Additional experiments show that the outlier-aware
QuantEase outperforms methods such as SpQR by up to 2.5 times in terms of perplexity, in the
near-3 or sub-3 bit quantization regimes.

Related Work Recently, there has been a mounting interest in the layerwise quantization of LLMs.
One prominent method for post-training quantization of LLMs is GPTQ (Frantar et al., 2023). GPTQ
extends the Optimal Brain Surgeon (OBS) framework (LeCun et al., 1989; Hassibi and Stork, 1992;
Frantar and Alistarh, 2022), incorporating strategies for layerwise compression (Dong et al., 2017).
Empirical evaluations of GPTQ demonstrate encouraging results, revealing a marginal drop in accu-
racy in text generation and zero-shot benchmarks. Another avenue for achieving layer-wise quanti-
zation of LLMs is the recent work by Lin et al. (2023), referred to as AWQ. This approach centres
on preserving the weights that influence activations most. GPTQ and AWQ represent two prominent
foundational techniques, and we will compare our methodology against these in our experiments.
We present a detailed review of earlier work in Appendix A.

It is widely acknowledged that transformer models, inclusive of LLMs, confront challenges tied
to outliers when undergoing quantization to lower bit-widths (Wei et al., 2022b; Bondarenko et al.,
2021; Kim et al., 2023). This predicament arises from the notable impact of extremely large or small
weights on the quantization range, thereby leading to supplementary errors. As a result, specific
research endeavours delve into the notion of non-uniform quantization. SqueezeLLM (Kim et al.,
2023) seeks to identify and preserve outlier weights (for example, very large or small weights) that
might affect the output the most, allowing for improved accuracy. Similarly, SpQR (Dettmers et al.,
2023) combines GPTQ with outlier detection to achieve a lower loss of accuracy. We use SpQR as
a benchmark in our experiments with outlier detection.

A long line of work discuss and study quantization methods for large neural networks from an imple-
mentation perspective, including hardware-level optimizations for low-bit calculations and inference
time activation quantization, which are beyond the scope of this paper. For a more exhaustive ex-
position, please check Gholami et al. (2022); Wang et al. (2020); Hubara et al. (2021); Xiao et al.
(2023); Yao et al. (2022; 2023) and the references therein.

Problem Formulation: Layerwise Quantization A standard approach to LLM compression is
layerwise compression (Dong et al., 2017), where layers are compressed/quantized one at a time.
This allows the task of compressing a very large network to be broken down into compressing several
smaller layers, which is more practical than simultaneously quantizing multiple layers. In this paper,
we pursue a layerwise framework for quantization.

Focusing on layerwise quantization, let us consider a linear layer with some (nonlinear) activation
function. Within this context, let X ∈ Rp×n represent the input matrix feeding into this particular
layer, where p denotes the number of input features and n denotes the number of training data points
fed through the network. Additionally, let W ∈ Rq×p symbolize the weights matrix corresponding
to this layer, characterized by q output channels.

For a given output channel i ∈ [q], we designate the predetermined, finite set of per-channel quan-
tization levels for this channel as Qi ⊆ R. In this work, following Frantar et al. (2023), we focus
on the case where the quantization levels within Qi are uniformly spaced (We note however, that
our approach can extend to quantization schemes that do not follow this assumption.). We can then

3

Under review as a conference paper at ICLR 2024

formulate the layerwise quantization task as the following optimization problem:

min
Ŵ

f(Ŵ) := ∥WX − ŴX∥2F s.t. Ŵi,j ∈ Qi, (i, j) ∈ [q]× [p]. (1)

The objective of Problem (1) captures the distance between the original pre-activation output ob-
tained from unquantized weights (WX), and the pre-activation output stemming from quantized
weights (ŴX), subject to Ŵ adhering to quantization constraints.
Remark 1. We emphasize that the channel-wise uniform quantization setting that we study here is
the same as the setting in, for example, GPTQ (Frantar et al., 2023). This makes our method a direct
replacement for, say, GPTQ.

Notation: For i ∈ [q] := {1, . . . , q}, we define the quantization operator qi with respect to quanti-
zation levels Qi as follows:

qi(x) ∈ argmin
y∈Qi

(x− y)2. (2)

For a matrix such as A, ∥A∥F denotes its Frobenius norm. Moreover, for i < j, A:,i and A:,i:j

denote the i-th column, and columns i to j of A, respectively.

2 OUR PROPOSED METHOD

Our algorithm, QuantEase, is based on the cyclic CD method (Tseng, 2001). At every update
of our CD algorithm, we minimize the objective in (1) with respect to the coordinate Ŵi,j while
making sure Ŵi,j ∈ Qi (we keep all other weights fixed at their current value). Mathematically, for
(i, j) ∈ [q]× [p] we update Ŵi,j as follows:

Ŵ+
i,j ∈ argmin

Ŵi,j∈Qi

f(Ŵ1,1, · · · , Ŵi,j , · · · , Ŵq,p) (3)

where Ŵ
+

is the solution after the update of coordinate (i, j). In words, Ŵ+
i,j is obtained by solving

a 1D optimization problem: we minimize the 1D function Ŵi,j 7→ f(Ŵ) under the quantization
constraint. This 1D optimization problem, despite being non-convex, can be solved to optimality in
closed-form (See Lemma 1 for details). A full pass over all coordinates (i, j) ∈ [q]× [p] completes
one iteration of the CD algorithm. QuantEase usually makes several iterations to obtain a good
solution to (1).

We note that regardless of the initialization used for CD, after one iteration of CD we obtain a feasi-
ble (i.e. quantized) solution. Moreover, from the second iteration onward, feasibility is maintained
by QuantEase, while continuously decreasing f . This is useful because QuantEase can be
terminated any time after the first iteration with a feasible solution.

Closed-form updates: The efficiency of the CD method depends on how fast the update (3) can be
calculated. Lemma 1 derives a closed form solution for Problem (3).

Lemma 1. Let Σ = XXT . Then, Ŵ+
i,j = qi(β̃) in (3) where1

β̃ = −

∑
k ̸=j

Σj,kŴi,k − (WΣ)i,j

 /Σj,j . (4)

Proof of Lemma 1 is found in Appendix C. We note that β̃ in (4) minimizes the one-dimensional
function Ŵi,j 7→ f(Ŵ1,1, · · · , Ŵi,j , · · · , Ŵq,p) where Ŵi,j is unconstrained (i.e., without any
quantization constraint). Thus, Lemma 1 shows that to find the best quantized value for Ŵi,j

in (3), it suffices to quantize the value that minimizes the one-dimensional function, Ŵi,j 7→
f(Ŵ1,1, · · · , Ŵi,j , · · · , Ŵq,p) under no quantization constraint. As we find the minimizer per coor-
dinate and then quantize the minimizer, this is different from quantizing the “current” weight.

1We assume that Σj,j > 0. Note that Σj,j = 0 would mean that Xj,: = 0; hence, Ŵ :,j may be quantized
arbitrarily and completely omitted from the problem. Such checks can be done before QuantEase is begun.

