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ABSTRACT

Machine learning models have been increasingly used in human-related applica-
tions such as healthcare, lending, and college admissions. As a result, there are
growing concerns about potential biases against certain demographic groups. To
address the unfairness issue, various fairness notions have been introduced in the
literature to measure and mitigate such biases. Among them, Counterfactual Fair-
ness (CF) Kusner et al. (2017) is a notion defined based on an underlying causal
graph that requires the prediction perceived by an individual in the real world to
remain the same as it would be in a counterfactual world, in which the individ-
ual belongs to a different demographic group. Unlike Kusner et al. (2017), this
work studies the long-term impact of machine learning decisions using a causal
inference framework where the individuals’ future status may change based on the
current predictions. We observe that imposing the original counterfactual fairness
may not lead to a fair future outcome for the individuals. We thus introduce a
fairness notion called lookahead counterfactual fairness (LCF), which accounts
for the downstream effects of ML models and requires the individual future sta-
tus to be counterfactually fair. We theoretically identify conditions under which
LCF can be improved and propose an algorithm based on our theoretical results.
Experiments on both synthetic and real data show the effectiveness of our method.

1 INTRODUCTION

The integration of machine learning (ML) into high-stakes domains (e.g., loan lending, hiring, col-
lege admissions, healthcare) has the potential to enhance traditional human-driven processes. How-
ever, it may introduce biases and treat protected groups unfairly. For instance, it has been shown
that the violence risk assessment tool, SAVRY, discriminates against males and foreigners (Tolan
et al., 2019); the previous Amazon hiring system exhibits gender bias (Dastin, 2018); the accuracy
of a computer-aided clinical diagnostic system highly depends on the race of patients (Daneshjou
et al., 2021). To address unfairness issues, numerous fairness notions have been proposed, includ-
ing unawareness that prevents the explicit use of demographic attributes, parity-based fairness that
requires certain statistics (e.g., accuracy, true/false positive rate) to be equal across different groups
(Hardt et al., 2016b), preference-based fairness that ensures individuals would collectively prefer
their perceived outcomes regardless of the (dis)parity compared to other groups (Zafar et al., 2017;
Do et al., 2022). However, these notions often overlook the underlying causal structures among dif-
ferent variables. In contrast, Kusner et al. (2017) introduced the concept of counterfactual fairness
(CF), which posits that an individual should receive consistent treatment in a counterfactual world
where their sensitive attribute differs. Chiappa (2019), Zuo et al. (2022), Wu et al. (2019), Xu et al.
(2019) and Ma et al. (2023) are also among recent efforts to take into account the causal structure
while training a fair predictor.

Yet, CF is primarily studied in static settings without considering the consequences of machine
learning decisions. In several applications, ML decisions can change future data distribution. For
example, Ensign et al. (2018) shows that the use of predictive policing systems for allocating law
enforcement resources increases the likelihood of uncovering crimes in regions with a greater con-
centration of policing resources. When we design an ML system, we should take into account that
such a system interacts with individuals, and individuals may subsequently adapt their behaviors
and modify the features in response to the ML system (Miller et al., 2020; Shavit et al., 2020).
As a result, learning (fair) models in a static setting without accounting for such downstream ef-
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fects may lead to unexpected adverse consequences. Although there are several works that consider
the long-term impact of fair decisions Henzinger et al. (2023a); Ge et al. (2021); Henzinger et al.
(2023b), the long-term impact of counterfactually fair decisions has not been studied extensively.
The most related work to this work is (Hu and Zhang, 2022) which uses path-specific effects as a
measure of fairness in a sequential framework where individuals change features while interacting
with an ML system over time, and the goal is to ensure ML decisions satisfy the fairness constraint
throughout the sequential process. However, Hu and Zhang (2022) do not argue how the data dis-
tribution changes over time and whether this change decreases the disparity in the long run. For
example, Zhang et al. (2018) show that the statistical parity fairness notion may worsen the disparity
in a sequential setting if it is not aligned with the factors that derive user dynamics. As a result, in
this work, we are interested in understanding how individuals are affected by an ML system using
a counterfactual inference framework. We argue that imposing counterfactually fair ML decisions
may not necessarily decrease the disparity in a sequential setting when we compare factual and
counterfactual worlds.

In this work, we focus on fairness evaluated over individual future status (label), which accounts for
the downstream effects of ML decisions on individuals. We aim to examine under what conditions
and by what algorithms the disparity between individual future status in factual and counterfactual
worlds can be mitigated after deploying ML decisions. To this end, we first introduce a new fairness
notion called “lookahead counterfactual fairness (LCF).” Unlike the original counterfactual fairness
proposed by Kusner et al. (2017) that requires the ML predictions received by individuals to be the
same as those in the counterfactual world, LCF takes one step further by enforcing the individual
future status (after responding to ML predictions) to be the same.

Given the definition of LCF, we then develop algorithms that learn ML models under LCF. To
model the effects of ML decisions on individuals, we focus on scenarios with strategic individuals
who respond to ML models by increasing their chances of receiving favorable decisions; this can be
mathematically represented by modifying their features toward the direction of the gradient of the
decision function (Rosenfeld et al., 2020). We first theoretically identify conditions under which an
ML model can satisfy LCF, and then develop an algorithm for training ML models under LCF.

Our contributions can summarized as follows:

• We propose a novel fairness notion that focuses on the counterfactual fairness over individual fu-
ture status (i.e., actual labels after responding to ML systems). Unlike the previous counterfactual
fairness notion that focuses on ML decisions, this notion accounts for the subsequent impacts of
ML decisions and aims to ensure fairness over individual actual future status.

• For scenarios where individuals respond to ML models by adjusting their features toward the
direction of the gradient of decision functions, we theoretically identify conditions under which
an ML model can satisfy LCF. We further develop an algorithm for training an ML model under
LCF.

• We conduct extensive experiments on both synthetic and real data to validate the proposed algo-
rithm. Results show that compared to conventional counterfactual fair predictors, our method can
improve disparity with respect to the individual actual future status.