4

Under review as a conference paper at ICLR 2024

Parallelization over i ∈ [q]: As seen in Lemma 1, for a given j0 ∈ [p], the updates of Ŵi,j0
are independent (for each i) and can be done simultaneously. Therefore, rather than updating a
coordinate Ŵi,j at a time, we update a column of Ŵ , that is: Ŵ:,j at each update. This allows us to
better make use of the problem structure (see the rank-1 update below).

Rank-1 updates: Note that in (4), we need access to terms of the form
∑

k ̸=j Σj,kŴi,k. Such terms
can be refactored as:∑

k ̸=j

Σj,kŴi,k =

p∑
k=1

Σj,kŴi,k − Σj,jŴi,j = Ŵ i,:Σ:,j − Σj,jŴi,j .

However, as noted above, we update all the rows corresponding to a given column of Ŵ at once.
Therefore, to update a column of Ŵ , we need access to the vector∑

k ̸=j

Σj,kŴ1,k, · · · ,
∑
k ̸=j

Σj,kŴq,k

T

= (ŴΣ):,j − Σj,jŴ :,j . (5)

Drawing from (5), maintaining a record of ŴΣ exclusively for the updates outlined in (4) emerges
as satisfactory, given that W and Σ remain unaltered in the iterative process demonstrated in (4).
Below, we show how the updates of ŴΣ can be done with a notable degree of efficiency. First,
consider the following observation.

Observation: Suppose W 1,W 2 differ only on a single column such as j. Then,

W 2Σ = [W 1Σ− (W 1):,jΣj,:]︸ ︷︷ ︸
(A)

+(W 2):,jΣj,:︸ ︷︷ ︸
(B)

. (6)

Thus, given W 1Σ, obtaining W 2Σ requires two rank-1 updates, rather than a full matrix multipli-
cation. We apply these updates to keep track of ŴΣ when updating a column of Ŵ , as shown in
Algorithm 1. Additional implementation details of QuantEase (including our custom initializa-
tion) are discussed in Appendix D.1

Algorithm 1: QuantEase

Initialize Ŵ
for iter = 1, · · · , iter-max do

for j = 1, · · · , p do
u←

[
(ŴΣ):,j − Σj,jŴ :,j − (WΣ):,j

]
/Σj,j // β̃ from Lemma 1 for

column j

ŴΣ← ŴΣ− Ŵ :,jΣj,: // Part (A) of rank-1 update from (6)
Ŵ i,j ← qi(−ui), i ∈ [q] // Perform updates from (4)
ŴΣ← ŴΣ+ Ŵ :,jΣj,: // Part (B) of rank-1 update from (6)

end
end
return Ŵ

2.1 CONVERGENCE OF QUANTEASE

Next, we discuss the convergence of QuantEase. Let us define Coordinate-Wise (CW) minima.

Definition 1 (CW-minimum, Beck and Eldar (2013); Hazimeh and Mazumder (2020)). We call W ∗

a CW-minimum for Problem (1) iff for (i, j) ∈ [q]× [p], we have W ∗
i,j ∈ Qi and

W ∗
i,j ∈ argmin

Ŵi,j∈Qi

f(Ŵ1,1, · · · , Ŵi,j , · · · , Ŵq,p).

5

Under review as a conference paper at ICLR 2024

In words, a CW-minimum is a feasible solution that cannot be improved by updating only one
coordinate of the solution, while keeping the rest fixed. Suppose we modify the basic CD update,
(3) as follows: If Ŵ+

i,j does not strictly decrease f , then set Ŵ+
i,j = Ŵi,j . This avoids oscillations of

the algorithm with a fixed f value. The following lemma shows that the sequence of weights from
the modified CD converges to a CW-minimum.

Lemma 2. The sequence of Ŵ generated from modified QuantEase converges to a CW-minimum.

2.2 OPTIMIZATION PERFORMANCE: GPTQ VS QUANTEASE

We now show that QuantEase indeed leads to lower (calibration) optimization error compared to
GPTQ (see Section 4 for the experimental setup details). To this end, for a given layer and a feasible
solution Ŵ , let us define the relative calibration error as Error(Ŵ) = ∥WX−ŴX∥2F /∥WX∥2F
where X is the calibration set used for quantization.

In Figure 2, we report the relative error of QuantEase, Error(Ŵ
QuantEase

), as well as

the relative improvement of QuantEase over GPTQ in terms of error, (Error(Ŵ
GPTQ

) −
Error(Ŵ

QuantEase
))/Error(Ŵ

GPTQ
) for the BLOOM-1b1 model and 3/4 bit quantization. In the

figure, we sort layers based on their QuantEase error, from the smallest to the largest. As can
be seen, the QuantEase error over different layers can differ between almost zero to 5% for the
4-bit and zero to 15% for the 3-bit quantization. This shows different layers can have different levels
of compressibility. Moreover, we see that QuantEase in almost all cases improves upon GPTQ,
achieving a lower optimization error (up to 30%). This shows the benefit of QuantEase.

3 bits 4 bits

0 20 40 60 80 100
of layer

10

5

0

5

10

15

20

25

30

35

Pe
rc

en
ta

ge
 %

Relative Improvement of QuantEase over GPTQ
QuantEase Error

0 20 40 60 80 100
of layer

10

5

0

5

10

15

20

25

30

35

Pe
rc

en
ta

ge
 %

Relative Improvement of QuantEase over GPTQ
QuantEase Error

(a) (b)

Figure 2: Comparison of the optimization performance of QuantEase and GPTQ over all layers.
The horizontal dashed line shows the median improvement of QuantEase over GPTQ for each
case. As can be seen, QuantEase results in lower optimization error compared to GPTQ for most
layers (up to 30% and on median 12%). Moreover, we see that the error in 3 bit quantization is
larger than 4 bit quantization.

3 OUTLIER-AWARE QUANTIZATION

Formulation It has been observed that the activation might be more sensitive to some weights in
a layer over others (Dettmers et al., 2023; Yao et al., 2022). Finding a suitable value on the quan-
tization grid might not be possible for such sensitive weights, leading to substantial quantization
errors. Moreover, some weights of a pre-trained network can be significantly larger or smaller than
the rest—the quantization of LLMs can be affected by such weights (Wei et al., 2022b; Bondarenko
et al., 2021; Kim et al., 2023). The existence of large/small weights increases the range of values
that need to be quantized, which in turn increases quantization error. To this end, to better handle
sensitive and large/small weights, which we collectively call outlier weights, we first introduce a
modified version of the layerwise quantization problem (1). Our optimization formulation identi-
fies a collection of weights kept in complete precision (aka the outliers weights) and quantizes the
remaining weights.

6

Under review as a conference paper at ICLR 2024

Before presenting our outlier-aware quantization formulation, we introduce some notation. Let S ⊆
[q]× [p] denote a set of outlier indices—the corresponding weights are left at full precision. For any
(i, j) /∈ S, the (i, j)-th weight is quantized and is chosen from the quantization grid Qi for the i-th
channel. This is equivalent to substituting the set of weights for the layer W with Ŵ +Ĥ where Ŵ
is quantized (like in Problem (1)) and Ĥ is sparse, with only a few nonzeros. In particular, for any
(i, j) /∈ S, we have Ĥi,j = 0 implying the (i, j)-th weight can only have a quantized component.
As S has a small cardinality, Ĥ is mostly zero. On the other hand, when (i, j) ∈ S, we have
Ĥi,j ̸= 0 and the corresponding weight is retained at full precision. In light of the above discussion,
we present an outlier-aware version of Problem (1) given by:

min
Ŵ ,Ĥ

g(Ŵ , Ĥ) := ∥WX − (Ŵ + Ĥ)X∥2F s.t. Ŵi,j ∈ Qi (i, j) ∈ [q]× [p], ∥Ĥ∥0 ≤ s (7)

where ∥ · ∥0 denotes the number of nonzero elements of a vector/matrix, and s ≪ p, q is the total
budget on the number of outliers. The constraint ∥Ĥ∥0 ≤ s ensures the total number of outliers
remains within the specified limit.
Remark 2. We note that the setup of dividing weights into to a set of quantized weights and a few
outliers is standard and similar to the setting studied by SpQR (Dettmers et al., 2023), making our
method a drop-in replacement for SpQR.

Optimizing Problem (7) To obtain good solutions to Problem (7), we use a block coordinate
descent method where we alternate between updating Ŵ (with Ĥ fixed) and then Ĥ (with Ŵ

fixed). For a fixed Ĥ , Problem (7) has the same form as f(Ŵ) in (1) where WX is substituted with
(W −Ĥ)X . Therefore, we can use QuantEase as discussed in Section 2 to update Ŵ . Next, we
discuss how to update Ĥ . For a fixed Ŵ , Problem (7) is a least squares problem with a cardinality
constraint. We use proximal gradient method (aka iterative hard thresholding method) (Blumensath
and Davies, 2009) where we make a series of updates of the form:

Ĥ
+
∈ argmin

K∈Rq×p

g̃(K) s.t. ∥K∥0 ≤ s = Ps(Ĥ − η∇Hg(Ŵ , Ĥ)) (8)

where Ps(A) sets all coordinates of A to zero except the s-largest in absolute value,

g̃(K) =
L

2

∥∥∥∥K − (
Ĥ − 1

L
∇Ĥg(Ŵ , Ĥ)

)∥∥∥∥2
F

, (9)

L = 1/η = 2λmax(XXT) and λmax(A) is the largest eigenvalue of the matrix A. Lemma 3 below
establishes updates in (8) form a descent method if the initial Ĥ is sparse, ∥Ĥ∥0 ≤ s.

Lemma 3. For any Ŵ and any Ĥ such that ∥Ĥ∥0 ≤ s, we have g(Ŵ , Ĥ
+
) ≤ g(Ŵ , Ĥ).

We note that unlike SpQR which fixes the location of outliers after selecting them, our method is
able to add new outlier coordinates or remove them as the optimization progresses. This is because
the location of nonzeros of Ĥ (i.e. outliers) gets updated, in addition to their values. Additional
implementation details of the outlier-aware method is discussed in Appendix D.2, with the summary
of algorithm given in Algorithm 2.

4 EXPERIMENTS

In this section, we conduct several numerical experiments to demonstrate the effectiveness of
QuantEase. A PyTorch implementation of QuantEase will be released in the near future.

Setup We follow an experimental setup mostly similar to the one in Frantar et al. (2023). We use
128 sequences from C4 data (Raffel et al., 2020) as our training (calibration) data, and consider
several models from OPT (Zhang et al., 2022) and BLOOM (Laurençon et al., 2022) families. For
uniform quantization, we compare QuantEase to RTN (Yao et al., 2022; Dettmers et al., 2022),
GPTQ (Frantar et al., 2023) and AWQ (Lin et al., 2023). For methods related to outlier detection,
we compare with SpQR (Dettmers et al., 2023). In our experiments, we do not use grouping for

7

Under review as a conference paper at ICLR 2024

Table 1: OPT family perplexity for WikiText2 quantized on C4. OOM indicates running out of
memory for GPTQ and AWQ. QuantEase achieves lower perplexity in the majority of settings.

350m 1.3b 2.7b 6.7b 13b 66b

full 22.00 14.62 12.47 10.86 10.13 9.34

3 bits

RTN 64.56 1.33e4 1.56e4 6.00e3 3.36e3 6.12e3
AWQ 32.380.11 53.630.45 2016 19.000.12 13.900.02 OOM
GPTQ 33.600.34 21.510.13 17.020.17 15.160.01 11.900.06 OOM

QuantEase 31.520.36 21.300.23 16.750.24 12.950.04 12.410.02 13.080.38

4 bits

RTN 25.94 48.19 16.92 12.10 11.32 110.52
AWQ 24.050.03 15.670.04 13.160.01 11.300.01 10.360.01 OOM
GPTQ 24.290.11 15.440.03 12.800.04 11.460.04 10.340.01 OOM

QuantEase 23.910.05 15.280.04 13.050.01 11.210.01 10.320.01 9.470.02

Table 2: BLOOM family perplexity for WikiText2 quantized on C4. QuantEase achieves lower
perplexity in the majority of settings.

560m 1b1 1b7 3b 7b1

full 22.41 17.68 15.39 13.48 11.37

3 bits
RTN 56.99 50.07 63.50 39.29 17.37

GPTQ 32.360.07 25.180.06 21.430.07 17.500.04 13.730.03
QuantEase 31.520.10 23.910.02 20.030.05 17.210.04 13.430.04

4 bits
RTN 25.89 19.98 16.97 14.75 12.10

GPTQ 24.020.03 18.900.02 16.410.02 14.100.01 11.740.01
QuantEase 23.970.03 18.900.01 16.110.03 14.180.01 11.690.01

any method as our focus is on understanding the optimization performance of various methods.
Moreover, as discussed by Kim et al. (2023); Yao et al. (2023), grouping can lead to additional
inference-time overhead, reducing the desirability of such tricks in practice. Our experiments were
conducted on a single NVIDIA V100 GPU with 32GB of memory.

Additional Experiments: Appendix B contains additional numerical results related to the effect of
number of iterations of QuantEase, runtime and text generation.

Language Generation Benchmarks We study the effect of quantization on language generation
tasks. Perplexity results evaluated on WikiText2 data (Merity et al., 2016) and OPT/BLOOM.2 fam-
ilies are shown in Tables 1 and 2, respectively. Perplexity results evaluated on PTB data (Marcus
et al., 1994) can be found in Tables B.1 and B.2 in the appendix. QuantEase achieves lower per-
plexity in all cases, except for OPT-13b, for 3-bit quantization. In the 4-bit regime, QuantEase al-
most always either improves upon baselines or achieves similar performance. Since perplexity is a
stringent measure of model quality, these results demonstrate that QuantEase results in better
quantization compared to methods like GPTQ and AWQ.

LAMBADA Zero-shot Benchmark Following (Frantar et al., 2023), we compare the perfor-
mance of our method with baselines over a zero-shot task, namely LAMBADA (Paperno et al.,
2016). The results for this task are shown in Figure 3 for the OPT and BLOOM families. For 3-
bit quantization, QuantEase outperforms GPTQ and AWQ, often by a large margin. In the 4-bit
regime, the performance of all methods is similar, although QuantEase seems to be overall the
most performant.

Outliers-Aware Performance Next, we study the performance of the outlier-aware version of
QuantEase. To this end, we consider 3-bit quantization and two sparsity levels of 0.5% and 1%

2We do not implement AWQ for BLOOM due to known architectural issues. See https://github.
com/mit-han-lab/llm-awq/issues/2 for more details.