2 PROBLEM FORMULATION

We consider a supervised learning problem with a training dataset consisting of triples (A,X, Y ),
where A ∈ A is a sensitive attribute (e.g., race, gender), X = [X1, X2, ..., Xd]

T ∈ X is a d-
dimensional feature vector, and Y ∈ Y ⊆ R is the target variable indicating individual’s underlying
status (e.g., Y in lending identifies the applicants’ abilities to repay the loan, Y in healthcare may
represent patients’ insulin spike level). The goal is to learn a predictor from training data that can
predict Y given inputs A and X . Let Ŷ denote as the output of the predictor. We further assume that
(A,X, Y ) is associated with a structural causal model (SCM) (Pearl et al., 2000) M = (V,U, F ),
where V = (A,X, Y ) represents observable variables, U includes unobservable (exogenous) vari-
ables that are not caused by any variable in V , and F = {f1, f2, . . . , fd+2} is a set of d+2 functions
called structural equations that determines how each observable variable is constructed. More pre-
cisely, we have the following structural equations,

Xi = fi(pai, Upai), ∀i ∈ {1, · · · , d}, A = fA(paA, UpaA
), Y = fY (paY , UpaY

), (1)
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where pai ⊆ V , paA ⊆ V and paY ⊆ V are observable variables that are the parents of Xi, A,
and Y , respectively. Upai

⊆ U are unobservable variables that are the parents of Xi. Similarly, we
denote unobservable variables UA ⊆ U and UY ⊆ U as the parents of A and Y , respectively.

2.1 BACKGROUND: COUNTERFACTUALS

If the probability density functions of unobserved variables are known, we can leverage the structural
equations in SCM to find the marginal distribution of any observed variable Vi ∈ V and even study
how intervening certain observed variables impacts other variables. Specifically, the intervention
on variable Vi is equivalent to replacing structural equation Vi = fi(pai, Upai) with equation Vi = v
for some v. Given new structural equation Vi = v and other unchanged structural equations, we can
find out how the distribution of other observable variables changes as we change value v.

In addition to understanding the impact of an intervention, SCM can further facilitate counterfac-
tual inference, which aims to answer the question “what would be the value of Y if Z had taken
value z in the presence of evidence O = o (both Y and Z are two observable variables)?” Specif-
ically, given U = u and structural equations F , the counterfactual value of Y can be computed by
replacing the structural equation for Z as Z = z and replacing U with u in the rest of the structural
equations. Such counterfactual value is typically denoted by YZ←z(u). Given evidence O = o, the
distribution of counterfactual value YZ←z(U) can be calculated as follows,1

Pr{YZ←z(U) = y|O = o} =
∑
u

Pr{YZ←z(u) = y}Pr{U = u|O = o} (2)

Example 2.1 (Law School Success ). Consider two demographic groups of college students dis-
tinguished by gender whose first-year average (FYA) in college is denoted by Y . The FYA of each
student is causally related to (observable) grade-point average (GPA) before entering college, en-
trance exam score (LSAT), and gender. Denote gender by A ∈ {0, 1}, GPA by XG, and LSAT by
XL. Suppose there are two unobservable variables U = (UA, UXY ), e.g., UXY may be interpreted
as the student’s knowledge. Consider the following structural equations:

A = UA, XG = bG + wA
GA+ UXY ,

XL = bL + wA
LA+ UXY , Y = bF + wA

FA+ UXY ,

where (bG, w
A
G, bL, w

A
L , bF , w

A
F ) are know parameters of the causal model. Given observation

XG = 1, A = 0, the counterfactual value can be calculated with an abduction-action-prediction
procedure. It is easy to see that UXY = 1− bG and UA = 0 with probability 1.0 (Abduction). Sub-
stitute A with 1 (Action). As a result, the counterfactual value of YA←1(U) given XG = 1, A = 0
can be calculated as follows (Action),

YA←1(U) = bf + wA
F + 1− bG with probability 1.0

2.2 COUNTERFACTUAL FAIRNESS

Counterfactual Fairness (CF) has been proposed by Kusner et al. (2017) which requires that for an
individual with (X = x,A = a), the prediction Ŷ in the factual world should be the same as that in
the counterfactual world in which the individual belongs to a demographic group other than A = a.
Mathematically, the counterfactual fairness is defined as follows: ∀a, ǎ ∈ A, X ∈ X , y ∈ Y,

Pr
(
ŶA←a(U) = y|X = x,A = a

)
= Pr

(
ŶA←ǎ(U) = y|X = x,A = a

)
,

While the CF notion has been widely used in the literature, it does not take into account the down-
stream impacts of ML prediction Ŷ on individuals in factual and counterfactual worlds. To illustrate
the importance of considering such impacts, we provide an example.

Example 2.2. Consider a loan approval problem where an applicant with (X = x,A = a) applies
for the loan and the goal is to predict the applicant’s ability to repay the loan. As highlighted by Liu

1Note that given structural equations (equation 1) and marginal distribution of U , Pr{U = u,O = o} can
be calculated using the Change-of-Variables Technique and the Jacobian factor. As a result, Pr{U = u|O =

o} = Pr{U=u, O=o}
Pr{O=o} can be also calculated accordingly.
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et al. (2018), issuing loans to unqualified people who cannot repay the loan may hurt them by wors-
ening their future credit scores. Assume that this person in the factual world is qualified for the loan
and does not default. However, in the counterfactual world where the individual belongs to another
demographic group, he/she is not qualified. Under counterfactually fair predictions, both individu-
als in the factual and counterfactual world should receive the same distribution of decision. If both
individuals are issued a loan, the one in the counterfactual world would suffer from a worse credit
score in the future. Therefore, it is essential to account for the downstream effects of predictions
when learning a fair ML model.