8

https://github.com/mit-han-lab/llm-awq/issues/2
https://github.com/mit-han-lab/llm-awq/issues/2

Under review as a conference paper at ICLR 2024

0.35 1.3 2.7 6.7 13

0.2

0.4

0.6

Model Size (billions of params)

Z
er

o-
sh

ot
ac

cu
ra

cy
on

O
PT

FP16
QuantEase-4bit

GPTQ-4bit
AWQ-4bit

QuantEase-3bit
GPTQ-3bit
AWQ-3bit

0.56 1.1 1.7 3 7.1

0.2

0.3

0.4

0.5

0.6

Model Size (billions of params)

Z
er

o-
sh

ot
ac

cu
ra

cy
on

B
L

O
O

M

Figure 3: Zero-Shot accuracy on the LAMBADA (Paperno et al., 2016) benchmark for 3-bit and
4-bit quantization. See Section 4 for more details on experimental setup.

Table 3: OPT family perplexity for WikiText2 quantized on C4. Outlier aware quantization is done
with 3 bits and 2 bits. QuantEase beats SpQR, often by a large margin.

350m 1.3b 2.7b 6.7b 13b

full 22.00 14.62 12.47 10.86 10.13

3 bits QuantEase 31.520.12 21.300.23 16.750.24 12.950.04 12.410.02

Outlier (3
bits)

SpQR 1% 31.670.43 18.170.16 14.500.07 11.950.02 10.960.01
QuantEase 0.5% 27.520.05 16.680.14 13.720.04 11.490.02 10.700.01
QuantEase 1% 26.480.12 16.250.05 13.700.10 11.480.03 10.370.01

Outlier (2
bits)

SpQR 2% 3237 1553 70.52.7 34.01.2 22.30.2
QuantEase 2% 1584 36.40.8 24.20.1 19.00.2 19.30.2

(for example, s = 0.005pq or s = 0.01pq). Roughly speaking, a 0.5% outlier budget would lead
to an additional 0.15 bits overhead (i.e. 3.15 bits on average), while the 1% version would lead to
an additional overhead of 0.3 bits (i.e. 3.3 bits on average). We compare our method with SpQR,
with the threshold tuned to have at least 1% outliers on average. The rest of the experimental setup
is shared from previous experiments. The perplexity results (on WikiText2) for this comparison are
reported in Table 3 for the OPT family and in Table B.3 for the BLOOM family. As is evident
from the results, the QuantEase 0.5% outlier version is able to significantly outperform SpQR in
all cases, and the 1% method does even better. This shows that outlier-aware QuantEase makes
near-3 bit quantization possible without the need for any grouping.

Next, we study extreme quantization of models to the 2-bit regime. Particularly, we consider the base
number of bits of 2 and 2% outliers, resulting in roughly 2.6 bits on average. The results for this
experiment for OPT are shown in Table 3 and for BLOOM in Table B.4. QuantEase significantly
outperforms SpQR and is able to maintain acceptable accuracy in the sub-3-bit quantization regime.
We observed empirically that in the absence of grouping and outlier detection, if we were to do
2-bit quantization, then the resulting solutions lead to a significant loss of accuracy. This finding
also appears to be consistent with our exploration of other methods’ publicly available code, such as
GPTQ and AWQ.

5 FUTURE WORK

In this work, we did not consider grouping. However, grouping can be easily incorpo-
rated in QuantEase, as we only use standard quantizers. Investigating the performance of
QuantEase with grouping is left for a future study. Moreover, we note that QuantEase can be
paired with AWQ. As Lin et al. (2023) note, incorporating AWQ into GPTQ can lead to improved
numerical results, and as we have shown, QuantEase usually outperforms GPTQ. Therefore, we
would expect AWQ+QuantEase would lead to even further improvements.

9

Under review as a conference paper at ICLR 2024

REFERENCES

E. Agustsson, F. Mentzer, M. Tschannen, L. Cavigelli, R. Timofte, L. Benini, and L. Van Gool.
Soft-to-hard vector quantization for end-to-end learning compressible representations. In Proc. of
Neurips, page 1141–1151, 2017.

Amir Beck and Yonina C Eldar. Sparsity constrained nonlinear optimization: Optimality conditions
and algorithms. SIAM Journal on Optimization, 23(3):1480–1509, 2013.

Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM journal on imaging sciences, 2(1):183–202, 2009.

Kayhan Behdin, Wenyu Chen, and Rahul Mazumder. Sparse gaussian graphical models with discrete
optimization: Computational and statistical perspectives. arXiv preprint arXiv:2307.09366, 2023.

Riade Benbaki, Wenyu Chen, Xiang Meng, Hussein Hazimeh, Natalia Ponomareva, Zhe Zhao, and
Rahul Mazumder. Fast as chita: Neural network pruning with combinatorial optimization. arXiv
preprint arXiv:2302.14623, 2023.

Thomas Blumensath and Mike E Davies. Iterative hard thresholding for compressed sensing. Ap-
plied and computational harmonic analysis, 27(3):265–274, 2009.

Yelysei Bondarenko, Markus Nagel, and Tijmen Blankevoort. Understanding and overcoming the
challenges of efficient transformer quantization. arXiv preprint arXiv:2109.12948, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

A. Bulat and G. Tzimiropoulos. Xnor-net++: Improved binary neural networks, 2019.

Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines. ACM trans-
actions on intelligent systems and technology (TIST), 2(3):1–27, 2011.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm. int8 (): 8-bit matrix
multiplication for transformers at scale. arXiv preprint arXiv:2208.07339, 2022.

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashk-
boos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. Spqr: A sparse-quantized repre-
sentation for near-lossless llm weight compression. arXiv preprint arXiv:2306.03078, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Xin Dong, Shangyu Chen, and Sinno Pan. Learning to prune deep neural networks via layer-wise
optimal brain surgeon. Advances in neural information processing systems, 30, 2017.

Elias Frantar and Dan Alistarh. Optimal brain compression: A framework for accurate post-training
quantization and pruning. Advances in Neural Information Processing Systems, 35:4475–4488,
2022.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. OPTQ: Accurate quantization
for generative pre-trained transformers. In The Eleventh International Conference on Learning
Representations, 2023.

Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization paths for generalized linear
models via coordinate descent. Journal of statistical software, 33(1):1, 2010.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. A
survey of quantization methods for efficient neural network inference. In Low-Power Computer
Vision, pages 291–326. Chapman and Hall/CRC, 2022.

Babak Hassibi and David Stork. Second order derivatives for network pruning: Optimal brain
surgeon. Advances in neural information processing systems, 5, 1992.

10

Under review as a conference paper at ICLR 2024

Hussein Hazimeh and Rahul Mazumder. Fast best subset selection: Coordinate descent and local
combinatorial optimization algorithms. Operations Research, 68(5):1517–1537, 2020.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in deep
learning: Pruning and growth for efficient inference and training in neural networks, 2021.

Itay Hubara, Yury Nahshan, Yair Hanani, Ron Banner, and Daniel Soudry. Accurate post training
quantization with small calibration sets. In International Conference on Machine Learning, pages
4466–4475. PMLR, 2021.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models, 2020.

Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen, Michael W
Mahoney, and Kurt Keutzer. Squeezellm: Dense-and-sparse quantization. arXiv preprint
arXiv:2306.07629, 2023.

Hugo Laurençon, Lucile Saulnier, Thomas Wang, Christopher Akiki, Albert Villanova del Moral,
Teven Le Scao, Leandro Von Werra, Chenghao Mou, Eduardo González Ponferrada, Huu Nguyen,
et al. The bigscience roots corpus: A 1.6 tb composite multilingual dataset. Advances in Neural
Information Processing Systems, 35:31809–31826, 2022.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. Awq:
Activation-aware weight quantization for llm compression and acceleration. arXiv preprint
arXiv:2306.00978, 2023.

Mitch Marcus, Grace Kim, Mary Ann Marcinkiewicz, Robert MacIntyre, Ann Bies, Mark Ferguson,
Karen Katz, and Britta Schasberger. The penn treebank: Annotating predicate argument structure.
In Human Language Technology: Proceedings of a Workshop held at Plainsboro, New Jersey,
March 8-11, 1994, 1994.

Rahul Mazumder and Trevor Hastie. The graphical lasso: New insights and alternatives. Electronic
journal of statistics, 6:2125, 2012.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort. Up or
down? adaptive rounding for post-training quantization. In International Conference on Machine
Learning, pages 7197–7206. PMLR, 2020.

OpenAI. Gpt-4 technical report, 2023.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The lambada dataset:
Word prediction requiring a broad discourse context. arXiv preprint arXiv:1606.06031, 2016.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research, 21(1):5485–5551, 2020.

M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-net: Imagenet classification using
binary convolutional neural networks, 2016.

Shirish Krishnaj Shevade and S Sathiya Keerthi. A simple and efficient algorithm for gene selection
using sparse logistic regression. Bioinformatics, 19(17):2246–2253, 2003.

11

Under review as a conference paper at ICLR 2024

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Paul Tseng. Convergence of a block coordinate descent method for nondifferentiable minimization.
Journal of optimization theory and applications, 109(3):475–494, 2001.

Peisong Wang, Qiang Chen, Xiangyu He, and Jian Cheng. Towards accurate post-training network
quantization via bit-split and stitching. In International Conference on Machine Learning, pages
9847–9856. PMLR, 2020.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M. Dai, and Quoc V. Le. Finetuned language models are zero-shot learners, 2022a.

Xiuying Wei, Yunchen Zhang, Xiangguo Zhang, Ruihao Gong, Shanghang Zhang, Qi Zhang, Feng-
wei Yu, and Xianglong Liu. Outlier suppression: Pushing the limit of low-bit transformer lan-
guage models. Advances in Neural Information Processing Systems, 35:17402–17414, 2022b.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pages 38087–38099. PMLR, 2023.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong
He. Zeroquant: Efficient and affordable post-training quantization for large-scale transformers.
Advances in Neural Information Processing Systems, 35:27168–27183, 2022.

Zhewei Yao, Xiaoxia Wu, Cheng Li, Stephen Youn, and Yuxiong He. Zeroquant-v2: Exploring
post-training quantization in llms from comprehensive study to low rank compensation, 2023.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022.

12

Under review as a conference paper at ICLR 2024

A DETAILED LITERATURE REVIEW

A.1 GPTQ

As mentioned earlier, GPTQ (Frantar et al., 2023) extends the OBS-based framework of Frantar and
Alistarh (2022); Hassibi and Stork (1992). GPTQ performs quantization of W one column at a
time. Specifically, GPTQ starts with the initialization, Ŵ ←W . Then, it cycles through columns
j = 1, · · · , p and for each j, it quantizes column j of Ŵ . For the j-th column it quantizes all its
entries via the updates: Ŵ+

i,j = qi(Ŵi,j), i ∈ [q]. After updating the j-th column, GPTQ proceeds
to update the other weights in the layer to ensure that the error in (1) does not increase too much. To
make our exposition resemble that of the OBS framework, we note that GPTQ updates Ŵ :,j+1:p by
approximately solving the least-squares problem:

min
Ŵ :,j:p

∥WX − ŴX∥2F s.t. Ŵ :,j = Ŵ
+

:,j , (A.1)

where the constraint above implies that we are effectively optimizing over Ŵ :j+1:p (but we choose
this representation following Hassibi and Stork (1992); Frantar and Alistarh (2022)). We note that
in (A.1), the quantization constraints are dropped as otherwise, (A.1) would be as hard as (1) in
general. Moreover, entries up to the j-th column i.e, Ŵ :,1:j are not updated to ensure they remained
quantized. Since the OBS framework is set up to optimize a homogeneous quadratic3, Frantar and
Alistarh (2022); Frantar et al. (2023) reformulate Problem (A.1) as

min
Ŵ :,j:p

∥A+(W :,j − Ŵ :,j)Xj,: +(W :,j+1:p− Ŵ :,j+1:p)Xj+1:p,:∥2F s.t. Ŵ :,j = Ŵ
+

:,j (A.2)

where
A = (W :,1:j−1 − Ŵ :,1:j−1)X1:j−1,:. (A.3)

Upon inspection one can see that the objective in (A.2) is not homogeneous quadratic, and hence
does not fit into the OBS framework. Therefore, A is dropped and this problem is replaced by the
formulation:

min
Ŵ :,j:p

∥(W :,j − Ŵ :,j)Xj,: + (W :,j+1:p − Ŵ :,j+1:p)Xj+1:p,:∥2F s.t. Ŵ :,j = Ŵ
+

:,j

(a)
= min

Ŵ :,j:p

Tr((W :,j:p − Ŵ :,j:p)
TΣF (W :,j:p − Ŵ :,j:p)) s.t. Ŵ :,j = Ŵ

+

:,j (A.4)

where ΣF = Xj:p,:X
T
j:p,:, F refers to the {j, · · · , p} indices and (a) is by ∥M∥2F = Tr(MTM)

for any matrix M . Therefore, after updating the j-th column to Ŵ
+

:,j , we can update Ŵ :,j+1:p

by the OBS updates (we refer to Frantar et al. (2023); Frantar and Alistarh (2022) for derivation
details):

δ ← −
Ŵ :,j − Ŵ

+

:,j

[Σ−1
F]j,j

Ŵ :,j+1:p ← Ŵ :,j+1:p + δ[Σ−1
F]j,j+1:p

(A.5)

We note that the OBS updates in (A.5) require the calculation of Σ−1
F . Therefore, using the updates

in (A.5) can be expensive in practice. To improve efficiency, GPTQ uses a lazy-batch update scheme
where at each step, only a subset (of size at most 128) of the remaining unquantized weights is
updated.

A.2 AWQ

Similar to GPTQ, AWQ (Lin et al., 2023) uses a layerwise quantization framework. However,
different from GPTQ, the main idea behind AWQ is to find a rescaling of weights that does not result

3A homogeneous quadratic function with decision variable u ∈ Rp is given by uTQu where Q ∈ Rp×p

and there is no linear term.

13

Under review as a conference paper at ICLR 2024

in high quantization error, rather than directly minimizing the least squares criteria for layerwise
reconstruction. To this end, AWQ considers the following optimization problem:

min
s∈Rp

∥WX − q(s⊙W)(X ⊙ s−1)∥2F (A.6)

where [q(W)]i,j = qi(Wi,j) quantizes a vector/matrix coordinate-wise, [s−1]i = s−1
i is the

coordinate-wise inversion and ⊙ is the channel-wise multiplication, [s ⊙ W]i,j = sjWi,j and
[X ⊙ s−1]i,j = Xi,j/si. In Problem (A.6), s is the per-channel scaling. Problem (A.6) is non-
differentiable and non-convex and cannot be efficiently solved. Therefore, Lin et al. (2023) discuss
grid search heuristics for s to find a value that does not result in high quantization error. Particularly,
they set s = sX

α ∗ sW−β for some α, β ∈ [0, 1], where ∗ is coordinate-wise multiplication, and
sX , sW ∈ Rp are per-channel averages of magnitude of X and W , respectively. The values of α, β
are then chosen by grid search over the interval [0, 1]. After choosing the value of s, the quantized
weights are given as s−1 ⊙ q(s⊙W).

A.3 SPQR

Fianlly, we review SpQR (Dettmers et al., 2023) which incorporates sensitivity-based quantization
into GPTQ. Particularly, they seek to select few outliers that result in higher quantization error and
keep them in full-precision. To this end, for each coordinate (i, j) ∈ [q] × [p] SpQR calculates
the sensitivity to this coordinate as the optimization error resulting from quantizing this coordinate.
Formally, they define sensitivity as

ωij = min
Ŵ
∥WX − ŴX∥2F s.t. Ŵi,j = qi(Wi,j). (A.7)

We note that Problem (A.7) is in OBS form and therefore OBS is then used to calculate the sensitivity
of coordinate (i, j). Then, any coordinate that has high sensitivity, for example, ωi,j > τ where
τ > 0 is a predetermined threshold, is considered to be an outlier. After selecting outliers, similar
to GPTQ, SpQR cycles through columns j = 1, · · · , p and updates each column based on OBS
updates (see Section A.1), keeping outlier weights in full-precision.

B NUMERICAL RESULTS

B.1 EFFECT OF NUMBER OF ITERATIONS

We first study the effect of the number of iterations of QuantEase on model performance. To
this end, we consider OPT-350m in 3/4 bits and run quantization for different numbers of iterations,
ranging from 10 to 30. The perplexity on WikiText2 is shown in Figure B.1 for this case. The results
show that increasing the number of iterations generally lowers perplexity as QuantEase reduces
the error, although the improvement in perplexity for 4-bit quantization is small. Based on these
results, 25 iterations seem to strike a good balance between accuracy and runtime, which we use in
the rest of our experiments.

Effect of number of iterations

10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0
number of iterations

23.7

23.8

23.9

24.0

24.1

4 bit

31.5

32.0

32.5

33.0

33.53 bit

Figure B.1: Effect of varying the number of iterations of QuantEase on perplexity in Section B.1.

14

Under review as a conference paper at ICLR 2024

B.2 ADDITIONAL TEXT GENERATION BENCHMARKS

First, we present the results for uniform quantization evaluated on PTB dataset (the setup from
Section 4). These results can be found in Tables B.1 and B.2. Additional outlier aware quantization
results are presented in Tables B.3 and B.4 for BLOOM family from Section 4.

350m 1.3b 2.7b 6.7b 13b 66b

full 26.08 16.96 15.11 13.09 12.34 11.36

3 bits

RTN 81.09 1.16e4 9.39e3 4.39e3 2.47e3 3.65e3
AWQ 40.200.07 98.122.26 1884 26.070.14 19.960.05 OOM
GPTQ 39.280.04 26.360.14 19.980.13 18.860.02 13.880.03 OOM

QuantEase 37.700.15 25.240.27 19.900.05 15.780.06 13.890.02 12.930.19

4 bits

RTN 31.12 34.15 22.11 16.09 15.39 274.56
AWQ 29.300.02 18.820.08 16.400.01 13.860.01 12.770.01 OOM
GPTQ 28.840.09 18.440.01 15.870.01 13.780.05 12.590.01 OOM

QuantEase 28.490.10 18.230.04 15.950.01 13.560.03 12.500.01 11.550.01

Table B.1: OPT family perplexity for PTB quantized on C4

560m 1b1 1b7 3b 7b1

full 41.23 46.96 27.92 23.12 19.40

3 bits
RTN 117.17 151.76 115.10 59.87 32.03

GPTQ 64.630.65 72.570.70 42.480.04 31.360.1 24.340.05
QuantEase 59.370.40 69.610.51 38.920.30 30.590.2 23.730.06

4 bits
RTN 48.56 54.51 31.20 25.39 20.92

GPTQ 44.350.09 51.640.07 30.100.06 24.330.01 20.210.04
QuantEase 43.900.04 51.600.34 29.500.17 24.220.03 20.110.01

Table B.2: BLOOM family perplexity for PTB quantized on C4

560m 1b1 1b7 3b 7b1

full 22.41 17.68 15.39 13.48 11.37

3 bits QuantEase 31.520.10 23.910.02 20.030.05 17.210.04 13.430.04

Outlier (3
bits)

SpQR 1% 29.020.05 22.510.11 19.160.05 15.950.06 12.880.01
QuantEase 0.5% 26.820.07 20.260.03 17.410.02 14.930.01 12.190.01
QuantEase 1% 25.800.09 19.600.02 17.060.02 14.650.02 12.030.01

4 bits QuantEase 23.970.03 18.900.01 16.110.03 14.180.01 11.690.01

Table B.3: BLOOM family perplexity for WikiText2 quantized on C4. Outlier aware quantization
is done with 3 bits.

B.3 GENERATIVE EXAMPLES

In this section, we present a few generative examples. We have used OPT-13b model quantized to 4
bits in all examples here.

B.3.1 EXAMPLE 1

• Prompt: Every time data scientist Kim ran her new algorithm, it
kept outputting the same unexpected result: a recipe for

• FP16: Every time data scientist Kim ran her new algorithm, it
kept outputting the same unexpected result: a recipe for a new

15

Under review as a conference paper at ICLR 2024

560m 1b1 1b7 3b 7b1

full 22.41 17.68 15.39 13.48 11.37

Outlier (2
bits)

SpQR 2% 22810 1265 1274 59.72.2 32.50.4
QuantEase 2% 66.11.3 39.30.3 31.40.1 22.10.1 15.80.03

Table B.4: BLOOM family perplexity for WikiText2 quantized on C4. Outlier aware quantization
is done with 2 bits.

kind of chocolate cake. The algorithm was designed to predict
the likelihood that a person would be a repeat customer of a
particular restaurant. But it kept coming up with a recipe for a
chocolate cake. "I was like, ’What’?" Kim said. "I was like,
’This is not what I asked for’".

• GPTQ: Every time data scientist Kim ran her new algorithm, it
kept outputting the same unexpected result: a recipe for a new
kind of chocolate cake. Kim, who asked to be identified by her
first name only, was working on a project to predict the
likelihood of a person being a criminal. She was using a machine
learning algorithm to analyze data from the FBI’s National Crime
Information Center, which contains information on more than
10 million criminal records.