Motivated by the above example, this work aims to study CF in a dynamic setting where the de-
ployed ML decisions may affect individual behavior and change their future features and underlying
statuses. Formally, we assume individuals after receiving prediction Ŷ , their future feature vector
X ′ is determined by a response function r : X × Y → X ,

X ′i = r(Xi, Ŷ ), (3)

We assume the structural equation fY for the target variable (underlying status) Y remains fixed, so
that individuals’ feature changes also cause their statuses to change. Denote Y ′ as the consequent
future status generated by fY and new features X ′. One way to tackle the issue in Example 2.2
is to explicitly consider the individual response and impose the fairness constraint on future status
Y ′ instead of the prediction Ŷ . We call such a fairness notion Lookahead Counterfactual Fairness
(LCF) and present it in the next section.

2.3 LOOKAHEAD COUNTERFACTUAL FAIRNESS

To take into account the downstream impacts of ML decision, we impose the fairness constraint on
future outcome Y ′. Given structural causal model M = (U, V, F ), individual response function r,
and data (A,X, Y ), we define lookahead counterfactual fairness below.

Definition 2.1. We say an ML model satisfies lookahead counterfactual fairness (LCF) if ∀a, ǎ ∈
A, X ∈ X , y ∈ Y , the following holds:

Pr(Y ′A←a(U) = y|X = x,A = a) = Pr(Y ′A←ǎ(U) = y|X = x,A = a), (4)

(a) Causal Graph - Type 1 (b) Causal Graph - Type 2

Figure 1: Two type of Causal Graphs

LCF implies that the downstream conse-
quence of ML decisions for a given indi-
vidual in the factual world should be the
same as that in the counterfactual world
where the individual belongs to other de-
mographic groups. Note that CF may
contradict LCF: even under counterfactu-
ally fair predictor, individuals in the fac-
tual and counterfactual worlds may end
up with very different future statuses. We
show this with an example below.

Example 2.3. Consider the causal graph in Figure 1a. Based on Kusner et al. (2017), a predictor
that only uses U1 and U2 as input is counterfactually fair.2 Therefore, Ŷ = h(U1, U2) is a counter-
factually fair predictor. Suppose the structural functions are as follows,

X = fX(U1) = U1, Y = fY (U2, X,A) = U2 +X +A

U ′1 = r(U1, Ŷ ) = U1 +∇U1
Ŷ , U ′2 = r(U2, Ŷ ) = U2 +∇U2

Ŷ

X ′ = fX(U ′1) = U ′1, Y ′ = fY (U
′
2, X

′, A) = U ′2 +X ′ +A

The prior distributions of U1 and U2 are the uniform distributions over [−1, 1]. Note that the response
functions stated above imply that individuals make efforts toward changing feature vectors through
changing the unobservable variables, which results in higher Ŷ in the future. It is easy to see that

2Note that U1 and U2 can be generated for each sample (X,A). Please see Section 4.1 of Kusner et al.
(2017) for more details.
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h(U1, U2) = U1+U2 minimizes the MSE loss E{(Y − Ŷ )2} if A ∈ {−1, 1} and Pr{A = 1} = 0.5.
However, since ∇U1

Ŷ = ∇U2
Ŷ = 1, we have the following equations,

Pr(Y ′A←a(U) = y|X = x,A = a) = δ(y − a− x− 2)

Pr(Y ′A←ǎ(U) = y|X = x,A = a) = δ(y − ǎ− x− 2)

where δ(y) =

{
1 if y = 0
0 o.w. . It shows that although the decisions in the factual and counterfac-

tual worlds are the same, the future status Y ′ are still different and Definition 2.1 does not hold One
of the general case where CF holds but LCF not holds is shown in Appendix A.5.

3 LEARNING UNDER LCF

In this work, we focus on a class of response functions r that an individual responds to ML prediction
by increasing the prediction made by the ML model. Note that such type of response has also been
widely studied in strategic classification, e.g., Rosenfeld et al. (2020); Hardt et al. (2016a). In
particular, we consider the response function in the following form,

U ′i = r(Ui, Ŷ ) = Ui + η∇Ui
Ŷ , ∀Ui ∈ U

X ′i = r(Xi, Ŷ ) = Xi + η∇Xi
Ŷ , Xi is a root node.

Here, we are assuming that root node variables in the causal graph are updated based on response
function r and decision variable Ŷ . The effects of Ŷ on other variables are passed through the
causal structural equations. Our goal is to train a model under LCF constraint. Before presenting
our algorithm, we first define the notion of counterfactual random variables.
Definition 3.1 (Counterfactual Random Variables). Let x and a be the realization of random vari-
ables X and A, and ǎ ̸= a. We say X̌ := XA←ǎ(U) and Y̌ := YA←ǎ(U) are the counterfactual ran-
dom variables associated with (x, a) if U follows the conditional distribution Pr{U |X = a,A = a}
as given by the causal Model M. The realization of X̌ and Y̌ are denoted by x̌ and y̌.

The following theorem constructs a predictor g to satisfy LCF. That is, under predictor g proposed
in Theorem 3.1, Y ′ satisfies Definition 2.1.
Theorem 3.1. Consider a structural causal model M = (U, V, F ), where U = {UX , UY }, UX =
[U1, U2, ..., Ud]

T, V = {A,X, Y }, X = [X1, X2, ..., Xd]
T. Assume that the structural functions

are given by (see Figure.1b, where exogenous variables do not include unobserved confounders),

X = α⊙ UX + βA, Y = wTX + γUY , (5)

where α = [α1, α2, ..., αd]
T, β = [β1, β2, ..., βd]

T, w = [w1, w2, .., wd]
T, and ⊙ denotes the

element wise production. Then, the following predictor satisfies LCF defined in Definition 2.1,

g(Y̌ , U) = p1Y̌
2 + p2Y̌ + p3 + h(U), (6)

where p1 = T
2 with T := 1

η(||w⊙α||2+γ2) , and h is an arbitrary function (e.g., a neural network).

It is worth mentioning that Definition 2.1 can be a very strong constraint in scenarios when YA←a(U)
and YA←ǎ have significantly different distributions. In this case, enforcing Y ′A←a(U) and Y ′A←ǎ(U)
to have the same distributions may degrade the performance of the predictor significantly. As a
result, we can also consider a weaker version of Definition 2.1 stated below.
Definition 3.2. We say lookahead counterfactual fairness improves if the following holds,

Pr
({

|Y ′A←a(U)− Y ′A←ǎ(U)| < |YA←a(U)− YA←ǎ(U)|
}
|X = x,A = a

)
= 1, (7)

∀(a, ǎ) ∈ A2, a ̸= ǎ, X ∈ X , y ∈ Y.

Definition 3.2 implies that after individual response, the difference between future status Y ′ in fac-
tual and counterfactual worlds should be smaller than the difference between original status Y in
factual and counterfactual worlds. Generally speaking, this implies that the disparity between fac-
tual and counterfactual worlds must get better over time. As we show in our experiments, constraint
7 is weaker than constraint 4 and can lead to better prediction performance.
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Theorem 3.2. Consider the structural causal model with structural equations described in equa-
tion 5. A predictor g(Y̌ , U) improves lookahead counterfactual fairness (i.e., future status Y ′ satis-
fies constraint 7) if g has the following three properties:

• g(y̌, u) is strictly convex w.r.t. y̌.

• g(y̌, u) can be expressed as: g(y̌, u) = g1(y̌) + g2(u).

• The derivative of g(y̌, u) w.r.t. y̌ is K-Lipschitz continuous in y̌ with K < 2
η(||w⊙α||2+γ2) ,

|∂g(y̌1,u)
∂y̌ − ∂g(y̌2,u)

∂y̌ | ≤ K|y̌1 − y̌2|.

Theorems 3.1 and 3.2 shed light on how to train a predictor under constraints 4 and 7. Specifically,
given a training dataset D = {(x(i), y(i), a(i))}ni=1, we first estimate the structural equations. Then,
we choose a parameterized predictor g that satisfies the conditions in Theorem 3.1 or Theorem 3.2.
An example is shown in Algorithm 1, which finds an optimal predictor in the form of g(y̌, u) =
p1y̌

2 + p2y̌ + p3 + hθ(u), where p1 is a hyperparameter, θ is the training parameter for function h,
and p2, p3 are two other training parameters. Under Algorithm 1, we can find the optimal values for
p2, p3, θ using training data D. Note that since p1 is a hyperparameter, we can control the strength
of fairness by choosing its value, e.g., to satisfy Definition 2.1, we should set p1 = T/2 based on
Theorem 3.1. If we want to satisfy Definition 3.2, we should choose 0 < p1 < T to make sure g
satisfies the first and third conditions in Theorem 3.2.

Algorithm 1 Training a Predictor under LCF

Input: Training dataset D = {(x(i), y(i), a(i))}ni=1.
1: Estimate the structural equations 5 using D = {(x(i), y(i), a(i))}ni=1 to determine parameters α,

β, w, and γ.
2: For each data point (x(i), y(i), a(i)), draw m samples u(i)[j], j = 1, . . . ,m from conditional

distribution U |X = x(i), A = a(i) and generate counterfactual y̌(i)[j] corresponding to u(i)[j]

based on structural equations 5.
3: Solve the following optimization problem,

p̂2, p̂3, θ̂ = arg min
p2,p3,θ

1

mn

n∑
i=1

m∑
j=1

l(g(y̌(i)[j], u(i)[j]), y(i)), (8)

where g(y̌(i)[j], u(i)[j]) = p1(y̌
(i)[j])2 + p2y̌

(i)[j] + p3 + hθ(u), θ is a parameter for function h,
and l is a loss function.

Output: p̂2, p̂3, θ̂

Note that the results we have so far are for the linear causal models. When the causal model is non-
linear, it is hard to construct a model satisfying perfect LCF (Definition 2.1). Nonetheless, we can
still show that it is possible to improve LCF (Definition 3.2) for certain non-linear causal models.
Theorem 3.3 (Informal). Consider a causal model M with the following assumed structural equa-
tions,

Xi = A(αiUi + βi), i ∈ {1, 2, ..., d}, Y = wTX + γUY

Let Y̌ be the counterfactual output associated with X = x,A = a. Consider predictor g(Y̌ ) which is
a strictly convex and twice differentiable function and only uses the counterfactual random variable
Y̌ as input. Then, under certain conditions on the derivatives of g and the properties of A, predictor
g(Y̌ ) improves LCF (i.e., a future status Y ′ satisfies Definition 3.2).

Due to the page limit, the specific conditions of Theorem 3.3 are formally stated in Appendix A.3.
And we also show another the possibility of improving LCF for another kind of causal model in
Appendix A.6.

4 EXPERIMENTS

We conduct experiments on both synthetic and real data to validate the proposed method.
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4.1 SYNTHETIC DATA

In this section, we use synthetic data to test our proposed method. The synthetic data has been
generated based on the causal model described in Theorem 3.1. We set d equal to 10 and generated
1000 data points. We assume that UX and UY follow the uniform distribution over [0, 1]. Also,
sensitive attribute A ∈ {0, 1} is a Bernoulli random variable with Pr{A = 0} = 0.5. Then, we
generate X and Y using the structural functions described in equation 5.3 Based on the causal
model, the conditional distribution of UX and UY given X = x,A = a are as follows,

UX |X = a,A = a ∼ δ(
x− βa

α
) UY |X = x,A = a ∼ Uniform(0, 1) (9)

Baselines: We used two baselines for comparison. The first one is the Unfair predictor (UF), which
is a linear model and ignores the fairness constraint. The UF model gets feature X as input and pre-
dicts Y . The second one is the counterfactual fair predictor (CF), which takes only the unobservable
variables U as the input. This predictor has been introduced by Kusner et al. (2017).

Implementation Details: To find a predictor satisfying Definition 2.1, we train a predictor in the
form of equation 6. In our experiment, h(u) is a linear function. To train g(y̌, u), we follows Algo-
rithm 1 with m = 100. We split the dataset into the training/validation/test set at 60%/20%/20%
ratio randomly and repeat the experiment 5 times. We use the validation set to find the optimal
number of training epochs and the learning rate. Based on our observation, Adam optimization with
a learning rate equal to 10−3 and 2000 epochs gives us the best performance.