• QuantEase: Every time data scientist Kim ran her new algorithm, it
kept outputting the same unexpected result: a recipe for a new
drug. The algorithm was designed to predict the likelihood that
a drug would be approved by the US Food and Drug
Administration (FDA). But it kept coming up with a recipe for
a new drug that was never approved. "It was a bit of a shock,"
says Kim, a data scientist at the University of California,
San Francisco.

In this case, although GPTQ’s response is initially similar to the FP16 response (both out-
putting chocolate cake), as the response continues, GPTQ and FP16 diverge. On the other hand,
QuantEase produces a response that is overall coherent and logical. This is while GPTQ’s re-
sponse relates food to crime.

B.3.2 EXAMPLE 2

• Prompt: In a parallel universe where cats are the rulers of Earth,
our feline king was pondering his first decree

• FP16: In a parallel universe where cats are the rulers of Earth,
our feline king was pondering his first decree. "I decree that
all cats shall be given the right to vote," he said. "And I
decree that all cats shall be given the right to vote," said
the cat next to him.

• GPTQ: In a parallel universe where cats are the rulers of Earth,
our feline king was pondering his first decree."I decree that
all cats shall be allowed to roam free," he said. "And I decree
that all cats shall be allowed to eat as much as they want,"
said a second cat. "And I decree that all cats shall be allowed
to sleep as much as they want," said a third cat.

• QuantEase: In a parallel universe where cats are the rulers of Earth,
our feline king was pondering his first decree. "I decree
that all cats shall be allowed to sleep on the bed," he said.
"But only if they are on their backs," said his advisor. "But
only if they are on their backs," said the king.

16

Under review as a conference paper at ICLR 2024

In this case, both GPTQ and QuantEase diverge from the FP16 model, although the response from
both seems to be coherent. However, we note that QuantEase is able to mention the “advisor” and
“king” keeping the context relevant, while GPTQ refers to “second cat” and so on.

B.3.3 EXAMPLE 3

• Prompt: Data scientist Grace was working late one night when
she discovered a glitch in the matrix of her data. It spelled out

• FP16: Data scientist Grace was working late one night when
she discovered a glitch in the matrix of her data. It spelled
out the word "HELP" in the form of a series of numbers. She was
able to use the glitch to access a hidden database that contained
the names and addresses of all the people who had ever used
the service.

• GPTQ: Data scientist Grace was working late one night when
she discovered a glitch in the matrix of her data. It spelled
out the word "HELP" in the form of a series of numbers. She was
so excited that she called her friend, a programmer, and told
him about it. "I’m not sure what you’re talking about," he said.
"I’ve never seen that before." "Well,

• QuantEase: Data scientist Grace was working late one night when
she discovered a glitch in the matrix of her data. It spelled
out the word "HELP" in the form of a series of numbers. She was
able to use the glitch to access a hidden database that contained
the names of all the people who had ever been in the database.
She was able to access the names of all the people who had ever
been in the database.

In this case, QuantEase seems to be closer to the FP16 response, although QuantEase repeats
itself at the end of the sentence, showing QuantEase might lose the attention in this case.

B.3.4 EXAMPLE 4

• Prompt: Last Tuesday, just as the sun was setting, my neighbor’s
dog, Rover, started to speak to me in perfect French. He said

• FP16: Last Tuesday, just as the sun was setting, my neighbor’s
dog, Rover, started to speak to me in perfect French. He said,
"I’m sorry, I don’ speak English." I was shocked. I’ve lived
in this neighborhood for over a year and Rover has never spoken
to me before. I’ve never seen him before. I’ve never heard him
before.

• GPTQ: Last Tuesday, just as the sun was setting, my neighbor’s
dog, Rover, started to speak to me in perfect French. He said,
"I’m Rover. I’m a dog. I’m a dog." I was stunned. I was
speechless. I was in awe. I’ve been a dog lover all my life.
I’ve always had dogs. I’ve always loved dogs. I’ve always
wanted to be a

• QuantEase: Last Tuesday, just as the sun was setting, my neighbor’s
dog, Rover, started to speak to me in perfect French. He said,
"I’m sorry, I’m so sorry." I was in the middle of a conversation
with my friend, and I stopped to listen to Rover. He was standing
in the middle of the street, looking up at the sky. "I’m sorry,
I’m so sorry," he said again.

In this case, none of the models appear to follow FP16 response.

17

Under review as a conference paper at ICLR 2024

350m 1.3b 2.7b 6.7b 13b

QuantEase 26m 1.41h 3.63h 11.47h 33.8h

Table B.5: QuantEase runtime for OPT family

560m 1b1 1b7 3b 7b1

QuantEase 19.7m 48.7m 1.66h 4.13h 14.3h

Table B.6: QuantEase runtime for BLOOM family

B.4 RUNTIME

In this section, we report the runtime of our QuantEase method. The numbers reported are for 3-
bit quantization experiments from Tables 1 and 2 for OPT and BLOOM families, respectively. The
runtime for different models are reported in Tables B.5 and B.6. We see that the runtime ranges from
10s of minutes for sub-billion models, up to around a day for 13b model. This shows that overall,
QuantEase is computationally feasible, specially for models with 10b or fewer parameters.

C PROOF OF MAIN RESULTS

C.1 PROOF OF LEMMA 1

Write

f(Ŵ) = ∥WX − ŴX∥2F

=

∥∥∥∥∥∥
p∑

j=1

Ŵ :,jXj,: −WX

∥∥∥∥∥∥
2

F

(a)
=

p∑
j,k=1

Tr(XT
j,:Ŵ

T

:,jŴ :,kXk,:) + Tr(XTW TWX)− 2

p∑
j=1

Tr(XT
j,:Ŵ

T

:,jWX)

=

p∑
j,k=1

(Xk,:X
T
j,:Ŵ

T

:,jŴ :,k)︸ ︷︷ ︸
(A)

+Tr(XXTW TW)− 2

p∑
j=1

Tr(WXXT
j,:Ŵ

T

:,j)︸ ︷︷ ︸
(B)

(C.1)

where (a) is by ∥A∥2F = Tr(ATA) and (b) is by Tr(AB) = Tr(BA). Next, let us only consider
terms in (C.1) that depend on W :,j0 for a given j0. Letting Σ = XXT , such terms can be written
as

from (A), j=k=j0︷ ︸︸ ︷
(Xj0,:X

T
j0,:Ŵ

T

:,j0Ŵ :,j0)+

from (A), j or k = j0︷ ︸︸ ︷
2
∑
k ̸=j0

(Xj0,:X
T
k,:Ŵ

T

:,kŴ :,j0)−

from (B), j=j0︷ ︸︸ ︷
2Tr(WXXT

j0,:Ŵ
T

:,j0)

=

q∑
i=1

Σj0,j0Ŵ
2
i,j0 + 2

q∑
i=1

∑
k ̸=j0

Σj0,kŴi,j0Ŵi,k − 2

q∑
i=1

(WΣ)i,j0Ŵi,j0

=

q∑
i=1

Σj0,j0Ŵ
2
i,j0 + 2

∑
k ̸=j0

Σj0,kŴi,j0Ŵi,k − 2(WΣ)i,j0Ŵi,j0

 . (C.2)

Therefore, to find the optimal value of Ŵ+
i,j in (3) for (i, j0) we need to solve problems of the form

min
u∈Qi

Σj0,j0u
2 + 2

∑
k ̸=j0

Σj0,kŴi,ku− 2(WΣ)i,j0u. (C.3)

18

Under review as a conference paper at ICLR 2024

Claim: If a > 0, then
min
u∈Qi

au2 + bu = qi(−b/2a).