Metrics: We use three metrics to evaluate the methods. To evaluate the performance, we use the
mean squared error (MSE). Given a dataset {x(i), a(i), y(i)}ni=1, for each x(i) and a(i), we generate
m = 100 values of u(i)[j] from the posterior distribution. MSE can be estimated as follows,4

MSE =
1

mn

n∑
i=1

m∑
j=1

||y(i) − ŷ(i)[j]||2, (10)

where ŷ(i)[j] is the prediction for datapoint data (x(i), a(i), u(i)[j]). Note that for the UF baseline, the
prediction does not depend on u(i)[j]. Therefore, ŷ(i)[j] does not change by j for the UF predictor.
To evaluate fairness, we define a metric called average future causal effect (AFCE),

AFCE =
1

mn

n∑
i=1

m∑
j=1

|y′(i)[j] − y̌′(i)[j]| (11)

It is the average difference between the factual and counterfactual future outcomes. In order to
compare |Y − Y̌ | with |Y ′ − Y̌ ′| under different algorithms, we present the following metric called
unfairness improvement ratio (UIR),

UIR = (1−
∑n

i=1

∑m
j=1 |y′(i)[j] − y̌′(i)[j]|∑n

i=1

∑m
j=1 |y(i)[j] − y̌(i)[j]| )× 100%. (12)

Larger UIR implies a higher improvement in disparity.

Figure 2: MSE-AFCE Trade-off

Results: Table1 illustrates the results when we set
η = 10 and p1 = T

2 . The results show that our method
can achieve perfect LCF with p1 = T

2 . Note that in
our experiment, the range of Y is [0, 3.73], and our
method and UF can achieve similar MSE. Note that our
method achieves better performance compared to the
CF method because Y̌ includes useful predictive infor-
mation and using it in our predictor can improve perfor-
mance and decrease the disparity at the same time. Both
CF and UF do not take into account future outcome Y ′,
and as a result, |Y ′ − Y̌ ′| is similar to |Y − Y̌ | leading
UIR = 0. Based on what we discussed in the proof of

3The exact values for parameters α, β, w and γ can be found in the appendix.
4Check Section 4.1 of Kusner et al. (2017) for details on why equation 10 is an empirical estimate of MSE.
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Table 1: Results on Synthetic Data: comparison with two baselines, unfair predictor (UF) and
counterfactual fair predictor (CF), in terms of performance (MSE) and LCF (AFCE ,UIR).

Method MSE AFCE UIR

UF 0.036 ± 0.003 1.296 ± 0.000 0% ± 0
CF 0.520 ± 0.045 1.296 ± 0.000 0% ± 0

Ours (p1 = T/2) 0.064 ± 0.001 0.000 ± 0.0016 100% ± 0
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Figure 3: Density plot for Y ′ and Y̌ ′ under the distribution of U in synthetic data

Theorem 3.1, the value of p1 can impact the accuracy-fairness trade-off. We changed the value of
p1 from T

2 to T
512 for different values of η and calculated MSE as a function of AFCE in Figure 2. It

shows that we can easily control accuracy-fairness trade-off in our algorithm by changing p1 from
T/2 to 0. To show how our method impacts a specific individual, we choose the first data point in
our test dataset and plot the distribution of factual future status Y ′ and counterfactual future status
Y̌ ′ for this specific data point under different methods. Figure 3 illustrates such distributions. It can
be seen in the most left plot that there is an obvious gap between factual Y and counterfactual Y̌ .
Both UF and CF can not decrease this gap for future outcome Y ′. However, with our method, we
can observe that the distributions of Y ′ and Y̌ ′ become closer to each other. When p1 = T

2 (the
most right plot in Figure 3), the two distributions become the same in the factual and counterfactual
worlds.

4.2 REAL DATA: THE LAW SCHOOL SUCCESS DATASET

(a) Causal Model for the Law School Dataset

(b) Trade-off between AFCE and MSE

Figure 4: Causal Model and FACE-
MSE trade-off for Law School dataset

We further measure the performance of our proposed
method using the Law School Admission Dataset Wight-
man (1998). In this experiment, the objective is to fore-
cast the first-year average grades (FYA) of students in law
school using their undergraduate GPA and LSAT scores.

Dataset: The dataset consists of 21,791 records. Each
record is characterized by 4 attributes: Sex (S), Race (R),
UGPA (G), LSAT (L), and FYA (F ). Both Sex and Race
are categorical in nature. The Sex attribute can be either
male or female, while Race can be Amerindian, Asian,
Black, Hispanic, Mexican, Puerto Rican, White, or other.
The UGPA is a continuous variable ranging from 0 to 4.
LSAT is an integer-based attribute with a range of [0, 60].
FYA, which is the target variable for prediction, is a real
number ranging from -4 to 4 (it has been normalized). In
this study, we consider S as the sensitive attribute, while
R,G, and L are treated as features.

Causal Model: We adopt the causal model as presented
in Kusner et al. (2017). A visual representation of this
model can be seen in Figure 4a.

In this causal graph, K represents an unobserved variable,
which can be interpreted as knowledge. Thus, the model
suggests that students’ grades (UGPA, LSAT, FYA) are
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influenced by their sex, race, and underlying knowledge. We assume that the prior distribution
for K follows a normal distribution, denoted as N (0, 1). The structural equations governing the
relationships are given by:5

G = N (wK
GK + wR

GR+ wS
GS + bG, σG),

L = Poisson(exp{wK
L K + wR

LR+ wS
LS + bL}),

F = N (wK
F K + wR

FR+ wS
FS, 1). (13)

Implementation: Note that race is an immutable characteristic. Therefore, we assume that the
individuals only adjust their knowledge K in response to the prediction model Ŷ . That is K ′ =

K + η∇K Ŷ . In contrast to synthetic data, the parameters of structural equations are unknown,
and we have to use the training dataset to estimate them. Following the approach of Kusner et al.
(2017), we assume that G and F adhere to Gaussian distributions centered at wK

GK + wR
GR +

wS
GS + bG and wK

F K + wR
FR + wS

FS, respectively. Note that L is an integer, and it follows a
Poisson distribution with the parameter exp{wK

L K +wR
LR+wS

LS + bL}. Using the Markov chain
Monte Carlo (MCMC) method Geyer (1992), we can estimate the parameters and the conditional
distribution of K given (R,S,G,L). For each given data, we sampled m = 500 different k’s from
this conditional distribution. We partitioned the data into training, validation, and test sets with
60%/20%/20% ratio.

Results: Table 2 illustrates the results with η = 10 and p1 = T
4 and p1 = T

2 . In this experiment,
T is equal to 1

(wF
K)2

. Based on this table, our method achieves a similar MSE as the CF predictor.
However, it can improve AFCE significantly compared to the baselines. Figure5 shows the distri-
bution of Y and Y ′ for the first data point in the test set in the factual and counterfactual worlds.
Under the UF and CF predictor, the disparity between factual and factual Y ′ remains similar to the
disparity between factual and counterfactual Y . On the other hand, the disparity between factual
and counterfactual Y ′ under our algorithms gets better for both p1 = T/2 and p1 = T/4. Lastly,
Figure 4b demonstrates that for the law school dataset, the trade-off between MSE and AFCE can
be adjusted by changing hyperparameter p1.

Table 2: Results on Law School Dataset: comparison with two baselines, unfair predictor (UF) and
counterfactual fair predictor (CF), in terms of performance (MSE) and LCF (AFCE ,UIR).

Method MSE AFCE UIR

UF 0.393 ± 0.046 0.026 ± 0.003 0% ± 0
CF 0.496 ± 0.051 0.026 ± 0.003 0% ± 0

Ours (p1 = T/4) 0.493 ± 0.049 0.013 ± 0.002 50% ± 0
Ours (p1 = T/2) 0.529 ± 0.049 0.000 ± 0.000 100% ± 0

5 CONCLUSION

In this work, we studied the impact of machine learning decisions on individuals’ future status
using a counterfactual inference framework. In particular, we observed that imposing the original
counterfactual fairness may not decrease the disparity with respect to individuals’ future status. As a
result, We introduced the lookahead counterfactual fairness (LCF) notion, which takes into account
the downstream effects of ML models and requires the individual future status to be counterfactually
fair. We proposed an algorithm to train an ML model under LCF and studied the impact of such an
ML model on individuals’s future outcomes through extensive empirical study.
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A APPENDIX

A.1 PROOF OF THEOREM 3.1 AND THEMOREM 3.2

Proof. For any given x, a, we can find the conditional distribution UX |X = x,A = a and UY |X =
x,A = a based on causal model M. Consider sample u = [uX , uY ] drawn from this conditional
distribution. For this sample, we have,

x̌ = α⊙ uX + βǎ

y̌ = wTx̌+ γuY

So, the gradient of g(y̌, uX , uY ) w.r.t. uX , uY are

∇uX
g =

∂g(y̌, uX , uY )

∂uX
+

∂g(y̌, uX , uY )

∂y̌
⊙ w ⊙ α (14)

∇uY
g =

∂g(y̌, uX , uY )

∂uY
+

∂g(y̌, uX , uY )

∂y̌
γ. (15)

Then, y′ can be calculated using response function r as follows,

y′ = y + ηwT(α⊙ ∂g(y̌, uX , uY )

∂uX
) + η||w ⊙ α||2 ∂g(y̌, uX , uY )

∂y̌
+

ηγ
∂g(y̌, uX , uY )

∂uY
+ ηγ2 ∂g(y̌, uX , uY )

∂y̌
. (16)

Similarly, we can calculate counterfactual value y̌′ as follows,

y̌′ = y̌ + ηwT(α⊙ ∂g(y, uX , uY )

∂uX
) + η||w ⊙ α||2 ∂g(y, uX , uY )

∂y
+

ηγ
∂g(y, uX , uY )

∂uY
+ ηγ2 ∂g(y, uX , uY )

∂y
(17)

Note that the following hold for g,

∂g(y̌, uX , uY )

∂uX
=

∂g(y, uX , uY )

∂uX
(18)

∂g(y̌, uX , uY )

∂uY
=

∂g(y, uX , uY )

∂uY
(19)

Thus,

|y̌′ − y′| = |y̌ − y + η(||w ⊙ α||2 + γ2)(
∂g(y, uX , uY )

∂y
− ∂g(y̌, uX , uY )

∂y̌
)| (20)

Given above equation, now we can prove Theorem 3.1 and Corollary 3.2,

• For g in Theorem 3.1, we have,

g(y̌, uX , uY ) = p1y̌
2 + p2y̌ + p3 + h(u) (21)

∂g(y̌, uX , ūY )

∂y̌
= 2p1y̌. (22)

Equations 20 and 22 together imply that,

|y′ − y̌′| = |y − y̌ + y̌ − y| = 0 (23)

Since, for any realization of u, the above equation holds, we can conclude that the following
holds,

Pr(ŶA←a(U) = y|X = x,A = a) = Pr(ŶA←ǎ(U) = y|X = x,A = a) (24)

12
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• For g in Theorem 3.2, since g(y̌, ux, uy) is strictly convex in y̌, we have,

(y̌ − y)(
∂g(y, uX , uY )

∂y
− ∂g(y̌, uX , uY )

∂y
) < 0 (25)

Note that derivative of g(y̌, ux, uy) with respect to y̌ is K-Lipschitz continuous in y̌,

|∂g(y, uX , uY )

∂y
− ∂g(y̌, uX , uY )

∂y̌
| < 2|y − y̌|

η(||w ⊙ α||2 + γ2)
(26)

we proved that
|y′ − y̌′| < |y − y̌| (27)

So we have
Pr({|Y ′A←a(U)− Y ′A←ǎ(U)| < |Y←ǎ(U)− Y←ǎ(U)|}|X = x,A = a) = 1 (28)

A.2 THEOREM 3.2 FOR NON-BINARY A

Let {a} ∪ {ǎ[1], ǎ[2], ..., ǎ[m]} be a set of all possible values for A. Let Y̌ [j] be the counterfactual
random variable associated with ǎ[j] given observation X = x and A = a. Then, g( Y̌

[1]+···Y̌ [m]

m , U)
satisfies LCF, where g defined in Theorem 3.2.