Proof of Claim: Write
au2 + bu = a(u+ (b/2a))2 − b2/(4a)

therefore,

argmin
u∈Qi

au2 + bu = argmin
u∈Qi

(u+ b/(2a))2

= argmin
u∈Qi

(u+ b/(2a))2

= argmin
y∈Qi+b/(2a)

y2 − b/(2a)

= q̃i(0)− b/(2a)

= q(−b/(2a)) (C.4)

where q̃i is the quantization function for the quantization gridQi+b/(2a) = {a+b/(2a) : a ∈ Qi}.
This completes the proof of the claim and the lemma.

C.2 PROOF OF LEMMA 2

The proof is a result of the observations that (a) the modified algorithm generates a sequence of Ŵ
iterates with decreasing f values (after obtaining the first feasible solution, possibly after the first
iteration) and (b) there are only a finite number of choices for Ŵ on the quantization grid.

C.3 PROOF OF LEMMA 3

First, note that mapping Ĥ 7→ ∇Hg(Ŵ , Ĥ) is L-Lipschitz,∥∥∥∇Hg(Ŵ , Ĥ1)−∇Hg(Ŵ , Ĥ2)
∥∥∥
F
≤ L∥Ĥ1 − Ĥ2∥F .

Therefore, by Lemma 2.1 of Beck and Teboulle (2009) for Ŵ , Ĥ1, Ĥ2 we have

g(Ŵ , Ĥ1)− g(Ŵ , Ĥ2) ≤
L

2

∥∥∥∥Ĥ1 −
(
Ĥ2 −

1

L
∇Ĥg(Ŵ , Ĥ2)

)∥∥∥∥2
F

− 1

2L

∥∥∥∇Ĥg(Ŵ , Ĥ2)
∥∥∥2
F
.

(C.5)
Particularly, from the definition of g̃ in (9), we have

g(Ŵ ,K)− g(Ŵ , Ĥ) ≤ g̃(K)− g̃(Ĥ).

By setting K = Ĥ
+

we get

g(Ŵ , Ĥ
+
)− g(Ŵ , Ĥ) ≤ g̃(Ĥ

+
)− g̃(Ĥ) ≤ 0 (C.6)

where the second inequality is by the definition of Ĥ
+

in (8) as Ĥ is a feasible solution for the
optimization problem in (8).

D ADDITIONAL IMPLEMENTATION DETAILS

D.1 DETAILS OF QUANTEASE

Initialization: We initialize QuantEase with original unquantized weights. However, we include
the following heuristic in QuantEase. In every other third iteration, we do not quantize weights
(i.e. use β̃ from Lemma 1 directly). Though it introduces infeasibility, the following iteration brings
back feasibility. We have observed that this heuristic helps with optimization performance, i.e.,
decreases f better.

Memory Footprint: The matrices, Σ and WΣ do not change over iterations and can be stored with
p2 +O(pq) memory footprint. This is specially interesting as in practice, n ≫ p, q. QuantEase,

19

Under review as a conference paper at ICLR 2024

unlike GPTQ, also does not require matrix inversion or Cholesky factorization which can be
memory-inefficient (either adding up to O(p2) storage). In our experiment for very large models,
matrix inversion and Cholesky factorization can lead to out-of-memory issues for GPTQ.

Computational Complexity: In each iteration of QuantEase for a fixed j, the time complexity
is dominated by rank-1 updates and is O(pq). Therefore, each iteration of QuantEase has time
complexity of O(p2q). Combined with the initial cost of computing Σ = XXT , WΣ, ŴΣ and
doing K iterations, the overall time complexity of QuantEase is O(pqn+Kp2q).

D.2 DETAILS OF OUTLIER-AWARE QUANTEASE

We note that when calculating Qi’s for Problem (7), we remove the top s largest coordinates of
W (in absolute value) from the quantization pool, as the effect of those weights can be captured
by Ĥ and we do not need to quantize them. This allows to reduce the range that each Qi needs
to quantize, leading to lower error. Therefore, simultaneously, we preserve sensitive weights and
reduce the quantization range by using outlier-aware QuantEase.

Initialization: In terms of initialization, similar to basic QuantEase, we set Ĥ, Ŵ such that
Ĥ + Ŵ = W . Particularly, we use the s-largest coordinates of W (in absolute value) to initialize
Ĥ: Ĥ = Ps(W), Ŵ = W −Ĥ . Note that this leads to an infeasible initialization of Ŵ similar to
basic QuantEase. However, as discussed, after one iteration of QuantEase the solution becomes
feasible and the descent property of Algorithm 2 holds.

Memory and Computational Complexity: We also note that as seen from Algorithm 2, in addition
to storing Ĥ , we need to store ĤΣ, showing the memory footprint remains p2 + O(pq), like
basic QuantEase. In terms of computational complexity, in addition to basic QuantEase, the
outlier-aware version requires calculating the largest eigenvalue of XXT , which can be done by
iterative power method in O(p2) only using matrix/vector multiplication. Additionally, calculating
ĤΣ requires O(p2q) in each iteration, and finding the largest s coordinates of Ĥ can be done
with average complexity of O(pq log pq). Therefore, the overall complexity is O(pqn + Kp2q +
Kpq log pq) for K iterations.

Algorithm 2: Outlier-Aware QuantEase

Initialize Ĥ, Ŵ
η ← 1/2λmax(XXT) // step size for iterative thresholding
for iter = 1, · · · , iter-max do

for j = 1, · · · , p do
u←

[
(ŴΣ):,j − Σj,jŴ :,j − ((W − Ĥ)Σ):,j

]
/Σj,j // β̃ from Lemma 1

for column j. W is substituted with W − Ĥ.

ŴΣ← ŴΣ− Ŵ :,jΣj,: // Part (A) of rank-1 update from (6)
Ŵ i,j ← qi(−ui), i ∈ [q] // Perform updates from (4)
ŴΣ← ŴΣ+ Ŵ :,jΣj,: // Part (B) of rank-1 update from (6)

end
∇Hg(Ŵ , Ĥ)← 2ĤΣ+ 2ŴΣ− 2WΣ // Calculate the gradient of g

from (7).
Ĥ ← Ps(Ĥ − η∇Hg(Ŵ , Ĥ)) // Perform update (8)

end
return Ŵ , Ĥ

20

	Introduction
	Our Proposed Method
	Convergence of QuantEase
	Optimization performance: GPTQ vs QuantEase

	Outlier-Aware Quantization
	Experiments
	Future Work
	Detailed Literature Review
	GPTQ
	AWQ
	SpQR

	Numerical Results
	Effect of number of iterations
	Additional Text Generation Benchmarks
	Generative Examples
	Example 1
	Example 2
	Example 3
	Example 4

	Runtime

	Proof of Main Results
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3

	Additional Implementation Details
	Details of QuantEase
	Details of outlier-aware QuantEase