Proof. For any given x, a, we assume the set of counterfactual a is {ǎ[1], ǎ[2], ..., ǎm}. Consider
sample u = [uX , uY ] drawn from the condition distribution of UX |X = x,A = a and UY |X =

x,A = a, with a predictor g( y̌
[1]+···y̌[m]

m , u), use the same way in A.1, we can get

|y̌′[j] − y′| =|y̌[j] − y + η(||w ⊙ α||2 + γ2)(
∂g(y̌[1] + · · · y̌[m], u)

∂y̌[1] + · · · y̌[m]
− (29)

∂g(y + y̌[1] + · · ·+ y̌[j−1] + y̌[j+1] · · · y̌[m], u)

∂y + y̌[1] + · · · y̌[j−1] + y̌[j+1] · · · y̌[m]
)| (30)

When y > y̌[j], we have

y̌[1] + · · · y̌[m] < y + y̌[1] + · · · y̌[j−1] + y̌[j+1] · · · y̌[m] (31)

and when y < y̌[j],

y̌[1] + · · · y̌[m] > y + y̌[1] + · · · y̌[j−1] + y̌[j+1] · · · y̌[m] (32)
Because g is strictly convex and Lipschitz continuous, we have

|y̌′[j] − y′| < |y̌[j] − y| (33)
So we proved that, for any j ∈ {1, 2, ...,m}

Pr({|Y ′A←a(U)− Y ′A←ǎ[j](U)| < |Y←ǎ(U)− Y←ǎ[j](U)|}|X = x,A = a) = 1 (34)

A.3 FORMAL VERSION OF THEOREM 3.3

Consider a non-linear causal model M = (U, V, F ), where U = {UX,UY
}, UX =

[U1, U2, ..., Ud]
T, V = {A,X, Y }, X = [X1, X2, ..., Xd]

T, A ∈ {a1, a2} is a binary sensitive
attribute. Assumed that the structural functions are given by,

X = A(α⊙ UX + β) Y = wTX + γUY (35)

where α = [α1, α2, ..., αd]
T, β = [β1, β2, ..., βd]

T, and ⊙ denotes the element wise production. A
predictor g(Y̌ ) leads to future outcome Y ′ that satisfy constraints 7 if g and the causal model has
the following three properties

• The value domain of A satisfies a1a2 ≥ 0.
• g(y̌) is strictly convex.

• The derivate of g(y̌) is K-Lipschitz continuous with K ≤ 2
η(a1a2||w⊙α||2+γ2) , |∂g(y̌1)

∂y̌2
−

∂g(y̌2)
∂y̌2

| < K|y̌1 − y̌2|.
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A.4 PROOF OF THEOREM 3.3

Proof. From the causal functions defined in Section A.3, given any x, a, we can find the conditional
distribution UX |X = x,A = a and UY |X = x,A = a. Similar to the proof of Theorem 3.2, we
have

x̌ = ǎ(α⊙ uX + β) (36)

y̌ = wTx̌+ γuY (37)

So, the gradient of g(y̌) w.r.t uX , uY are

∇uX
g =

∂g(y̌)

∂y̌
ǎw ⊙ α (38)

∇uY
g =

∂g(y̌)

∂y̌
γ (39)

Then, y′ can be calculated using the response function r as follows,

y′ = y + η(aǎ||w ⊙ α||2 + γ2)
∂g(y̌)

∂y̌
(40)

In the counterfactual world,

y̌′ = y̌ + η(ǎa||w ⊙ α||2 + γ2)
∂g(y)

∂y
(41)

So,

|y′ − y̌′| = |y − y̌ + η(aǎ||w ⊙ α||2 + γ2)(
∂g(y̌)

∂y̌
− ∂g(y)

∂y
)| (42)

Because A is a binary attributes, we have

aǎ = a1a2 (43)

From the property of g, we have

(y − y̌)(
∂g(y̌)

∂y̌
− ∂g(y)

∂y
) < 0 (44)

Note that the derivate of g(y̌) is K-Lipschitz continuous,

|∂g(y̌)
∂y̌

− ∂g(y)

∂y
| < 2|y̌ − y|

η(aǎ||w ⊙ α||2 + γ2)
(45)

which is to say, for every u sampled from the conditional distribution, |y̌′ − y′| < |y̌ − y|. So we
proved

Pr({|Y ′A←a(U)− Y ′A←ǎ[j](U)| < |Y←ǎ(U)− Y←ǎ[j](U)|}|X = x,A = a) = 1 (46)

A.5 PROOF ABOUT CF NOT GUARANTEE LCF

Theorem A.1. Consider a structural causal model M(U, V, F ) and a response function r with which

U ′ = r(U, Ŷ )

X ′r = r(Xr, Ŷ ), Xr ⊂ V are the root nodes

14
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We assume the causal equation determine the target attribute Y is fY could be wrriten in the form
of fr

Y , where the inputs attributes are all root nodes, i.e.

Y = fr
Y (U,Xr, A) (47)

6 If M satisfies

Pr(YA←a(U) = y|X = x,A = a) ̸= Pr(YA←a′(U) = y|X = x,A = a) (48)

and the response function r is only depend on the value of its inputs, then we have LCF would be
violated with a CF predictor, i.e.

Pr(Y ′A←a(U)|X = x,A = a) ̸= Pr(Y ′A←ǎ(U) = y|X = x,A = a) (49)

Proof. Suppose the conditional distribution of U could be simply denoted as Pc(U), we have

Pr(YA←a(U)|X = x,A = a) =
∑

u∈{u|f(u,xr,a)}=y

Pc(u) (50)

and ∑
u∈{u|f(u,xr,a)}=y

Pc(u) ̸=
∑

u∈{u|f(u,xr,a′)}=y

Pc(u) (51)

Because the predictor satisfies CF,

U ′A←a = r(U, Ŷ ) (52)

U ′A←ǎ = r(U, Ŷ ) (53)

The future outcome could be written as

Pr(Y ′A←a(U)|X = x,A = a) =
∑

u|{f(r(u,ŷ),r(xr,ŷ),a)=y}

Pc(U) (54)

From Eq.51, we have ∑
u|{f(r(u,ŷ),r(xr,ŷ),a)=y}

Pc(U) ≠=
∑

u|{f(r(u,ŷ),r(xr,ŷ),a′)=y}

Pc(U) (55)

which is to say

Pr(Y ′A←a(U)|X = x,A = a) ̸= Pr(Y ′A←ǎ(U) = y|X = x,A = a) (56)

A.6 THEOREM FOR ANOTHER FAMILY OF NON-LINEAR CAUSAL MODEL

Theorem A.2. Consider a causal model M(U, V, F ), where U = (UX , UY ), V = {A,X, Y }.
Assumed that the structural functions are given by,

X = f(αUX + βA) Y = wX + γUY

in which f is a non-linear function. Then the predictor

Ŷ = λ1Y̌ + λ2g(UX , UY )

, in which g is an arbitary function, improves lookahead counterfactual fairness if f satisfies

• f is strictly convex

• for any s1, s2, s
′
1, s
′
2, if |s1 − s2| < |s′1 − s′2|, we have |f(s1)− f(s2)| < |f(s′1)− f(s′2)|

6The function does not mean there must be a direct effect from A to Y . For example, Y = k1U + k2Xr +
k3A and k3 = 0
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• f ′ is K-Lipschitz continuous with K < 2
λ1wηα2

Proof. For any given x, a, we can find the conditional distribution UX |X = x,A = a and UY |X =
x,A = a based on causal model M. Consider a sample u = [uX , uY ] drawn from this conditional
distribution. For this sample, we have

x̌ = f(αuX + βa)

y̌ = wx̌+ γuY

So, the gradient of g(y̌, uX , uY ) w.r.t. uX , uY are

∇uX
g = λ1waf

′(αuX + βǎ) + λ2
∂g(uX , uY )

∂uX

∇uY
g = λ1γ + λ2

∂g(uX , uY )

∂uY

Then y′ can be calculated using response function r as follows,

y′ =wf(αuX + λ1wηα
2f ′(αuX + βǎ) + λ2α

∂g(uX , uY )

∂uX
+ βa)

+ γ(uY + λ1ηγ + λ2η
∂g(uX , uY )

∂uY
)

Similarly, we can calculate counterfactual value y̌′ as follows,

y̌′ =wf(αuX + λ1wηα
2f ′(αuX + βa) + λ2α

∂g(uX , uY )

∂uX
+ βǎ)

+ γ(uY + λ1ηγ + λ2η
∂g(uX , uY )

∂uY
)

So,

|y′ − y̌′| =|w||f(αuX + λ1wηα
2f ′(αuX + βǎ) + λ2α

∂g(uX , uY )

∂uX
+ βa)

− f(αuX + λ1wηα
2f ′(αuX + βa) + λ2α

∂g(uX , uY )

∂uX
+ βǎ)|

Since f is strictly convex,

[(αuX + βa)− (αuX − βǎ)] · [f ′(αuX + βa)− f ′(αuX − βǎ)] < 0

And because f ′ is strictly continuous,

(αuX + λ1wηα
2f ′(αuX + βǎ) + λ2α

∂g(uX , uY )

∂uX
+ βa)−

(αuX + λ1wηα
2f ′(αuX + βa) + λ2α

∂g(uX , uY )

∂uX
+ βǎ) <

(αuX + βa)− (αuX − βǎ)

From the second property of f , we know that

|y′ − y̌′| < |wf(αuX + βa)− wf(αuX − βǎ)|

which is exactly |y − y̌|.
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B LEARNING UNDER LCF WITHOUT KNOWN EXOGENOUS VARIABLES

In many real world applications, exogenous variables are remains unknown, where the causal model
is unidentifiable in general. Nasr-Esfahany et al. (2023) proposed a kind of model called Bijective
Causal Model (BCM). Every structural function

Vi = fi(pa(Vi), Ui)

is a bijective function of Ui with a realization of pa(Vi). Even when the prior distribution of Ui

remains unknown, with some assumptions, Nasr-Esfahany et al. (2023) was able to infer the coun-
terfactual V̌i.

With a SCM defined in Theorem 3.1, we assume that the structural functions are bijective. Suppose
the X̌ and Y̌ are the counterfactual quantities inferred from Nasr-Esfahany et al. (2023), a predictor

g(Y̌ , X̌,X) = p1Y̌
2 + p2Y̌ + p3Y̌ + h(s(X, X̌))

in which s is a symmetric function and h is an arbitary function, satifies LCF in Definition 2.1. Since
fi is an invertiable function, we no longer need to infer the exogenous variables Ui. The relationship
between X̌ and X can be learned from the observational data as fi(pa(X), f−1i (X)).

C PARAMETERS FOR SYNTHETIC DATA SIMULATION

When generating the synthetic data, we used α = [0.37454012, 0.95071431, 0.73199394,
0.59865848, 0.15601864, 0.15599452, 0.05808361, 0.86617615, 0.60111501, 0.70807258]T.
β =[0.02058449, 0.96990985, 0.83244264, 0.21233911, 0.18182497, 0.18340451, 0.30424224,
0.52475643, 0.43194502, 0.29122914]T. w =[0.61185289, 0.13949386, 0.29214465, 0.36636184,
0.45606998, 0.78517596, 0.19967378, 0.51423444, 0.59241457, 0.04645041]T. γ = 0.60754485
(These values are generated randomly).

D DENSITY PLOT FOR LAW SCHOOL DATA
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Figure 5: Density plot for F ′ and F̌ ′ under the distribution of K in law school data
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